nn.py 184.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
Y
ying 已提交
28 29 30
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
31
    'dynamic_lstmp',
G
guosheng 已提交
32
    'dynamic_gru',
Y
ying 已提交
33 34 35 36 37 38 39 40 41
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
42
    'conv3d',
Y
ying 已提交
43
    'sequence_pool',
44 45
    'sequence_softmax',
    'softmax',
Y
ying 已提交
46
    'pool2d',
Y
yuyang18 已提交
47
    'pool3d',
Y
ying 已提交
48 49 50
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
51
    'conv3d_transpose',
Y
ying 已提交
52 53 54 55 56 57
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
58
    'reduce_prod',
Y
ying 已提交
59 60 61 62
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
63 64
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
65 66
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
67
    'topk',
Y
ying 已提交
68 69
    'warpctc',
    'sequence_reshape',
70
    'transpose',
71
    'im2sequence',
72
    'nce',
Q
Qiao Longfei 已提交
73
    'beam_search',
74
    'row_conv',
75
    'multiplex',
G
guosheng 已提交
76
    'layer_norm',
77 78
    'softmax_with_cross_entropy',
    'smooth_l1',
79
    'one_hot',
Y
Yu Yang 已提交
80
    'autoincreased_step_counter',
C
caoying03 已提交
81
    'reshape',
Y
yangyaming 已提交
82
    'lod_reset',
D
dragonwarrior 已提交
83
    'lrn',
G
guosheng 已提交
84
    'pad',
85
    'label_smooth',
86
    'roi_pool',
W
whs 已提交
87
    'dice_loss',
F
fengjiayi 已提交
88 89
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
90
    'resize_bilinear',
W
whs 已提交
91
    'gather',
92
    'random_crop',
Y
yuyang18 已提交
93 94 95
    'mean_iou',
    'relu',
    'log',
Y
Yu Yang 已提交
96 97 98 99 100 101 102 103
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
104
       use_mkldnn=False,
Y
Yu Yang 已提交
105
       act=None,
J
Jacek Czaja 已提交
106
       is_test=False,
107
       name=None):
Y
Yu Yang 已提交
108
    """
109
    **Fully Connected Layer**
Y
Yu Yang 已提交
110

F
fengjiayi 已提交
111 112 113 114 115 116 117 118 119
    This function creates a fully connected layer in the network. It can take 
    multiple tensors as its inputs. It creates a variable called weights for 
    each input tensor, which represents a fully connected weight matrix from 
    each input unit to each output unit. The fully connected layer multiplies 
    each input tensor with its coresponding weight to produce an output Tensor. 
    If multiple input tensors are given, the results of multiple multiplications 
    will be sumed up. If bias_attr is not None, a bias variable will be created 
    and added to the output. Finally, if activation is not None, it will be applied 
    to the output as well.
C
caoying03 已提交
120

C
caoying03 已提交
121
    This process can be formulated as follows:
122 123 124

    .. math::

125
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
126 127 128

    In the above equation:

C
caoying03 已提交
129 130 131 132
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
133
    * :math:`Act`: The activation function.
C
caoying03 已提交
134
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
135 136

    Args:
R
ranqiu 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
154
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
155 156
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
157
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
158

159
    Returns:
F
fengjiayi 已提交
160
        Variable: The transformation result.
161 162

    Raises:
C
caoying03 已提交
163
        ValueError: If rank of the input tensor is less than 2.
164 165 166 167

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
168
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
169
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
170
    """
C
caoying03 已提交
171

C
caoying03 已提交
172
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
173 174 175 176

    dtype = helper.input_dtype()

    mul_results = []
177 178
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
179 180 181
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
182

Y
Yu Yang 已提交
183
        w = helper.create_parameter(
184 185
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
186
        helper.append_op(
187 188 189
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
190
            outputs={"Out": tmp},
M
mozga-intel 已提交
191 192
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
193 194 195 196
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
197
    else:
198 199 200 201 202 203 204
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
205 206


207 208 209
def embedding(input,
              size,
              is_sparse=False,
210
              is_distributed=False,
211 212 213
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
214
    """
215 216
    **Embedding Layer**

217
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
218 219
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
220 221 222

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
223 224

    Args:
225 226 227 228 229
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
230
        is_distributed(bool): Whether to run lookup table from remote parameter server.
231 232
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
233
            with zeros whenever lookup encounters it in :attr:`input`. If
234
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
235 236
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
237
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
238

239 240 241
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
242

243 244
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
245

C
chengduoZH 已提交
246
          dict_size = len(dataset.ids)
247
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
248
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
249 250 251 252 253 254
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
255 256
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
257 258 259 260 261
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
262 263 264 265 266
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
267 268 269
    return tmp


Y
yi.wu 已提交
270
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
271 272
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
273 274
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
275 276 277 278 279 280 281
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
282 283
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
284
    """
Y
yi.wu 已提交
285
    ${comment}
Y
Yibing Liu 已提交
286 287

    Args:
Y
yi.wu 已提交
288 289
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
290 291 292 293 294 295 296
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

297
        param_attr(ParamAttr|None): The parameter attribute for the learnable
298
                               hidden-hidden weights.
Y
Yibing Liu 已提交
299 300 301

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
302 303
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
304
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
305 306 307
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
308

309
                              1. `use_peepholes = False`
Y
yi.wu 已提交
310 311
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
312
                              2. `use_peepholes = True`
Y
yi.wu 已提交
313
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
314
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
315
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
316 317 318 319 320 321 322 323
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
324 325

    Returns:
Y
Yibing Liu 已提交
326 327
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
328

Y
Yibing Liu 已提交
329
    Examples:
Y
Yibing Liu 已提交
330 331
        .. code-block:: python

Y
Yibing Liu 已提交
332 333
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
334
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
335 336
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
337
    """
338

Y
Yu Yang 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
353 354 355 356 357 358 359 360 361 362
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
363 364 365

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
366
        inputs=inputs,
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
383 384 385 386 387 388 389 390 391 392 393
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
394 395
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
396 397 398
    """
    **Dynamic LSTMP Layer**

399 400 401 402 403 404
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
405 406 407 408 409

    The formula is as follows:

    .. math::

410
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
411

412
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
413

414
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
415

416
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
417

418
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
419

420
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
421

422
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
423

Y
Yibing Liu 已提交
424 425 426 427 428 429
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
430
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
431
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
432
          bias vector).
Y
Yibing Liu 已提交
433 434 435
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
436
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
437
    * :math:`h`: The hidden state.
438
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
439 440
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
441
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
442
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
443
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
444 445
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
446 447 448 449

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
450

Y
Yibing Liu 已提交
451 452 453 454 455 456 457 458 459 460 461 462
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
463
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
464 465
                               hidden-hidden weight and projection weight.

466 467
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
468 469
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
470 471
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
472 473
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
474 475 476 477 478 479
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
480
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
481 482 483
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
484
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
485 486 487 488 489 490 491 492 493
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
494
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
495 496
                              default "tanh".
        proj_activation(str): The activation for projection output.
497
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
498 499
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
500 501
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
502 503

    Returns:
504 505 506 507
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
508 509

    Examples:
510

Y
Yibing Liu 已提交
511 512
        .. code-block:: python

513 514 515 516
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
517
            hidden_dim, proj_dim = 512, 256
518
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
519
                                     act=None, bias_attr=None)
520 521 522
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
523 524 525 526
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
527
    """
528

Y
Yibing Liu 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
575 576 577 578 579 580 581 582 583
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
584
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
585

586
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
587
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
588

G
guosheng 已提交
589 590 591 592 593 594 595 596 597
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
598

G
guosheng 已提交
599
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
600

G
guosheng 已提交
601
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
602 603
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
604 605 606 607
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
608
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
609 610

    Args:
611 612
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
613
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
614
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
615 616
            is the hidden size.
        size(int): The dimension of the gru cell.
617
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
618 619
            hidden-hidden weight matrix. Note:

620
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
621
              :math:`D` is the hidden size.
622
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
623
              The first part are weights of the update gate and reset gate with
624
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
625
              candidate hidden state with shape :math:`(D \\times D)`.
626
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
627
            hidden-hidden bias.
628
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
629 630 631
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
632
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
633
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
634 635 636 637
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
638 639

    Returns:
G
guosheng 已提交
640
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
641
            and sequence length is the same with the input.
642

G
guosheng 已提交
643
    Examples:
644

G
guosheng 已提交
645 646
        .. code-block:: python

647 648 649 650
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
651
            hidden_dim = 512
652
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
653 654 655 656 657 658 659 660 661 662
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
663
    batch_size = input.shape[0]
G
guosheng 已提交
664 665 666
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
667 668 669
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
693 694 695
def gru_unit(input,
             hidden,
             size,
696 697
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
698
             activation='tanh',
699
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
700
    """
701
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
702

703 704
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
705

706
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
707

708
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
709

710
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
711 712

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
713 714 715
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
716 717
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

718 719
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
720 721 722
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
723 724 725 726 727

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
728 729
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
730 731 732 733
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
734

735 736 737 738 739 740
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
741

742
             # assuming we have x_t_data and prev_hidden of size=10
743
             x_t = fluid.layers.fc(input=x_t_data, size=30)
744 745
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
761 762
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
763

764 765 766 767
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
768
    # create bias
769
    if helper.bias_attr:
Y
Yu Yang 已提交
770 771 772
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
773
        inputs['Bias'] = bias
Y
Yu Yang 已提交
774 775 776

    helper.append_op(
        type='gru_unit',
777
        inputs=inputs,
Y
Yu Yang 已提交
778 779 780 781 782 783
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
784 785
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
786 787 788 789 790
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
791
@templatedoc()
792
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
793 794 795 796 797 798 799
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
800
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
801 802 803 804
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
805 806 807
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
808 809

    """
Y
Yu Yang 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
835
@templatedoc()
836
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
837 838 839 840 841
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
842

Y
yuyang18 已提交
843
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
844

Y
yuyang18 已提交
845 846 847
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
848
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
849 850 851 852 853 854
    
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
855
    """
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
869
@templatedoc()
F
fengjiayi 已提交
870
def cos_sim(X, Y):
Y
Yu Yang 已提交
871
    """
Y
yi.wu 已提交
872
    ${comment}
873 874

    Args:
875 876
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
877

878 879
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
880
    """
F
fengjiayi 已提交
881
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


895
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
896 897 898 899 900
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
901
    training. The dropout operator randomly sets (according to the given dropout
902 903 904 905
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
906 907
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
908 909 910 911 912 913 914
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
915 916

    Returns:
917
        Variable: A tensor variable is the shape with `x`.
918 919

    Examples:
920

921 922
        .. code-block:: python

923 924
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
925 926
    """

F
fengjiayi 已提交
927
    helper = LayerHelper('dropout', **locals())
928 929 930 931 932 933 934
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
935 936 937 938 939 940
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
941 942 943
    return out


F
fengjiayi 已提交
944
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
945
    """
Y
Yibing Liu 已提交
946 947
    **Cross Entropy Layer**

948 949 950
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
951 952

    1) One-hot cross-entropy:
F
fengjiayi 已提交
953
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
954

Y
Yibing Liu 已提交
955
        .. math::
Y
yangyaming 已提交
956

Y
Yibing Liu 已提交
957 958 959
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
960 961
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
962 963 964 965 966

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
967
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
968 969 970
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
971 972
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
973
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
974

Y
Yibing Liu 已提交
975
    Args:
Y
yangyaming 已提交
976
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
977 978 979 980
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
981
        label (Variable|list): the ground truth which is a 2-D tensor. When
982 983 984 985
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
986
        soft_label (bool): a flag indicating whether to
987 988
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
989 990 991 992 993

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
994 995 996 997 998
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
999 1000 1001 1002 1003 1004

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1005
    """
F
fengjiayi 已提交
1006
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1007 1008 1009 1010 1011 1012
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1013
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1014 1015 1016
    return out


F
fengjiayi 已提交
1017
def square_error_cost(input, label):
Y
Yu Yang 已提交
1018
    """
1019 1020
    **Square error cost layer**

1021 1022
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1037 1038
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1039 1040

    Returns:
G
guosheng 已提交
1041
        Variable: The tensor variable storing the element-wise squared error \
1042
                  difference of input and label.
1043 1044 1045 1046 1047 1048 1049 1050

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1051
    """
F
fengjiayi 已提交
1052
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1062 1063
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1064 1065 1066
    return square_out


1067
@templatedoc()
Y
Yu Yang 已提交
1068 1069 1070 1071
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1072
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1073
    """
Y
yi.wu 已提交
1074
    **Chunk Evaluator**
Y
yi.wu 已提交
1075

Y
yangyaming 已提交
1076
    This function computes and outputs the precision, recall and
1077
    F1-score of chunk detection.
1078

Y
yi.wu 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
    
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
    
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

1138 1139 1140 1141 1142 1143
    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1144

1145
    Returns:
Y
update  
yi.wu 已提交
1146 1147 1148
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
Y
yi.wu 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1162
    """
F
fengjiayi 已提交
1163
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1164 1165 1166 1167 1168

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1169 1170 1171
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1172 1173 1174 1175 1176 1177 1178 1179

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1180 1181 1182 1183
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1184 1185 1186
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1187 1188
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1189
        })
1190 1191
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1192 1193


1194
@templatedoc()
Y
Yu Yang 已提交
1195 1196 1197 1198 1199 1200 1201
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1202
                  act=None):
Y
Yu Yang 已提交
1203 1204 1205 1206
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1217

1218 1219
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1245
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N` 
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
    
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1292
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    """
    The input of the softmax layer is a 2-D tensor with shape N x K (N is the
    batch_size, K is the dimension of input feature). The output tensor has the
    same shape as the input tensor.

    For each row of the input tensor, the softmax operator squashes the
    K-dimensional vector of arbitrary real values to a K-dimensional vector of real
    values in the range [0, 1] that add up to 1.

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in Input(X), we have:

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1343 1344 1345
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1346 1347
           stride=1,
           padding=0,
1348
           dilation=1,
Y
Yu Yang 已提交
1349 1350 1351
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1352
           use_cudnn=True,
1353
           use_mkldnn=False,
1354 1355
           act=None,
           name=None):
Y
Yu Yang 已提交
1356
    """
C
chengduoZH 已提交
1357
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1358 1359
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1360
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1361 1362 1363 1364 1365 1366 1367
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1368 1369 1370
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1371

1372
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1373

C
chengduoZH 已提交
1374 1375
    .. math::

C
refine  
chengduoZH 已提交
1376
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1377

T
tensor-tang 已提交
1378
    Where:
C
chengduoZH 已提交
1379

1380 1381 1382 1383 1384
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1385
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1386 1387 1388

    Example:

1389 1390
        - Input:

W
weixing02 已提交
1391
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1392

W
weixing02 已提交
1393
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1394

1395
        - Output:
T
tensor-tang 已提交
1396

W
weixing02 已提交
1397
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1398

C
chengduoZH 已提交
1399
        Where
1400 1401

        .. math::
C
chengduoZH 已提交
1402

W
weixing02 已提交
1403 1404
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1405 1406

    Args:
1407
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1408
        num_filters(int): The number of filter. It is as same as the output
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1431 1432
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1433 1434 1435
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1436 1437

    Returns:
G
guosheng 已提交
1438
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1439 1440
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1441
    Raises:
1442 1443
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1444

C
chengduoZH 已提交
1445 1446 1447
    Examples:
        .. code-block:: python

1448 1449
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1450 1451 1452
    """

    num_channels = input.shape[1]
1453 1454

    l_type = 'conv2d'
X
xzl 已提交
1455 1456
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1457
        l_type = 'depthwise_conv2d'
1458 1459 1460 1461

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1462 1463 1464 1465 1466 1467 1468
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1469 1470 1471
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1472
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1473

C
chengduoZH 已提交
1474 1475
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1493
        type=l_type,
Y
Yu Yang 已提交
1494 1495 1496 1497 1498
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1499 1500 1501
        attrs={
            'strides': stride,
            'paddings': padding,
1502
            'dilations': dilation,
C
chengduoZH 已提交
1503
            'groups': groups,
1504 1505
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1506
        })
Y
Yu Yang 已提交
1507 1508 1509 1510 1511 1512

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1531 1532 1533 1534 1535 1536
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1546 1547
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1548 1549 1550
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1551
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1577
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1578 1579
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1580
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1581 1582
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1583
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1584 1585
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1586
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1613 1614
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1670
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1671 1672 1673 1674

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1675
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1676
    """
Y
yangyaming 已提交
1677 1678 1679
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1691
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1692 1693 1694 1695 1696
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1697
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1698 1699 1700 1701 1702 1703 1704

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1705 1706
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1707

L
Luo Tao 已提交
1708 1709
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1710
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1711 1712 1713 1714 1715 1716 1717 1718
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1719

Y
yangyaming 已提交
1720
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1721 1722 1723 1724 1725
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1726 1727
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1728
    """
F
fengjiayi 已提交
1729
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1741 1742 1743 1744 1745
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1746 1747 1748
    return pool_out


F
fengjiayi 已提交
1749
def sequence_first_step(input):
L
Luo Tao 已提交
1750
    """
L
Luo Tao 已提交
1751
    This function gets the first step of sequence.
L
Luo Tao 已提交
1752 1753 1754 1755

    .. code-block:: text

       x is a 1-level LoDTensor:
1756
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1757 1758 1759 1760 1761
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1762
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1763
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1764

L
Luo Tao 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1774

Y
yangyaming 已提交
1775
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1776 1777 1778
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1779 1780 1781
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1782
def sequence_last_step(input):
L
Luo Tao 已提交
1783
    """
L
Luo Tao 已提交
1784
    This function gets the last step of sequence.
L
Luo Tao 已提交
1785 1786 1787 1788

    .. code-block:: text

       x is a 1-level LoDTensor:
1789
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1790 1791 1792 1793 1794
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1795
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1796
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1797

L
Luo Tao 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1807

Y
yangyaming 已提交
1808
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1809 1810 1811
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1812 1813 1814
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1815
@templatedoc()
Y
Yu Yang 已提交
1816
def pool2d(input,
C
chengduoZH 已提交
1817 1818
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1819 1820
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1821
           global_pooling=False,
C
chengduoZH 已提交
1822
           use_cudnn=True,
1823
           ceil_mode=False,
1824
           use_mkldnn=False,
C
caoying03 已提交
1825
           name=None):
Y
Yu Yang 已提交
1826
    """
F
fengjiayi 已提交
1827
    ${comment}
1828 1829

    Args:
F
fengjiayi 已提交
1830
        input (Variable): The input tensor of pooling operator. The format of 
F
fengjiayi 已提交
1831 1832 1833
                          input tensor is NCHW, where N is batch size, C is 
                          the number of channels, H is the height of the 
                          feature, and W is the width of the feature.
F
fengjiayi 已提交
1834 1835
        pool_size (int): The side length of pooling windows. All pooling 
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1836
        pool_type: ${pooling_type_comment}
1837 1838
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1839 1840 1841 1842
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
F
fengjiayi 已提交
1843 1844 1845
        name (str|None): A name for this layer(optional). If set None, the 
                        layer will be named automatically.

1846
    Returns:
F
fengjiayi 已提交
1847
        Variable: The pooling result.
F
fengjiayi 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
                            input=data, 
                            pool_size=2, 
                            pool_type='max', 
                            pool_stride=1, 
                            global_pooling=False)
Y
Yu Yang 已提交
1866 1867 1868 1869 1870
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1871

C
chengduoZH 已提交
1872 1873 1874 1875 1876
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1877 1878 1879 1880
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1881 1882
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1883

C
Add doc  
chengduoZH 已提交
1884
    l_type = 'pool2d'
1885 1886

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1887 1888 1889 1890
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1920
    pooling configurations mentioned in input parameters.
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1934

1935
    Returns:
1936
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1937 1938 1939 1940 1941
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1942

C
chengduoZH 已提交
1943 1944 1945 1946 1947
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1948 1949 1950
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1951

C
chengduoZH 已提交
1952 1953
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1954

1955 1956
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1957 1958 1959 1960
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1961
        type=l_type,
Y
Yu Yang 已提交
1962 1963 1964 1965 1966 1967 1968
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1969
            "paddings": pool_padding,
1970
            "use_cudnn": use_cudnn,
1971 1972
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1985
               data_layout='NCHW',
Y
Yang Yang 已提交
1986
               in_place=False,
1987
               use_mkldnn=False,
1988 1989
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1990
               moving_variance_name=None,
W
wanghaoshuang 已提交
1991
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1992
    """
Q
qiaolongfei 已提交
1993 1994 1995 1996
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1997

Q
qiaolongfei 已提交
1998
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1999

Q
qiaolongfei 已提交
2000 2001
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2002 2003 2004
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2017 2018

    Args:
Q
qiaolongfei 已提交
2019
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2020 2021 2022 2023
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2024 2025 2026
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2027
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2028 2029 2030 2031 2032
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2033
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2034 2035

    Returns:
Q
qiaolongfei 已提交
2036
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2037 2038 2039 2040 2041 2042 2043

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2067
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2068

2069 2070
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2071 2072 2073
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2074
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2075
        shape=param_shape,
2076 2077 2078 2079 2080 2081 2082
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2083
            trainable=False,
W
wanghaoshuang 已提交
2084
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2085
        shape=param_shape,
2086 2087
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2088 2089 2090 2091 2092 2093

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2094 2095
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2096

Y
Yang Yang 已提交
2097
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2115 2116 2117 2118 2119 2120
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
2121 2122 2123 2124

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2125
@templatedoc()
G
guosheng 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2136
    ${comment}
G
guosheng 已提交
2137 2138 2139

    The formula is as follows:

Y
yuyang18 已提交
2140
    ..  math::
G
guosheng 已提交
2141 2142 2143 2144 2145 2146 2147

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2148 2149 2150 2151 2152 2153 2154 2155
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2156

G
guosheng 已提交
2157 2158
    Args:
        input(Variable): The input tensor variable.
2159
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2160
            normalization.
2161
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2162
            normalization.
2163
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2164
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2165
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2166 2167 2168 2169 2170 2171
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2172
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2173 2174

    Returns:
Y
yuyang18 已提交
2175
        ${y_comment}
G
guosheng 已提交
2176 2177 2178

    Examples:

Y
yuyang18 已提交
2179 2180 2181
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2197
    if shift:
G
guosheng 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2222 2223 2224 2225
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2226 2227 2228
                     padding=0,
                     stride=1,
                     dilation=1,
2229
                     groups=None,
C
caoying03 已提交
2230
                     param_attr=None,
2231
                     bias_attr=None,
C
chengduoZH 已提交
2232
                     use_cudnn=True,
2233
                     act=None,
C
caoying03 已提交
2234
                     name=None):
2235
    """
2236
    **Convlution2D transpose layer**
2237

2238 2239 2240 2241 2242 2243
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2244 2245
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2246 2247 2248
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2249

2250 2251 2252 2253
    For each input :math:`X`, the equation is:

    .. math::

2254
        Out = \sigma (W \\ast X + b)
2255

2256
    Where:
2257 2258 2259

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2260 2261 2262 2263
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2264

2265 2266 2267 2268
    Example:

        - Input:

2269
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2270

2271
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2272 2273 2274

        - Output:

2275
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2276 2277

        Where
Y
Yu Yang 已提交
2278

2279 2280 2281 2282
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
2283 2284

    Args:
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
2316
        name(str|None): A name for this layer(optional). If set None, the layer
2317
            will be named automatically.
2318 2319

    Returns:
2320
        Variable: The tensor variable storing the convolution transpose result.
2321 2322

    Raises:
2323 2324
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2325 2326

    Examples:
2327
       .. code-block:: python
2328

2329 2330
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
2331
    """
Y
Yu Yang 已提交
2332 2333 2334 2335 2336
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
2337 2338 2339
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2340

C
chengduoZH 已提交
2341 2342
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2343

Y
Yu Yang 已提交
2344 2345 2346 2347 2348
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2349

Y
Yu Yang 已提交
2350 2351
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2352

C
chengduoZH 已提交
2353 2354 2355 2356
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2357
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2358 2359 2360
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2361

2362 2363
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2364 2365 2366
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2367
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2368 2369 2370 2371
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
2372
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2373
        attrs={
2374 2375 2376 2377 2378
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2379 2380
        })

2381 2382 2383
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2384 2385


2386
def conv3d_transpose(input,
Y
Yu Yang 已提交
2387 2388 2389
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2390 2391 2392
                     padding=0,
                     stride=1,
                     dilation=1,
2393
                     groups=None,
C
caoying03 已提交
2394
                     param_attr=None,
2395
                     bias_attr=None,
C
chengduoZH 已提交
2396
                     use_cudnn=True,
2397
                     act=None,
C
caoying03 已提交
2398
                     name=None):
Y
Yu Yang 已提交
2399
    """
2400
    **Convlution3D transpose layer**
2401

2402
    The convolution3D transpose layer calculates the output based on the input,
2403
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2404 2405 2406 2407 2408 2409
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2410 2411 2412
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2413 2414 2415 2416 2417

    For each input :math:`X`, the equation is:

    .. math::

2418
        Out = \sigma (W \\ast X + b)
2419 2420 2421

    In the above equation:

2422 2423
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2424 2425 2426 2427
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2428

2429 2430 2431 2432
    Example:

        - Input:

2433
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2434

2435
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2436 2437 2438

        - Output:

2439
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2440 2441

        Where
Y
Yu Yang 已提交
2442

2443 2444
        .. math::

2445 2446 2447
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2448 2449

    Args:
2450
        input(Variable): The input image with [N, C, D, H, W] format.
2451 2452 2453
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2454
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2455 2456
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2457
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2458 2459 2460
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2461 2462
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2463
        stride(int|tuple): The stride size. If stride is a tuple, it must
2464 2465
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2466
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2467 2468 2469
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2470 2471 2472 2473 2474
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2475 2476 2477
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2478 2479 2480 2481 2482
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2483 2484

    Returns:
2485
        Variable: The tensor variable storing the convolution transpose result.
2486 2487

    Raises:
2488 2489
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2490 2491 2492 2493

    Examples:
       .. code-block:: python

2494 2495
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2496
    """
2497 2498
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2499
    if not isinstance(input, Variable):
2500
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2501 2502
    input_channel = input.shape[1]

2503 2504 2505
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2506

C
chengduoZH 已提交
2507 2508 2509
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2510 2511 2512 2513 2514 2515
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2516 2517 2518
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2519

2520
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2521
                         padding[0] - 1) / dilation[0] + 1
2522
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2523
                         padding[1] - 1) / dilation[1] + 1
2524 2525 2526
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2527
    else:
2528 2529
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2530

2531 2532
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2533 2534 2535
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2536
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2537
    helper.append_op(
2538
        type=l_type,
Y
Yu Yang 已提交
2539 2540
        inputs={'Input': [input],
                'Filter': [img_filter]},
2541
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2542 2543 2544 2545
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2546
            'groups': groups,
C
chengduoZH 已提交
2547 2548
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2549

2550 2551
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2552
    return out
Y
yangyaming 已提交
2553 2554


Y
yangyaming 已提交
2555
def sequence_expand(x, y, ref_level=-1, name=None):
2556
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2557 2558 2559 2560
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2561 2562 2563 2564 2565

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2566
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2567
                x.data = [[a], [b], [c], [d]]
2568 2569 2570
                x.dims = [4, 1]

            y is a LoDTensor:
2571 2572
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2573

Y
yangyaming 已提交
2574
            ref_level: 0
2575

Y
yangyaming 已提交
2576
            then output is a 1-level LoDTensor:
2577
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2578
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2579 2580 2581 2582
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2583
                x.data = [[a], [b], [c]]
2584 2585 2586
                x.dims = [3, 1]

            y is a LoDTensor:
2587
                y.lod = [[2, 0, 3]]
2588

Y
yangyaming 已提交
2589
            ref_level: -1
2590

Y
yangyaming 已提交
2591 2592 2593
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2594 2595 2596
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2597 2598
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2599
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2600
                        will be named automatically.
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2611
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2612
    """
Y
yangyaming 已提交
2613
    helper = LayerHelper('sequence_expand', input=x, **locals())
2614 2615 2616
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2617 2618 2619 2620 2621
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2622
    return tmp
2623 2624


2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
    Beam Search Layer. This layer does the search in beams for one time step. 
    Specifically, it selects the top-K candidate word ids of current step from
    :attr:`ids` according to their :attr:`scores` for all source sentences,
    where K is :attr:`beam_size` and :attr:`ids, scores` are predicted results
    from the computation cell. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they are
    needed for special use to handle ended candidate translations.
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py

    Args:
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.

    Examples:
        .. code-block:: python

            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2713
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2778 2779 2780 2781
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2782
              param_attr=None,
C
caoying03 已提交
2783 2784
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2785 2786 2787 2788
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2789
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2790

2791
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2792

2793
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2794

2795
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2796 2797 2798

            h_t & = o_t tanh(c_t)

2799 2800 2801 2802 2803 2804
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2805 2806 2807

        .. math::

2808
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2809 2810 2811 2812 2813 2814 2815 2816

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2817
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2818 2819

    Args:
Y
yangyaming 已提交
2820 2821 2822 2823 2824 2825
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2826
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2827 2828
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2829 2830
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2831 2832
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2833 2834

    Returns:
Y
yangyaming 已提交
2835
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2836 2837

    Raises:
2838 2839 2840 2841
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2842 2843 2844 2845 2846 2847

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2848
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2849
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2850
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2867
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2868 2869 2870 2871
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2872 2873
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2874 2875 2876
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2877
    size = cell_t_prev.shape[1]
2878
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2879 2880
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2881
                param_attr=param_attr,
2882
                bias_attr=bias_attr)
Y
yangyaming 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2895
    return h, c
G
guosheng 已提交
2896 2897


C
caoying03 已提交
2898
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2899
    """
Y
yangyaming 已提交
2900
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2901 2902 2903

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2904
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2905 2906
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2907 2908
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2909
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2910
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2911
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2912 2913
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2914 2915 2916

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2917

G
guosheng 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2929 2930 2931 2932 2933 2934 2935 2936

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2937 2938 2939
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2940 2941
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2942 2943 2944 2945 2946
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2947
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2948 2949 2950 2951
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2952 2953


C
caoying03 已提交
2954
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2955
    """
Y
Yibing Liu 已提交
2956
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2957 2958 2959

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2960 2961 2962
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2963
            must be in the range :math:`[-rank(input), rank(input))`. If
Y
Yibing Liu 已提交
2964 2965
            :math:`dim[i] < 0`, the dimension to reduce is 
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2966 2967
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2968
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2969
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2970
                       will be named automatically.
G
guosheng 已提交
2971 2972

    Returns:
Y
Yibing Liu 已提交
2973
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2974

G
guosheng 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2985 2986
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2987 2988 2989 2990 2991 2992 2993

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2994 2995 2996
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2997 2998
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2999 3000 3001 3002 3003
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3004
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3005 3006 3007 3008
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3009 3010


C
caoying03 已提交
3011
def reduce_max(input, dim=None, keep_dim=False, name=None):
3012
    """
Y
yangyaming 已提交
3013
    Computes the maximum of tensor elements over the given dimension.
3014 3015 3016

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3017
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3018 3019 3020
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3021
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3022 3023
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3024
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3025 3026
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3027 3028 3029

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3042 3043 3044 3045 3046 3047 3048

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3049 3050 3051
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3052 3053
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3054 3055 3056 3057 3058
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3059
            'dim': dim if dim != None else [0],
3060 3061 3062 3063 3064 3065
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3066
def reduce_min(input, dim=None, keep_dim=False, name=None):
3067
    """
Y
yangyaming 已提交
3068
    Computes the minimum of tensor elements over the given dimension.
3069 3070 3071

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3072
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3073 3074 3075
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3076
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3077 3078
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3079
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3080 3081
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3082 3083 3084

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3097 3098 3099 3100 3101 3102 3103

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3104 3105 3106
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3107 3108
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3109 3110 3111 3112 3113
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3114
            'dim': dim if dim != None else [0],
3115 3116 3117 3118
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3119 3120


3121 3122 3123 3124 3125 3126
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3127
        dim (list|int|None): The dimensions along which the product is performed. If
3128 3129
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3130 3131
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3132 3133 3134
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3135
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3136
            layer will be named automatically.
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3151
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3152
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3153 3154 3155 3156 3157 3158 3159

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3160 3161 3162
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3163 3164
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3165 3166 3167 3168 3169
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3170
            'dim': dim if dim != None else [0],
3171 3172 3173 3174 3175 3176
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3177
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3178
    """
C
caoying03 已提交
3179
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3180 3181 3182

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3183 3184 3185 3186 3187
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3188
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3189
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3190
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3191 3192
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3193 3194

    Returns:
D
dzhwinter 已提交
3195
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3205 3206
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3245
    .. math::
3246 3247

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3248 3249 3250 3251 3252

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3253
        x(Variable|list): The input tensor to l2_normalize layer.
3254
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3255 3256
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3257
        epsilon(float): The epsilon value is used to avoid division by zero, \
3258
            the defalut value is 1e-10.
3259
        name(str|None): A name for this layer(optional). If set None, the layer \
3260
            will be named automatically.
C
caoying03 已提交
3261 3262

    Returns:
3263
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3264 3265

    Examples:
3266

C
caoying03 已提交
3267 3268
        .. code-block:: python

3269 3270 3271 3272
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3273 3274
    """

F
fengjiayi 已提交
3275 3276
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3277 3278
    helper = LayerHelper("l2_normalize", **locals())

3279 3280
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3281
    helper.append_op(
3282 3283 3284 3285
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3286
        attrs={
3287 3288
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3289 3290
        })
    return out
3291 3292


3293
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3294
    """
Y
ying 已提交
3295 3296 3297 3298
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3299

C
chengduoZH 已提交
3300
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3301
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3302

3303 3304 3305 3306 3307
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3308
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3309

C
chengduoZH 已提交
3310
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3311
      performs in the following way.
G
guosheng 已提交
3312

3313
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3314
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3315
        last two dimensions and a batched matrix multiply supporting broadcast
3316
        applies on the two tensors.
G
guosheng 已提交
3317

Y
ying 已提交
3318 3319
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3320
    removed after matrix multiplication.
G
guosheng 已提交
3321 3322 3323

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3324 3325 3326
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3327
        name(str|None): A name for this layer(optional). If set None, the layer
3328
            will be named automatically.
G
guosheng 已提交
3329 3330

    Returns:
3331
        Variable: The product Tensor variable.
G
guosheng 已提交
3332

G
guosheng 已提交
3333 3334 3335
    Examples:
        .. code-block:: python

3336
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3337 3338
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3339

3340 3341
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3342

3343 3344
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3345

3346 3347
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3348 3349 3350 3351

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3352 3353
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3354

Y
ying 已提交
3355
            # x: [M], y: [N]
3356
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3357
    """
Y
ying 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3370
            y_shape = y_shape + [1]
Y
ying 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3387
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3388
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3389
    helper.append_op(
3390 3391 3392 3393 3394 3395 3396
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3397 3398


3399
def topk(input, k, name=None):
Q
qingqing01 已提交
3400 3401 3402 3403
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3404
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3405 3406 3407 3408 3409 3410
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3432 3433 3434
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
F
fengjiayi 已提交
3435 3436
        k(int):  The number of top elements to look for along the last dimension 
                 of input.
3437
        name(str|None): A name for this layer(optional). If set None, the layer
F
fengjiayi 已提交
3438 3439
                       will be named automatically. 
                       Default: None
Q
qingqing01 已提交
3440 3441

    Returns:
F
fengjiayi 已提交
3442 3443 3444 3445
        Tuple[Variable]: A tuple with two elements. Each element is a Variable. 
        The first one is k largest elements along each last 
        dimensional slice. The second one is indices of values 
        within the last dimension of input.
Q
qingqing01 已提交
3446

F
fengjiayi 已提交
3447 3448
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3449 3450 3451 3452 3453 3454 3455

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3456
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3474
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3475
    """
Y
ying 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3485

Y
ying 已提交
3486
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3487

3488
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3489 3490
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3491
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3492

3493
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3494 3495
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3496

3497 3498 3499
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3500
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3501
                          the length of reference string.
3502
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3503
                                     calculating edit distance.
3504
        name (str): The name of this layer. It is optional.
3505

W
wanghaoshuang 已提交
3506
    Returns:
W
wanghaoshuang 已提交
3507
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3508 3509 3510 3511 3512

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3513
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3514
            cost = fluid.layers.edit_distance(input=x,label=y)
3515
    """
3516
    helper = LayerHelper("edit_distance", **locals())
3517

3518
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3519
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3520 3521 3522 3523 3524 3525 3526
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3527
            attrs={"tokens": ignored_tokens})
3528 3529 3530 3531 3532
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3533
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3534
            attrs={"tokens": ignored_tokens})
3535 3536
        label = erased_label

3537 3538
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3539
    sequence_num = helper.create_tmp_variable(dtype="int64")
3540 3541 3542 3543
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3544 3545
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3546 3547
        attrs={"normalized": normalized})

3548
    return edit_distance_out, sequence_num
3549 3550 3551 3552 3553


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3554

Y
ying 已提交
3555 3556 3557 3558
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3576
        input.lod = [[4, 4]]
3577 3578 3579 3580 3581 3582 3583

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3584
        output.lod = [[2, 1]]
3585 3586 3587

    Args:

Y
ying 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3597
        name (str): The name of this layer. It is optional.
3598 3599

    Returns:
3600
        Variable: CTC greedy decode result. If all the sequences in result were
3601
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3602 3603 3604 3605 3606

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3607

3608
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3609
    """
3610
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3611
    _, topk_indices = topk(input, k=1)
3612 3613 3614 3615 3616 3617

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3618
        outputs={"Output": [ctc_out]},
3619 3620
        attrs={"merge_repeated": True,
               "blank": blank})
3621
    return ctc_out
3622 3623


F
fengjiayi 已提交
3624
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3625
    """
3626 3627
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3628
    to compute Connectionist Temporal Classification (CTC) loss.
3629 3630
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3631 3632 3633
    input tensor.

    Args:
3634
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3635 3636 3637 3638
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3639 3640 3641 3642
       label (Variable): The ground truth of variable-length sequence, 
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3643 3644
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3645 3646 3647 3648
       norm_by_times(bool, default false): Whether to normalize the gradients 
         by the number of time-step, which is also the sequence's length. 
         There is no need to normalize the gradients if warpctc layer was 
         follewed by a mean_op.
W
wanghaoshuang 已提交
3649 3650

    Returns:
3651 3652
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3653 3654

    Examples:
3655

W
wanghaoshuang 已提交
3656
        .. code-block:: python
3657

3658 3659 3660
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3661 3662

    """
F
fengjiayi 已提交
3663
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3690 3691 3692
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3693 3694 3695 3696 3697
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3698

3699
            out.lod  = [[0, 1, 3]]
3700 3701 3702 3703

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3704 3705 3706 3707 3708 3709 3710
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3711 3712 3713

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3714 3715

    Returns:
3716

3717 3718 3719 3720 3721
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3722
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3723
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3724 3725 3726 3727 3728 3729 3730 3731 3732
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3733 3734


3735 3736 3737 3738
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3739 3740 3741 3742 3743 3744 3745
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3746 3747 3748 3749 3750 3751 3752
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3753 3754 3755
        sample_weight (Variable|None): A Variable of shape [batch_size, 1] 
            storing a weight for each sample. The default weight for each 
            sample is 1.0.
3756 3757 3758
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3759

3760
    Returns:
Y
Yibing Liu 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3788
    """
Y
Yang Yu 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3833
    return cost / (num_neg_samples + 1)
3834 3835


Y
fix ci.  
ying 已提交
3836
def transpose(x, perm, name=None):
Y
ying 已提交
3837 3838 3839 3840 3841 3842 3843
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3844 3845 3846
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3847 3848 3849 3850 3851 3852 3853 3854

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3855
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3856 3857
    """

Y
fix ci.  
ying 已提交
3858
    if len(perm) != len(x.shape):
Y
ying 已提交
3859 3860 3861
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3862 3863 3864 3865 3866 3867
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3868 3869

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3870
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3871 3872
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3873
        inputs={'X': [x]},
Y
ying 已提交
3874 3875 3876
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3877 3878


3879
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3880
    """
3881 3882 3883 3884 3885 3886 3887
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3916 3917 3918
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3919 3920 3921 3922 3923
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3951 3952 3953
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

3968
            output.lod = [[4, 4]]
3969

D
dzhwinter 已提交
3970
     Examples:
3971 3972 3973

        .. code-block:: python

3974 3975
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3976 3977

    """
W
wanghaoshuang 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3989
    helper = LayerHelper('im2sequence', **locals())
3990 3991
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3992
        type='im2sequence',
3993 3994 3995
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3996 3997 3998
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3999 4000
        })
    return out
4001 4002


Y
yuyang18 已提交
4003
@templatedoc()
4004
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4005 4006
    """
    ${comment}
4007 4008

    Args:
Y
yuyang18 已提交
4009
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4010 4011
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4012 4013 4014 4015 4016
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4017
        ${out_comment}.
4018 4019

    Examples:
Y
yuyang18 已提交
4020 4021 4022 4023
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4036
    return helper.append_activation(out)
4037 4038


Y
yuyang18 已提交
4039
@templatedoc()
4040 4041
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4042 4043 4044 4045 4046 4047 4048
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4049 4050

    Args:
Y
yuyang18 已提交
4051 4052
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4053 4054

    Returns:
Y
yuyang18 已提交
4055
        ${out_comment}.
4056 4057
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4058 4059 4060 4061 4062 4063

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4064 4065 4066 4067 4068 4069
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4070 4071 4072 4073 4074


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4075

4076 4077 4078 4079
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4080

4081 4082 4083
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4084

4085 4086 4087
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4088

4089
    The equation is as follows:
4090

4091
    1) Hard label (one-hot label, so every sample has exactly one class)
4092

4093 4094 4095 4096
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4097

4098 4099 4100
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4101

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4123 4124
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4141 4142
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4143
    For each instance, it computes the smooth L1 loss element by element first
4144 4145
    and then sums all the losses. So the shape of ouput Variable is 
    [batch_size, 1].
4146

4147 4148
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4149
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4150
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4151
            L1 loss op with same shape as :attr:`x`.
4152
        inside_weight (Variable|None):  A tensor with rank at least 2. This
Y
Yibing Liu 已提交
4153 4154 4155
            input is optional and should have same shape with :attr:`x`. If 
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied 
            by this tensor element by element.
4156
        outside_weight (Variable|None): A tensor with rank at least 2. This
Y
Yibing Liu 已提交
4157 4158 4159
            input is optional and should have same shape with :attr:`x`. If 
            provided, the out smooth L1 loss will be multiplied by this tensor 
            element by element.
4160 4161 4162
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float 
           scalar with default value 1.0.

4163
    Returns:
4164
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4165 4166 4167 4168 4169

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4170 4171
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4172
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4173
            out = fluid.layers.smooth_l1(x=fc, y=label)
4174
    """
4175

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4191 4192 4193 4194


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4195
    This layer creates the one-hot representations for input indices.
4196 4197

    Args:
Y
Yibing Liu 已提交
4198 4199
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4200 4201

    Returns:
Y
Yibing Liu 已提交
4202
        Variable: The one-hot representations of input.
4203 4204

    Examples:
C
caoying03 已提交
4205
        .. code-block:: python
Y
Yibing Liu 已提交
4206 4207 4208
        
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4209 4210 4211 4212 4213 4214 4215 4216 4217
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4218 4219


Y
Yu Yang 已提交
4220
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4221
    """
Y
yi.wu 已提交
4222 4223 4224
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4225 4226 4227 4228 4229 4230

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4231 4232
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4233 4234 4235 4236 4237 4238

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4239 4240
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4241 4242
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4243 4244 4245 4246 4247
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4248
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
4249 4250 4251
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4252 4253
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4254 4255 4256
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4257 4258


4259
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4260
    """
C
caoying03 已提交
4261 4262
    Gives a new shape to the input Tensor without changing its data.

4263 4264 4265 4266 4267
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4268

4269
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4270

4271 4272 4273 4274
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4275
    2. 0 means the actual dimension value is going to be copied from the
4276 4277 4278 4279
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4280 4281

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4282
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4283
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4284

4285
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4286 4287
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4288 4289
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4290
    dimensions.
C
caoying03 已提交
4291

4292
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4293 4294 4295 4296
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4297 4298

    Args:
4299
        x(variable): The input tensor.
C
caoying03 已提交
4300 4301
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4302 4303 4304 4305 4306
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4307 4308 4309 4310
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
4311
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4312

4313 4314
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4315 4316 4317

    Examples:
        .. code-block:: python
G
guosheng 已提交
4318

4319
            data = fluid.layers.data(
4320
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4321
            reshaped = fluid.layers.reshape(
4322
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4323 4324 4325 4326 4327
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4343 4344 4345 4346
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
4347 4348 4349
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
4350 4351 4352 4353 4354
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4355 4356


Y
yangyaming 已提交
4357
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4358
    """
Y
Yibing Liu 已提交
4359 4360 4361 4362 4363 4364
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be 
    considered as target LoD first, otherwise :attr:`y.data` would be 
    considered as target LoD. If :attr:`y` is not provided, target LoD should 
    be specified by :attr:`target_lod`. If target LoD is specified by 
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4365 4366 4367 4368 4369 4370

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4371
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4372 4373 4374
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4375
            target_lod: [4, 2]
Y
yangyaming 已提交
4376 4377

            then we get a 1-level LoDTensor:
4378
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4379 4380 4381 4382 4383 4384
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4385
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4386 4387 4388 4389
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4390
                y.data = [[2, 4]]
Y
yangyaming 已提交
4391 4392 4393
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4394
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4395 4396 4397 4398 4399 4400
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4401
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4402 4403 4404 4405
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4406
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4407 4408 4409 4410
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4411
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4412 4413 4414 4415 4416
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
Y
Yibing Liu 已提交
4417 4418
        y (Variable|None): If provided, output's LoD would be derived 
                           from :attr:`y`.
Y
yangyaming 已提交
4419
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4420
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4421 4422

    Returns:
Y
Yibing Liu 已提交
4423
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4424 4425

    Raises:
Y
Yibing Liu 已提交
4426
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4462
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4491 4492
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4520 4521 4522 4523


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4524
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4525
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4526

G
guosheng 已提交
4527 4528 4529 4530
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4553
                         The length of :attr:paddings must be
G
guosheng 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4564

G
guosheng 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4579 4580 4581 4582 4583 4584 4585 4586 4587


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4588 4589
    called label-smoothing regularization (LSR).

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4613
                              be :math:`(1, class\_num)`.
4614 4615
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4616
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4644 4645


Y
yi.wu 已提交
4646
@templatedoc()
4647 4648
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4649
    ${comment}
4650 4651

    Args:
Y
yi.wu 已提交
4652 4653
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4654 4655 4656
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4657 4658

    Returns:
Y
update  
yi.wu 已提交
4659
        Variable: ${out_comment}.
4660 4661

    Examples:
4662 4663
        .. code-block:: python

4664
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4710 4711
        .. code-block:: python

W
whs 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4723 4724


4725 4726 4727 4728 4729
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4730
    """
Q
qiaolongfei 已提交
4731
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4732

4733 4734 4735 4736
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4737

4738
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4739

4740
    Args:
4741
        input (Variable): The input tensor of image resize layer,
4742 4743
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4744
        out_shape(list|tuple|Variable|None): Output shape of image resize
4745 4746
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4747
        scale(float|None): The multiplier for the input height or width.
4748 4749 4750
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4751 4752
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4753 4754
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4755 4756

    Returns:
Q
update  
qiaolongfei 已提交
4757 4758
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4759

4760 4761 4762
    Examples:
        .. code-block:: python

4763
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4764
    """
4765 4766 4767 4768
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4769 4770
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4771 4772
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4773 4774 4775 4776

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4777 4778 4779
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4780
    if out_shape is not None:
B
baiyf 已提交
4781 4782 4783
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4784 4785 4786 4787 4788 4789
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4790 4791 4792 4793
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4794 4795
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4796
        type=resample_methods[resample],
4797
        inputs=inputs,
4798 4799 4800 4801
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4802 4803


Y
yuyang18 已提交
4804
@templatedoc(op_type="bilinear_interp")
4805 4806
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4807 4808 4809 4810 4811 4812
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4813

Y
yuyang18 已提交
4814 4815 4816 4817 4818 4819 4820 4821
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4839
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4840

4841
    Returns:
Q
update  
qiaolongfei 已提交
4842
        Variable: The output is a 4-D tensor of the shape
4843
        (num_batches, channls, out_h, out_w).
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4854 4855 4856
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4857 4858 4859
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4860 4861
def gather(input, index):
    """
Q
qiaolongfei 已提交
4862 4863
    **Gather Layer**

W
whs 已提交
4864 4865 4866 4867 4868
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4869
        Out = X[Index]
W
whs 已提交
4870 4871 4872 4873 4874 4875 4876


    .. code-block:: text


                Given:

4877 4878
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4896

W
whs 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
4925 4926 4927 4928
    
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
4929
    """
F
stash  
fengjiayi 已提交
4930 4931 4932
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4933 4934 4935
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4936
    if isinstance(seed, int):
F
fengjiayi 已提交
4937
        seed_value = seed
F
fengjiayi 已提交
4938 4939 4940 4941 4942 4943 4944 4945
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4946 4947
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4948
            })
F
stash  
fengjiayi 已提交
4949 4950
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4951
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4952 4953
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
4954
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4955 4956 4957 4958 4959
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
W
whs 已提交
4960 4961


W
wanghaoshuang 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
def log(x):
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

        Out = \\ln(x)

    Args:
        x (Variable): Input tensor. 

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

            output = fluid.layers.log(x)
    """
    helper = LayerHelper('log', **locals())
4983
    dtype = x.dtype
W
wanghaoshuang 已提交
4984
    out = helper.create_tmp_variable(dtype)
4985
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
    return out


def relu(x):
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
    where the rectified linear function, y = max(0, x), is applied to
    the tensor elementwise.

    .. math::

        Out = \\max(0, x)

    Args:
        x (Variable): The input tensor. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.relu(x)
    """
    helper = LayerHelper('relu', **locals())
5012
    dtype = x.dtype
W
wanghaoshuang 已提交
5013
    out = helper.create_tmp_variable(dtype)
5014
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5015
    return out
5016 5017


W
whs 已提交
5018 5019 5020 5021 5022 5023 5024 5025
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
5026 5027

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5028 5029 5030 5031 5032 5033 5034

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5035
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5036
                           Its shape should be the same as input.
5037
        num_classes (int): The possible number of labels.
W
whs 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 

    Examples:

        .. code-block:: python
5047
            
W
whs 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct