nn.py 469.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
122
    'resize_nearest',
X
Xin Pan 已提交
123 124 125 126 127 128
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
129
    'selu',
X
Xin Pan 已提交
130 131 132
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
133
    'margin_rank_loss',
X
Xin Pan 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
150
    'unique',
151
    'unique_with_counts',
X
Xin Pan 已提交
152 153 154 155 156 157 158 159 160 161
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
162 163
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
164 165 166 167 168 169 170
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
171
    'rank',
Z
zhoukunsheng 已提交
172
    'size',
X
Xin Pan 已提交
173 174 175 176 177 178 179 180 181 182
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
183
    'space_to_depth',
W
whs 已提交
184
    'affine_grid',
S
sneaxiy 已提交
185
    'sequence_reverse',
186
    'affine_channel',
B
barrierye 已提交
187
    'similarity_focus',
M
minqiyang 已提交
188
    'hash',
D
dengkaipeng 已提交
189
    'grid_sampler',
G
gmcather 已提交
190 191
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
192
    'bilinear_tensor_product',
C
chengduo 已提交
193 194
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
195
    'lstm',
S
shippingwang 已提交
196
    'shuffle_channel',
197
    'temporal_shift',
S
sneaxiy 已提交
198
    'py_func',
199
    'psroi_pool',
H
heqiaozhi 已提交
200
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
201
    'huber_loss',
D
dengkaipeng 已提交
202
    'kldiv_loss',
Z
zhaozhehao 已提交
203
    'tree_conv',
C
ceci3 已提交
204
    'npair_loss',
R
ruri 已提交
205
    'pixel_shuffle',
206
    'fsp_matrix',
H
heqiaozhi 已提交
207
    'continuous_value_model',
Z
zhoukunsheng 已提交
208
    'where',
Z
zhoukunsheng 已提交
209
    'sign',
210
    'deformable_conv',
211
    'unfold',
C
cjt222 已提交
212
    'deformable_roi_pooling',
K
Kevin 已提交
213
    'var_conv_2d',
214
    'shard_index',
Y
Yu Yang 已提交
215 216
]

J
jerrywgz 已提交
217 218
kIgnoreIndex = -100

Y
Yu Yang 已提交
219 220 221 222 223 224 225

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
226
       is_test=False,
227
       name=None):
Y
Yu Yang 已提交
228
    """
229
    **Fully Connected Layer**
Y
Yu Yang 已提交
230

231
    This function creates a fully connected layer in the network. It can take
232
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
233
    Args in detail). It creates a variable called weights for each input tensor,
234 235 236 237
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
238
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
239 240
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
241

242
    When the input is single tensor:
C
caoying03 已提交
243

244 245 246 247 248
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
249 250 251

    .. math::

252
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
253 254 255

    In the above equation:

256 257 258
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
259
    * :math:`b`: The bias parameter created by this layer (if needed).
260
    * :math:`Act`: The activation function.
C
caoying03 已提交
261
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
281
    Args:
R
ranqiu 已提交
282 283 284 285 286 287 288 289 290 291
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
292
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
293 294 295 296
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
297 298
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
299
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
300
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
301
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
302

303
    Returns:
F
fengjiayi 已提交
304
        Variable: The transformation result.
305 306

    Raises:
C
caoying03 已提交
307
        ValueError: If rank of the input tensor is less than 2.
308 309 310 311

    Examples:
        .. code-block:: python

312
          import paddle.fluid as fluid
313
          # when input is single tensor
F
fengjiayi 已提交
314
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
315
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
316 317 318 319 320

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
321
    """
C
caoying03 已提交
322
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
323 324 325 326

    dtype = helper.input_dtype()

    mul_results = []
327 328
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
329 330 331
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
332

Y
Yu Yang 已提交
333
        w = helper.create_parameter(
334
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
335
        tmp = helper.create_variable_for_type_inference(dtype)
336
        helper.append_op(
337 338 339
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
340
            outputs={"Out": tmp},
M
mozga-intel 已提交
341 342
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
343 344 345 346
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
347
    else:
X
Xin Pan 已提交
348
        pre_bias = helper.create_variable_for_type_inference(dtype)
349
        helper.append_op(
350 351 352
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
353
            attrs={"use_mkldnn": False})
354 355 356 357
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
358 359


H
HaoRen 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


446 447 448
def embedding(input,
              size,
              is_sparse=False,
449
              is_distributed=False,
450 451 452
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
453
    """
454 455
    **Embedding Layer**

456
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
457 458
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
459 460 461

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
462 463

    Args:
464
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
465 466 467 468
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
469
        is_distributed(bool): Whether to run lookup table from remote parameter server.
470 471
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
472
            with zeros whenever lookup encounters it in :attr:`input`. If
473
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
474 475
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
476
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
477

478 479 480
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
481

482 483
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
484

B
bdzhuxiaoning 已提交
485 486 487
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
488 489 490
    """

    helper = LayerHelper('embedding', **locals())
491
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
492 493
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
494 495
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
496
    tmp = helper.create_variable_for_type_inference(dtype)
497 498
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
499 500 501 502 503
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
504 505 506
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
507
            'remote_prefetch': remote_prefetch,
508 509
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
510 511 512
    return tmp


W
wopeizl 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
529

W
wopeizl 已提交
530 531 532 533 534 535 536 537 538 539 540
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
541

W
wopeizl 已提交
542 543 544 545
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
546

W
wopeizl 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
583
            
584
            import paddle.fluid as fluid
585 586
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
587
            hidden_dim = 512
588 589 590 591 592 593
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
594
                                           bias_attr=False)
595

W
wopeizl 已提交
596 597 598
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
599
    assert in_dygraph_mode(
600
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
644 645


P
phlrain 已提交
646 647 648 649 650 651
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
652
         dropout_prob=0.0,
P
phlrain 已提交
653 654 655 656 657
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
658
    """
P
phlrain 已提交
659
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
660 661

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
662
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
663 664
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
665
    .. math::
M
minqiyang 已提交
666 667 668 669 670 671 672

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
673
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
674 675 676 677

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
678 679

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
680 681 682 683 684 685
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
686 687 688
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
689
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
690

M
minqiyang 已提交
691
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
692 693 694 695 696
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
697
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
698 699 700 701 702
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
703
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
704 705
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
706 707
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
708 709 710 711 712 713
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
714
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
715

L
liuhongyu 已提交
716 717

    Returns:
M
minqiyang 已提交
718 719
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
720
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
721

H
haowang101779990 已提交
722 723 724 725
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
726
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
727 728
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
729
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
730 731 732 733


    Examples:
        .. code-block:: python
734
            
735 736 737
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

738 739 740 741 742
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
743 744 745 746 747 748
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
749 750 751 752 753
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
754 755 756 757
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
758 759 760
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
820 821 822 823 824 825 826 827 828 829
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
830
                  proj_activation='tanh',
831
                  dtype='float32',
X
xuezhong 已提交
832 833 834 835 836
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
837 838 839
    """
    **Dynamic LSTMP Layer**

840 841 842 843 844 845
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
846 847 848 849 850

    The formula is as follows:

    .. math::

851
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
852

853
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
854

855
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
856

857
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
858

859
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
860

861
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
862

863
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
864

Y
Yibing Liu 已提交
865 866 867 868 869 870
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
871
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
872
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
873
          bias vector).
Y
Yibing Liu 已提交
874 875 876
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
877
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
878
    * :math:`h`: The hidden state.
879
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
880 881
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
882
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
883
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
884
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
885 886
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
887 888 889 890

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
891

Y
Yibing Liu 已提交
892 893 894 895 896 897 898 899 900 901 902 903
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
904
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
905 906
                               hidden-hidden weight and projection weight.

907 908
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
909 910
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
911 912
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
913
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
914 915 916 917 918

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
919
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
920 921 922 923 924 925
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
926
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
927 928 929
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
930
                                - The shape is (1 x 7D).
C
chengduo 已提交
931 932 933 934 935

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
945
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
946 947
                              default "tanh".
        proj_activation(str): The activation for projection output.
948
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
949
                              default "tanh".
Y
Yibing Liu 已提交
950
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
951 952
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
953 954 955 956 957 958 959 960 961 962 963
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
964 965

    Returns:
966 967 968 969
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
970 971

    Examples:
972

Y
Yibing Liu 已提交
973 974
        .. code-block:: python

975
            import paddle.fluid as fluid
976 977 978 979
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
980
            hidden_dim, proj_dim = 512, 256
981
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
982
                                     act=None, bias_attr=None)
983 984 985
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
986 987 988 989
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
990
    """
991

L
lujun 已提交
992
    assert in_dygraph_mode(
993 994
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
995
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
996
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
997
    size = size // 4
Y
Yibing Liu 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1008 1009 1010 1011 1012 1013
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1029

X
xuezhong 已提交
1030 1031 1032 1033 1034
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1035 1036
    helper.append_op(
        type='lstmp',
1037
        inputs=inputs,
Y
Yibing Liu 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1047 1048
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1058 1059 1060 1061 1062 1063 1064
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1065 1066
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1067
    """
1068
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1069

1070 1071 1072
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1073

G
guosheng 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1083

G
guosheng 已提交
1084
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1085

Q
Qiao Longfei 已提交
1086 1087 1088

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1101
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1102 1103
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1104 1105 1106 1107
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1108
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1109 1110

    Args:
1111 1112
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1113
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1114
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1115 1116
            is the hidden size.
        size(int): The dimension of the gru cell.
1117
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1118 1119
            hidden-hidden weight matrix. Note:

1120
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1121
              :math:`D` is the hidden size.
1122
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1123
              The first part are weights of the update gate and reset gate with
1124
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1125
              candidate hidden state with shape :math:`(D \\times D)`.
1126 1127 1128 1129 1130

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1131
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1132
            the bias in the update gate, reset gate and candidate calculations.
1133 1134 1135
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1136 1137
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1138
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1139 1140 1141
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1142
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1143
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1144 1145 1146 1147
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1148 1149

    Returns:
G
guosheng 已提交
1150
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1151
            and sequence length is the same with the input.
1152

G
guosheng 已提交
1153
    Examples:
1154

G
guosheng 已提交
1155 1156
        .. code-block:: python

1157 1158
            import paddle.fluid as fluid

1159 1160 1161 1162
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1163
            hidden_dim = 512
1164
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1165
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1166 1167
    """

L
lujun 已提交
1168
    assert in_dygraph_mode(
1169 1170
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1171 1172 1173 1174 1175 1176 1177
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1178
    batch_size = input.shape[0]
G
guosheng 已提交
1179
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1180
    if h_0:
G
guosheng 已提交
1181
        assert h_0.shape == (
Y
Yancey 已提交
1182 1183 1184
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1185

X
Xin Pan 已提交
1186 1187 1188 1189
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1203 1204
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1205 1206 1207 1208
        })
    return hidden


Y
Yu Yang 已提交
1209 1210 1211
def gru_unit(input,
             hidden,
             size,
1212 1213
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1214
             activation='tanh',
Q
Qiao Longfei 已提交
1215 1216
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1217
    """
1218 1219 1220
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1221
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1222
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1223

1224 1225
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1226

1227
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1228

1229
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1246 1247

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1248 1249 1250
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1251 1252
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1253 1254
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1255 1256 1257
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1258 1259 1260

    Args:
        input (Variable): The fc transformed input value of current step.
1261
        hidden (Variable): The hidden value of gru unit from previous step.
1262
        size (integer): The input dimension value.
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1277
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1278
            the bias in the update gate, reset gate and candidate calculations.
1279 1280 1281
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1282 1283
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1284 1285 1286 1287
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1288

1289 1290 1291 1292 1293 1294
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1319
    size = size // 3
Y
Yu Yang 已提交
1320 1321

    # create weight
1322 1323
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1324

X
Xin Pan 已提交
1325 1326 1327
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1328
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1329
    # create bias
1330
    if helper.bias_attr:
Y
Yu Yang 已提交
1331 1332 1333
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1334
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1335 1336 1337

    helper.append_op(
        type='gru_unit',
1338
        inputs=inputs,
Y
Yu Yang 已提交
1339 1340 1341 1342 1343 1344
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1345 1346
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1347 1348 1349 1350 1351
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1352
@templatedoc()
1353
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1354 1355 1356 1357 1358 1359 1360
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1361
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1362 1363 1364 1365
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1366 1367 1368
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1369

J
JesseyXujin 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1383
    """
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1390 1391 1392 1393 1394 1395 1396 1397
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1413 1414 1415 1416
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1417

W
wopeizl 已提交
1418 1419
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1420

W
wopeizl 已提交
1421
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1422

W
wopeizl 已提交
1423
        label(${label_type}): ${label_comment}
1424

W
wopeizl 已提交
1425 1426
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1427

W
wopeizl 已提交
1428 1429
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1430

1431
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1432 1433 1434 1435 1436 1437 1438
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1439 1440 1441 1442 1443 1444 1445 1446
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1447
                "Transition": transition,
W
wopeizl 已提交
1448 1449
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1450

W
wopeizl 已提交
1451
    return viterbi_path
Y
Yu Yang 已提交
1452 1453


Y
yi.wu 已提交
1454
@templatedoc()
F
fengjiayi 已提交
1455
def cos_sim(X, Y):
Y
Yu Yang 已提交
1456
    """
Y
yi.wu 已提交
1457 1458 1459
    ${comment}

    Args:
1460 1461
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1462

Y
yi.wu 已提交
1463
    Returns:
1464
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1465 1466 1467 1468

    Examples:
        .. code-block:: python

1469
            import paddle.fluid as fluid
L
lvmengsi 已提交
1470 1471 1472
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1473
    """
F
fengjiayi 已提交
1474
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1475 1476 1477
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1488 1489 1490 1491 1492
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1493
            dropout_implementation="downgrade_in_infer"):
1494 1495 1496 1497 1498
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1499
    training. The dropout operator randomly sets (according to the given dropout
1500 1501 1502
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1503 1504
    dropout op can be removed from the program to make the program more efficient.

1505
    Args:
1506 1507
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1508 1509 1510 1511 1512 1513 1514
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1515 1516
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1517
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1518 1519

                                           - train: out = input * mask
C
ceci3 已提交
1520
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1521 1522 1523

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1524
                                        2. upscale_in_train, upscale the outcome at training time
1525

H
haowang101779990 已提交
1526 1527
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1528

H
haowang101779990 已提交
1529 1530
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1531

M
minqiyang 已提交
1532

1533
    Returns:
1534
        Variable: A tensor variable is the shape with `x`.
1535 1536

    Examples:
1537

1538 1539
        .. code-block:: python

1540
            import paddle.fluid as fluid
1541 1542
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1543 1544
    """

F
fengjiayi 已提交
1545
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1546 1547
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1548
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1549 1550 1551 1552

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1553 1554 1555 1556 1557
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1558 1559 1560 1561
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1562
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1563
            'dropout_implementation': dropout_implementation,
1564
        })
1565 1566 1567
    return out


J
jerrywgz 已提交
1568
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1569
    """
Y
Yibing Liu 已提交
1570 1571
    **Cross Entropy Layer**

1572 1573 1574
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1575 1576

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1577
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1578

Y
Yibing Liu 已提交
1579
        .. math::
Y
yangyaming 已提交
1580

Y
Yibing Liu 已提交
1581 1582 1583
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1584 1585
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1586 1587 1588 1589 1590

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1591
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1592 1593 1594
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1595 1596
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1597
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1598

Y
Yibing Liu 已提交
1599
    Args:
Y
yangyaming 已提交
1600
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1601 1602 1603 1604
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1605
        label (Variable|list): the ground truth which is a 2-D tensor. When
1606 1607 1608 1609
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1610
        soft_label (bool): a flag indicating whether to
1611
                                           interpretate the given labels as soft
1612
                                           labels. Default: `False`.
M
minqiyang 已提交
1613 1614
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1615
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1616 1617 1618 1619 1620

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1621 1622 1623
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1624

H
haowang101779990 已提交
1625 1626
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1627

H
haowang101779990 已提交
1628 1629
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1630 1631 1632 1633

    Examples:
        .. code-block:: python

1634
          import paddle.fluid as fluid
L
lvmengsi 已提交
1635 1636 1637 1638
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1639
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1640
    """
S
sneaxiy 已提交
1641 1642
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1643
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1644
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1645 1646 1647 1648 1649
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1650 1651
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1652 1653 1654
    return out


S
sneaxiy 已提交
1655 1656 1657 1658
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1659
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1660 1661 1662 1663 1664
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1665
                 'MatchX': [match_x],
S
sneaxiy 已提交
1666 1667 1668 1669 1670
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1671
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1672
    """
1673
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1674

1675
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1676
    The loss at a given point in one session is defined as:
1677 1678 1679

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1680 1681

    Learn more details by reading paper <session-based recommendations with recurrent
1682
    neural networks>.
F
frankwhzhang 已提交
1683

1684 1685 1686 1687 1688 1689
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1690 1691
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1692 1693 1694
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1695 1696 1697
    Examples:
        .. code-block:: python

1698 1699 1700 1701 1702 1703 1704
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1705
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1706
    """
1707 1708 1709 1710 1711
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1712
                'Label': [label]},
1713 1714 1715 1716
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1717
def square_error_cost(input, label):
Y
Yu Yang 已提交
1718
    """
1719 1720
    **Square error cost layer**

1721 1722
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1737 1738
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1739 1740

    Returns:
G
guosheng 已提交
1741
        Variable: The tensor variable storing the element-wise squared error \
1742
                  difference of input and label.
1743 1744 1745 1746

    Examples:
        .. code-block:: python

1747
          import paddle.fluid as fluid
R
ruri 已提交
1748 1749 1750
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1751

Y
Yu Yang 已提交
1752
    """
F
fengjiayi 已提交
1753
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1754
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1755 1756 1757 1758 1759 1760
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1761
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1762
    helper.append_op(
F
fengjiayi 已提交
1763 1764
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1765 1766 1767
    return square_out


Y
yi.wu 已提交
1768
@templatedoc()
Y
Yu Yang 已提交
1769 1770 1771 1772
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1773 1774
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1775
    """
Y
yi.wu 已提交
1776
    **Chunk Evaluator**
Y
yi.wu 已提交
1777

Y
yangyaming 已提交
1778
    This function computes and outputs the precision, recall and
1779
    F1-score of chunk detection.
Y
yi.wu 已提交
1780

M
minqiyang 已提交
1781
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1782
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1783 1784 1785 1786 1787 1788

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1789

Y
yi.wu 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1815

Y
yi.wu 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1840
    Args:
1841 1842 1843 1844 1845
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1846
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1847

Y
yi.wu 已提交
1848
    Returns:
Y
update  
yi.wu 已提交
1849 1850 1851
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1852

Y
yi.wu 已提交
1853 1854 1855
    Examples:
        .. code-block:: python

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1867
            crf = fluid.layers.linear_chain_crf(
1868
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1869
            crf_decode = fluid.layers.crf_decoding(
1870
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1871 1872 1873 1874 1875
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1876
    """
F
fengjiayi 已提交
1877
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1878 1879

    # prepare output
X
Xin Pan 已提交
1880 1881 1882 1883 1884 1885 1886
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1887

1888 1889 1890 1891 1892
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1893 1894
    helper.append_op(
        type="chunk_eval",
1895
        inputs=this_input,
Y
Yu Yang 已提交
1896 1897 1898
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1899 1900 1901 1902
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1903 1904 1905
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1906 1907
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1908
        })
1909 1910
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1911 1912


1913
@templatedoc()
Y
Yu Yang 已提交
1914 1915 1916 1917 1918 1919 1920
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1921 1922
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1923 1924 1925 1926
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1927 1928 1929 1930 1931 1932 1933

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1947

1948 1949
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1950 1951 1952 1953 1954 1955 1956

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1957 1958
    """

L
lujun 已提交
1959
    assert not in_dygraph_mode(), (
1960
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1961 1962 1963 1964 1965
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1966
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1977
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1978 1979 1980 1981 1982 1983
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1984
def sequence_softmax(input, use_cudnn=False, name=None):
1985 1986 1987
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1988
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2005 2006 2007
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2008

2009 2010 2011 2012 2013 2014 2015
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2016
             import paddle.fluid as fluid
2017 2018 2019 2020
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2021
    assert not in_dygraph_mode(), (
2022
        "sequence layer is not supported in dygraph mode yet.")
2023 2024
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2025
    softmax_out = helper.create_variable_for_type_inference(dtype)
2026 2027 2028 2029 2030 2031 2032 2033
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2034
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2035
    """
2036
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2037
    has the same shape as the input.
Q
qiaolongfei 已提交
2038

D
dengkaipeng 已提交
2039
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2040
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2041
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2042 2043 2044
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2045
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2046
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2047 2048 2049 2050 2051 2052 2053

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2054
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2055 2056 2057 2058 2059 2060 2061 2062

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2063 2064
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2065 2066
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2067 2068 2069
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2070 2071 2072 2073 2074 2075 2076 2077

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2078 2079
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2080
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2081
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2082
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2083 2084
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2085 2086

    """
2087 2088
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2089
    softmax_out = helper.create_variable_for_type_inference(dtype)
2090 2091 2092 2093
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2094 2095
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2096 2097 2098
    return softmax_out


Y
Yu Yang 已提交
2099 2100 2101
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2102 2103
           stride=1,
           padding=0,
2104
           dilation=1,
Y
Yu Yang 已提交
2105 2106 2107
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2108
           use_cudnn=True,
2109 2110
           act=None,
           name=None):
Y
Yu Yang 已提交
2111
    """
C
chengduoZH 已提交
2112
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2113 2114
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2115
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2116 2117 2118 2119 2120 2121 2122
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2123 2124 2125
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2126

2127
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2128

C
chengduoZH 已提交
2129 2130
    .. math::

C
refine  
chengduoZH 已提交
2131
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2132

T
tensor-tang 已提交
2133
    Where:
C
chengduoZH 已提交
2134

2135 2136 2137 2138 2139
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2140
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2141 2142 2143

    Example:

2144 2145
        - Input:

W
weixing02 已提交
2146
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2147

W
weixing02 已提交
2148
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2149

2150
        - Output:
T
tensor-tang 已提交
2151

W
weixing02 已提交
2152
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2153

C
chengduoZH 已提交
2154
        Where
2155 2156

        .. math::
C
chengduoZH 已提交
2157

W
weixing02 已提交
2158 2159
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2160 2161

    Args:
2162
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2163
        num_filters(int): The number of filter. It is as same as the output
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2181 2182 2183 2184 2185
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2186
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2187 2188 2189 2190 2191
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2192 2193
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2194 2195
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2196
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2197
            will be named automatically. Default: None
C
chengduoZH 已提交
2198 2199

    Returns:
G
guosheng 已提交
2200
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2201 2202
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2203
    Raises:
2204 2205
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2206

C
chengduoZH 已提交
2207 2208 2209
    Examples:
        .. code-block:: python

2210
          import paddle.fluid as fluid
2211 2212
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2213 2214 2215
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2216
    assert param_attr is not False, "param_attr should not be False here."
2217
    l_type = 'conv2d'
X
xzl 已提交
2218 2219
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2220
        l_type = 'depthwise_conv2d'
2221 2222 2223 2224

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2225 2226 2227 2228 2229
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2230
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2231

C
chengduoZH 已提交
2232 2233 2234
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2235
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2236

C
chengduoZH 已提交
2237 2238
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2239 2240

    input_shape = input.shape
M
minqiyang 已提交
2241
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2242 2243

    def _get_default_param_initializer():
C
chengduo 已提交
2244 2245
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251 2252 2253
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2254
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2270
    helper.append_op(
2271
        type=l_type,
Y
Yu Yang 已提交
2272 2273 2274 2275 2276
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2277 2278 2279
        attrs={
            'strides': stride,
            'paddings': padding,
2280
            'dilations': dilation,
C
chengduoZH 已提交
2281
            'groups': groups,
2282
            'use_cudnn': use_cudnn,
2283
            'use_mkldnn': False,
2284
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2285
        })
Y
Yu Yang 已提交
2286 2287 2288 2289 2290 2291

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2309 2310 2311 2312 2313 2314
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2324 2325
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2326 2327 2328
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2329
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2352
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2353 2354
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2355
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2356 2357
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2358
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2359 2360
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2361
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2362 2363
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2364
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2365 2366 2367 2368 2369 2370
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2381 2382
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2383 2384
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2385
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2386
            will be named automatically. Default: None.
C
chengduoZH 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2399
          import paddle.fluid as fluid
2400 2401
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2402 2403 2404
    """

    l_type = 'conv3d'
C
chengduo 已提交
2405
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2416
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2430 2431 2432
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2433 2434 2435 2436 2437 2438 2439 2440
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2441
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2456
            'use_mkldnn': False
C
chengduoZH 已提交
2457 2458
        })

2459
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2460 2461 2462 2463

    return helper.append_activation(pre_act)


2464
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2465
    """
Y
yangyaming 已提交
2466 2467 2468
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2479 2480
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2481 2482 2483 2484
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2485
         out.dim = [4, 1]
2486
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2487 2488

       for different pool_type:
2489 2490 2491
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2492
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2493 2494 2495 2496 2497
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2498

L
Luo Tao 已提交
2499
    Args:
2500
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2501
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2502
            It supports average, sum, sqrt and max.
2503 2504
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2505 2506 2507 2508 2509 2510 2511

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2512

2513 2514
             import paddle.fluid as fluid

Y
yangyaming 已提交
2515
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2516 2517 2518 2519 2520
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2521 2522
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2523
    """
L
lujun 已提交
2524
    assert not in_dygraph_mode(), (
2525
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2526
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2527
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2528 2529
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2530 2531 2532 2533 2534 2535

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2536 2537 2538 2539 2540
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2541

Y
yangyaming 已提交
2542 2543 2544 2545 2546
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2547 2548 2549
    return pool_out


C
add doc  
chengduoZH 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2566 2567 2568 2569
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2570
    """
L
lujun 已提交
2571
    assert not in_dygraph_mode(), (
2572
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2573
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2574
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2575 2576 2577 2578 2579
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2580
def sequence_first_step(input):
L
Luo Tao 已提交
2581
    """
L
Luo Tao 已提交
2582
    This function gets the first step of sequence.
L
Luo Tao 已提交
2583 2584 2585 2586

    .. code-block:: text

       x is a 1-level LoDTensor:
2587
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2588 2589 2590 2591 2592
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2593
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2594
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2595

L
Luo Tao 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2605

2606
             import paddle.fluid as fluid
Y
yangyaming 已提交
2607
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2608 2609 2610
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2611 2612 2613
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2614
def sequence_last_step(input):
L
Luo Tao 已提交
2615
    """
L
Luo Tao 已提交
2616
    This function gets the last step of sequence.
L
Luo Tao 已提交
2617 2618 2619 2620

    .. code-block:: text

       x is a 1-level LoDTensor:
2621
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2622 2623 2624 2625 2626
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2627
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2628
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2629

L
Luo Tao 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2639

2640
             import paddle.fluid as fluid
Y
yangyaming 已提交
2641
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2642 2643 2644
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2645 2646 2647
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2648 2649 2650 2651
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2652
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2653 2654 2655 2656 2657
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2658

H
haowang101779990 已提交
2659
              - Case:
Y
Yibing Liu 已提交
2660

2661
            Given the input Variable **input**:
2662

2663 2664 2665
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2666

2667
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2668

2669
            the output Variable will be
2670

2671 2672 2673
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2674

M
minqiyang 已提交
2675
    Note:
H
haowang101779990 已提交
2676
          The first dimension size of **input**, **offset** and **length**
2677
          should be equal. The **offset** should start from 0.
2678

Y
Yibing Liu 已提交
2679
    Args:
2680
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2681
                         sequences.
Y
Yibing Liu 已提交
2682 2683 2684 2685 2686 2687
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2688
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2689 2690 2691 2692 2693

    Examples:

        .. code-block:: python

2694
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2695 2696 2697 2698 2699
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2700
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2701 2702
                                                   length=length)
    """
L
lujun 已提交
2703
    assert not in_dygraph_mode(), (
2704
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2705 2706
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2707
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2722
@templatedoc()
Y
Yu Yang 已提交
2723
def pool2d(input,
C
chengduoZH 已提交
2724 2725
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2726 2727
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2728
           global_pooling=False,
C
chengduoZH 已提交
2729
           use_cudnn=True,
2730
           ceil_mode=False,
2731 2732
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2733
    """
F
fengjiayi 已提交
2734
    ${comment}
2735 2736

    Args:
2737 2738 2739
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2740
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2741
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2742 2743
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2744
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2745 2746 2747 2748 2749 2750
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2751 2752 2753
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2754
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2755
                        layer will be named automatically.
2756
        exclusive (bool): Whether to exclude padding points in average pooling
2757
                          mode, default is true
F
fengjiayi 已提交
2758

2759
    Returns:
F
fengjiayi 已提交
2760
        Variable: The pooling result.
F
fengjiayi 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2771
          import paddle.fluid as fluid
F
fengjiayi 已提交
2772 2773
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2774
          pool2d = fluid.layers.pool2d(
2775 2776 2777 2778
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2779
                            global_pooling=False)
Y
Yu Yang 已提交
2780 2781 2782 2783 2784
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2785

C
chengduoZH 已提交
2786 2787 2788 2789 2790
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2791 2792 2793 2794
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2795 2796
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2797

C
Add doc  
chengduoZH 已提交
2798
    l_type = 'pool2d'
2799 2800

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2801
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2802
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2803 2804

    helper.append_op(
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2816 2817
            "use_mkldnn": False,
            "exclusive": exclusive,
2818 2819 2820 2821 2822
        })

    return pool_out


D
dengkaipeng 已提交
2823
@templatedoc()
2824 2825 2826 2827 2828 2829 2830 2831
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2832 2833
           name=None,
           exclusive=True):
2834
    """
2835
    ${comment}
2836 2837

    Args:
D
dengkaipeng 已提交
2838 2839 2840 2841 2842
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2843 2844 2845 2846 2847
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2848 2849 2850 2851 2852 2853 2854
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2855
        exclusive (bool): Whether to exclude padding points in average pooling
2856
                          mode, default is true
2857

2858
    Returns:
2859
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2860 2861 2862 2863 2864

    Examples:

        .. code-block:: python

2865
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2866 2867 2868 2869 2870 2871 2872 2873
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2874 2875 2876 2877 2878
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2879

C
chengduoZH 已提交
2880 2881 2882 2883 2884
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2885 2886 2887
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2888

C
chengduoZH 已提交
2889 2890
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2891

2892 2893
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2894
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2895
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2896 2897

    helper.append_op(
2898
        type=l_type,
Y
Yu Yang 已提交
2899 2900 2901 2902 2903 2904 2905
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2906
            "paddings": pool_padding,
2907
            "use_cudnn": use_cudnn,
2908
            "ceil_mode": ceil_mode,
2909 2910
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2911 2912 2913 2914 2915
        })

    return pool_out


2916 2917 2918 2919 2920 2921 2922
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2923 2924 2925 2926 2927 2928 2929
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2930

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2944 2945 2946 2947 2948 2949 2950 2951 2952

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2953 2954
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2969
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2970
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2971
          # of input data into m * n grids averagely and performs poolings in each
2972 2973
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2974
          #
2975 2976 2977 2978 2979 2980 2981 2982
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2983
          import paddle.fluid as fluid
2984 2985
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2986
          pool_out = fluid.layers.adaptive_pool2d(
2987 2988
                            input=data,
                            pool_size=[3, 3],
2989
                            pool_type='avg')
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3000
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3026
    return (pool_out, mask) if require_index else pool_out
3027 3028 3029 3030 3031 3032 3033 3034 3035


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3036 3037 3038 3039 3040 3041 3042
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3043

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3061 3062 3063

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3064 3065 3066
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3067
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3068
            it must contain three integers, (Depth, Height, Width).
3069
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3070 3071
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3086 3087
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3088
          # of input data into l * m * n grids averagely and performs poolings in each
3089 3090
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3091
          #
3092 3093 3094 3095 3096 3097 3098 3099 3100
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3101
          #                 output[:, :, i, j, k] =
3102 3103
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3104 3105 3106

          import paddle.fluid as fluid

3107
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3108 3109
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3110
                            input=data,
D
dengkaipeng 已提交
3111
                            pool_size=[3, 3, 3],
3112
                            pool_type='avg')
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3123
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3149
    return (pool_out, mask) if require_index else pool_out
3150 3151


Y
Yu Yang 已提交
3152 3153 3154 3155 3156 3157 3158
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3159
               data_layout='NCHW',
Y
Yang Yang 已提交
3160
               in_place=False,
3161 3162
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3163
               moving_variance_name=None,
3164
               do_model_average_for_mean_and_var=False,
3165 3166
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3167
    """
Q
qiaolongfei 已提交
3168 3169 3170 3171
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3172

Q
qiaolongfei 已提交
3173
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3174

Q
qiaolongfei 已提交
3175 3176
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3177 3178 3179
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3206
    Args:
Q
qingqing01 已提交
3207
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3208
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3218 3219
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3220 3221 3222
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3223 3224
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3225 3226 3227
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3228
        data_layout(string, default NCHW): NCHW|NHWC
3229
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3230 3231
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3232 3233 3234
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3235
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3236 3237
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3238
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3239
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3240 3241 3242 3243 3244
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3245 3246

    Returns:
Q
qiaolongfei 已提交
3247
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3248 3249 3250 3251 3252

    Examples:

        .. code-block:: python

3253
            import paddle.fluid as fluid
L
lvmengsi 已提交
3254
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3255 3256
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3257
    """
C
chengduo 已提交
3258
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3259 3260 3261
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3262 3263 3264 3265
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3284
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3285

3286 3287
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3288 3289 3290
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3291
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3292
        shape=param_shape,
W
Wu Yi 已提交
3293
        dtype=dtype)
3294 3295 3296 3297 3298 3299
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3300
            trainable=False,
W
wanghaoshuang 已提交
3301
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3302
        shape=param_shape,
W
Wu Yi 已提交
3303
        dtype=dtype)
3304
    variance.stop_gradient = True
Y
Yu Yang 已提交
3305 3306 3307 3308 3309 3310

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3311 3312 3313 3314
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3315

X
Xin Pan 已提交
3316 3317
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3335 3336 3337 3338
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3339
            "data_layout": data_layout,
X
Xin Pan 已提交
3340
            "use_mkldnn": False,
3341 3342
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3343
        })
Y
Yu Yang 已提交
3344 3345 3346 3347

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3399 3400
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3401

3402 3403
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3469
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3470 3471 3472 3473

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3474
@templatedoc()
G
guosheng 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3485
    ${comment}
G
guosheng 已提交
3486 3487 3488

    The formula is as follows:

Y
yuyang18 已提交
3489
    ..  math::
G
guosheng 已提交
3490 3491 3492 3493 3494 3495 3496

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3497 3498 3499 3500 3501 3502 3503 3504
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3505

G
guosheng 已提交
3506 3507
    Args:
        input(Variable): The input tensor variable.
3508
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3509
            normalization. Default True.
3510
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3511 3512
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3513
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3514
            Default 1.
3515
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3516
            division by zero. Default 1e-05.
G
guosheng 已提交
3517
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3518 3519
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3520 3521
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3522
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3523 3524
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3525
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3526
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3527
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3528 3529 3530
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3531 3532

    Returns:
Y
yuyang18 已提交
3533
        ${y_comment}
G
guosheng 已提交
3534 3535 3536

    Examples:

3537
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3538 3539 3540
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3541
    """
L
lujun 已提交
3542
    assert in_dygraph_mode(
L
lujun 已提交
3543
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3558
    if shift:
G
guosheng 已提交
3559 3560 3561 3562 3563 3564
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3565 3566 3567 3568 3569
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3597
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3619
        >>> import paddle.fluid as fluid
D
Dun 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3646 3647
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3665
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3666 3667 3668
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3669
    This layer calculates the spectral normalization value of weight parameters of
3670
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3671
    Parameters. Calculations are showed as follows.
3672

D
dengkaipeng 已提交
3673 3674 3675
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3676
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3689
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3690 3691 3692 3693

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3694

D
dengkaipeng 已提交
3695
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3696 3697
                

D
dengkaipeng 已提交
3698 3699 3700 3701
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3702 3703 3704
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3705 3706 3707
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3708
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3709 3710

    Examples:
K
Kaipeng Deng 已提交
3711
       .. code-block:: python
D
dengkaipeng 已提交
3712

K
Kaipeng Deng 已提交
3713 3714 3715 3716 3717
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3718 3719
    """
    helper = LayerHelper('spectral_norm', **locals())
3720
    dtype = weight.dtype
D
dengkaipeng 已提交
3721 3722 3723

    # create intput and parameters
    inputs = {'Weight': weight}
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3742 3743

    # create output
3744
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3745 3746

    helper.append_op(
3747
        type="spectral_norm",
D
Dun 已提交
3748
        inputs=inputs,
3749 3750 3751 3752 3753 3754
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3755

3756
    return out
D
Dun 已提交
3757 3758


Y
Yu Yang 已提交
3759 3760 3761 3762
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3763 3764 3765
                     padding=0,
                     stride=1,
                     dilation=1,
3766
                     groups=None,
C
caoying03 已提交
3767
                     param_attr=None,
3768
                     bias_attr=None,
C
chengduoZH 已提交
3769
                     use_cudnn=True,
3770
                     act=None,
C
caoying03 已提交
3771
                     name=None):
Y
Yu Yang 已提交
3772
    """
3773 3774 3775 3776 3777 3778 3779 3780
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3781
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3782
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3783 3784 3785
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3786 3787 3788 3789 3790

    For each input :math:`X`, the equation is:

    .. math::

3791
        Out = \sigma (W \\ast X + b)
3792

3793
    Where:
3794 3795 3796

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3797 3798 3799 3800
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3801

3802 3803 3804 3805
    Example:

        - Input:

3806
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3807

3808
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3809 3810 3811

        - Output:

3812
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3813 3814

        Where
Y
Yu Yang 已提交
3815

3816 3817
        .. math::

3818 3819
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3829 3830

    Args:
3831 3832 3833 3834
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3835 3836 3837 3838
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3867
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3868 3869 3870
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3871
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3872
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3873 3874

    Returns:
3875
        Variable: The tensor variable storing the convolution transpose result.
3876 3877

    Raises:
3878 3879
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3880 3881 3882 3883

    Examples:
       .. code-block:: python

3884
          import paddle.fluid as fluid
3885 3886
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3887
    """
C
chengduo 已提交
3888
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3889 3890 3891 3892 3893 3894 3895 3896
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3897 3898 3899
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3900 3901 3902
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3903

C
chengduoZH 已提交
3904 3905
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3906

Y
Yu Yang 已提交
3907 3908 3909 3910 3911
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3912

Y
Yu Yang 已提交
3913 3914
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3915

C
chengduoZH 已提交
3916
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3917
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3918
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3919
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3920
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3921 3922 3923
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3924

3925 3926 3927 3928 3929 3930 3931
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3932
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3933
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3934

Y
Yu Yang 已提交
3935 3936 3937
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3938
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3939
    helper.append_op(
3940
        type=op_type,
Y
Yu Yang 已提交
3941 3942
        inputs={'Input': [input],
                'Filter': [img_filter]},
3943
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3944
        attrs={
3945
            'output_size': output_size,
3946 3947 3948 3949 3950
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3951 3952
        })

3953 3954 3955
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3956 3957


3958
def conv3d_transpose(input,
Y
Yu Yang 已提交
3959 3960 3961
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3962 3963 3964
                     padding=0,
                     stride=1,
                     dilation=1,
3965
                     groups=None,
C
caoying03 已提交
3966
                     param_attr=None,
3967
                     bias_attr=None,
C
chengduoZH 已提交
3968
                     use_cudnn=True,
3969
                     act=None,
C
caoying03 已提交
3970
                     name=None):
Y
Yu Yang 已提交
3971
    """
3972
    **Convlution3D transpose layer**
3973

3974
    The convolution3D transpose layer calculates the output based on the input,
3975
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3976 3977 3978 3979 3980
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3981
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3982 3983 3984
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3985 3986 3987 3988 3989

    For each input :math:`X`, the equation is:

    .. math::

3990
        Out = \sigma (W \\ast X + b)
3991 3992 3993

    In the above equation:

3994 3995
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3996 3997 3998 3999
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4000

4001 4002 4003 4004
    Example:

        - Input:

4005
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4006

4007
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4008 4009 4010

        - Output:

4011
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4012 4013

        Where
Y
Yu Yang 已提交
4014

4015 4016
        .. math::

4017 4018 4019
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4020 4021

    Args:
4022
        input(Variable): The input image with [N, C, D, H, W] format.
4023 4024 4025
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4026
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4027 4028
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4029
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4030 4031 4032
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4033 4034
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4035
        stride(int|tuple): The stride size. If stride is a tuple, it must
4036 4037
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4038
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4039 4040 4041
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4042 4043 4044 4045 4046
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4056 4057
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4058 4059
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4060 4061
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4062 4063

    Returns:
4064
        Variable: The tensor variable storing the convolution transpose result.
4065 4066

    Raises:
4067 4068
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4069 4070 4071 4072

    Examples:
       .. code-block:: python

4073
          import paddle.fluid as fluid
4074 4075
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4076
    """
C
chengduo 已提交
4077
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4078 4079
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4080
    if not isinstance(input, Variable):
4081
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4082 4083
    input_channel = input.shape[1]

4084 4085 4086
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4087

C
chengduoZH 已提交
4088 4089 4090
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4091 4092 4093 4094 4095 4096
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4097 4098 4099
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4100

4101
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4102
                         padding[0] - 1) // dilation[0] + 1
4103
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4104
                         padding[1] - 1) // dilation[1] + 1
4105
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4106
                         padding[2] - 1) // dilation[2] + 1
4107
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4108
    else:
4109 4110
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4111

4112
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4113
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4114 4115 4116
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4117
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4118
    helper.append_op(
4119
        type=l_type,
Y
Yu Yang 已提交
4120 4121
        inputs={'Input': [input],
                'Filter': [img_filter]},
4122
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4123 4124 4125 4126
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4127
            'groups': groups,
C
chengduoZH 已提交
4128 4129
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4130

4131 4132
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4133
    return out
Y
yangyaming 已提交
4134 4135


Y
yangyaming 已提交
4136
def sequence_expand(x, y, ref_level=-1, name=None):
4137
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4138 4139 4140 4141
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4142 4143 4144 4145 4146

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4147
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4148
                x.data = [[a], [b], [c], [d]]
4149 4150 4151
                x.dims = [4, 1]

            y is a LoDTensor:
4152 4153
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4154

Y
yangyaming 已提交
4155
            ref_level: 0
4156

Y
yangyaming 已提交
4157
            then output is a 1-level LoDTensor:
4158
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4159
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4160 4161 4162 4163
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4164
                x.data = [[a], [b], [c]]
4165 4166 4167
                x.dims = [3, 1]

            y is a LoDTensor:
4168
                y.lod = [[2, 0, 3]]
4169

Y
yangyaming 已提交
4170
            ref_level: -1
4171

Y
yangyaming 已提交
4172 4173 4174
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4175 4176 4177
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4178 4179
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4180
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4181
                        will be named automatically.
4182 4183 4184 4185 4186 4187

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4188
	
4189
            import paddle.fluid as fluid
4190
            import paddle.fluid.layers as layers
4191 4192 4193
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4194
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4195
    """
L
lujun 已提交
4196
    assert not in_dygraph_mode(), (
4197
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4198
    helper = LayerHelper('sequence_expand', input=x, **locals())
4199
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4200
    tmp = helper.create_variable_for_type_inference(dtype)
4201
    helper.append_op(
Y
yangyaming 已提交
4202 4203 4204 4205 4206
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4207
    return tmp
4208 4209


C
chengduo 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4258 4259
            
            import paddle.fluid as fluid
4260
            import paddle.fluid.layers as layers
C
chengduo 已提交
4261 4262 4263 4264 4265 4266

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4267
    assert not in_dygraph_mode(), (
4268
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4269 4270
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4271
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4272 4273 4274 4275 4276 4277 4278 4279
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4280
@templatedoc()
4281
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4282 4283 4284 4285 4286
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4287 4288 4289
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4290
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4291 4292 4293 4294
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4295 4296 4297
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4298

F
fengjiayi 已提交
4299
    Returns:
M
minqiyang 已提交
4300
        Variable: The padded sequence batch and the original lengths before
4301
                  padding. All sequences has the same length.
M
minqiyang 已提交
4302

F
fengjiayi 已提交
4303 4304 4305
    Examples:
        .. code-block:: python

4306
            import paddle.fluid as fluid
F
fengjiayi 已提交
4307 4308 4309 4310
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4311
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4312
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4313 4314 4315
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4316
    assert not in_dygraph_mode(), (
4317
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4318 4319
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4320 4321
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4322 4323 4324 4325

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4326 4327 4328 4329 4330 4331
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4332 4333
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4334
        attrs={'padded_length': maxlen})
4335
    return out, length
F
fengjiayi 已提交
4336 4337


4338
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4339
    """
4340
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4341

4342 4343
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4353 4354 4355
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4356
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4357 4358 4359 4360 4361 4362

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4363
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4364 4365 4366 4367 4368 4369

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4370 4371
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4372 4373 4374 4375 4376 4377 4378

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4379
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4380 4381 4382 4383 4384
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4385
    assert not in_dygraph_mode(), (
4386
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4387 4388
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4389
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4401 4402 4403 4404 4405 4406 4407
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4408
                is_accumulated=True,
4409 4410
                name=None,
                return_parent_idx=False):
4411
    """
4412 4413
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4414 4415 4416

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4417 4418

    This layer does the search in beams for one time step. Specifically, it
4419 4420 4421
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4433 4434 4435 4436

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4437

4438
    Args:
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4462 4463
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4464 4465
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4466 4467 4468 4469
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4470

4471
    Returns:
4472 4473 4474 4475
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4476 4477 4478 4479

    Examples:
        .. code-block:: python

4480 4481
            import paddle.fluid as fluid

4482 4483 4484
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4497
                axis=0)
4498
            selected_ids, selected_scores = fluid.layers.beam_search(
4499 4500 4501 4502 4503 4504 4505
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4506
    helper = LayerHelper('beam_search', **locals())
4507 4508 4509 4510 4511 4512
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4513

X
Xin Pan 已提交
4514 4515 4516
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4517 4518 4519 4520 4521
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4522 4523 4524

    helper.append_op(
        type='beam_search',
4525
        inputs=inputs,
Q
Qiao Longfei 已提交
4526 4527 4528
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4529
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4530 4531 4532 4533 4534 4535
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4536
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4537
        })
4538 4539 4540 4541
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4542 4543


4544 4545 4546 4547 4548 4549 4550
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4551

4552 4553 4554 4555 4556 4557 4558 4559 4560
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4561

4562 4563 4564 4565 4566 4567
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4568

4569 4570
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4571

4572 4573
            import paddle.fluid as fluid

4574 4575
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4576 4577 4578
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4579 4580 4581
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4582 4583
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4599 4600 4601 4602
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4603
              param_attr=None,
C
caoying03 已提交
4604 4605
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4606 4607 4608 4609
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4610
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4611

4612
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4613

4614
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4615

4616
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4617 4618 4619

            h_t & = o_t tanh(c_t)

4620 4621 4622 4623 4624 4625
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4626 4627 4628

        .. math::

4629
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4630 4631 4632 4633 4634 4635 4636 4637

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4638
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4639 4640

    Args:
Y
yangyaming 已提交
4641 4642 4643 4644 4645 4646
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4647
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4660 4661
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4662 4663

    Returns:
Y
yangyaming 已提交
4664
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4665 4666

    Raises:
4667 4668 4669 4670
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4671 4672 4673 4674 4675

    Examples:

        .. code-block:: python

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4703
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4704 4705 4706 4707
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4708 4709
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4710 4711 4712
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4713
    size = cell_t_prev.shape[1]
4714
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4715 4716
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4717
                param_attr=param_attr,
4718
                bias_attr=bias_attr)
Y
yangyaming 已提交
4719
    dtype = x_t.dtype
X
Xin Pan 已提交
4720 4721
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4722 4723 4724 4725 4726 4727 4728 4729 4730

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4731
    return h, c
G
guosheng 已提交
4732 4733


C
caoying03 已提交
4734
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4735
    """
Y
yangyaming 已提交
4736
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4737 4738 4739

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4740
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4741 4742
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4743 4744
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4745
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4746
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4747
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4748 4749
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4750 4751 4752

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4753

G
guosheng 已提交
4754 4755 4756
    Examples:
        .. code-block:: python

4757
            import paddle.fluid as fluid
G
guosheng 已提交
4758 4759 4760
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4761
            # Each example is followed by the corresponding output tensor.
4762
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4763 4764 4765 4766
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4767

4768
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4769 4770
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4771
            # Each example is followed by the corresponding output tensor.
4772 4773 4774
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4775

G
guosheng 已提交
4776 4777
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4778
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4779 4780
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4781 4782 4783 4784 4785
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4786
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4787 4788 4789 4790
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4791 4792


C
caoying03 已提交
4793
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4794
    """
Y
Yibing Liu 已提交
4795
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4796 4797 4798

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4799 4800 4801
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4802
            must be in the range :math:`[-rank(input), rank(input))`. If
4803
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4804
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4805 4806
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4807
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4808
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4809
                       will be named automatically.
G
guosheng 已提交
4810 4811

    Returns:
Y
Yibing Liu 已提交
4812
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4813

G
guosheng 已提交
4814 4815 4816
    Examples:
        .. code-block:: python

4817
            import paddle.fluid as fluid
G
guosheng 已提交
4818 4819 4820 4821
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4822
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4823 4824 4825
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4826
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4827

4828
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4829 4830 4831
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4832 4833 4834
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4835 4836
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4837
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4838 4839
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4840 4841 4842 4843 4844
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4845
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4846 4847 4848 4849
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4850 4851


C
caoying03 已提交
4852
def reduce_max(input, dim=None, keep_dim=False, name=None):
4853
    """
Y
yangyaming 已提交
4854
    Computes the maximum of tensor elements over the given dimension.
4855 4856 4857

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4858
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4859 4860 4861
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4862
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4863 4864
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4865
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4866 4867
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4868 4869 4870

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4871

4872 4873 4874
    Examples:
        .. code-block:: python

4875
            import paddle.fluid as fluid
4876 4877 4878 4879
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4880
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4881 4882 4883 4884
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4885

4886
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4887 4888 4889
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4890 4891 4892
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4893 4894
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4895
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4896 4897
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4898 4899 4900 4901 4902
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4903
            'dim': dim if dim != None else [0],
4904 4905 4906 4907 4908 4909
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4910
def reduce_min(input, dim=None, keep_dim=False, name=None):
4911
    """
Y
yangyaming 已提交
4912
    Computes the minimum of tensor elements over the given dimension.
4913 4914 4915

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4916
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4917 4918 4919
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4920
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4921 4922
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4923
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4924 4925
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4926 4927 4928

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4929

4930 4931 4932
    Examples:
        .. code-block:: python

4933
            import paddle.fluid as fluid
4934 4935 4936 4937
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4938
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4939 4940 4941 4942
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4943

4944
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4945 4946 4947
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4948 4949 4950
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4951 4952
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4953
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4954 4955
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4956 4957 4958 4959 4960
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4961
            'dim': dim if dim != None else [0],
4962 4963 4964 4965
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4966 4967


4968 4969 4970 4971 4972 4973
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4974
        dim (list|int|None): The dimensions along which the product is performed. If
4975 4976
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4977 4978
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4979 4980 4981
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4982
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4983
            layer will be named automatically.
4984 4985 4986 4987 4988 4989 4990

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4991
            import paddle.fluid as fluid
4992 4993 4994 4995
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4996
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4997 4998 4999
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5000
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5001
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5002

5003
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5004 5005 5006
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5007 5008 5009
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5010 5011
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5012
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5013 5014
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5015 5016 5017 5018 5019
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5020
            'dim': dim if dim != None else [0],
5021 5022 5023 5024 5025 5026
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5027 5028
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5029
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5049
        
5050
            import paddle.fluid as fluid
5051 5052 5053
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5054 5055 5056
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5057 5058 5059 5060 5061 5062 5063
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5084
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5104

5105
            import paddle.fluid as fluid
5106 5107 5108
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5109 5110 5111
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5112 5113 5114 5115 5116 5117 5118
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5133 5134 5135 5136 5137
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5138
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5139
    """
C
caoying03 已提交
5140
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5141 5142 5143

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5144 5145 5146 5147 5148
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5149
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5150
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5151
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5152 5153
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5154 5155

    Returns:
D
dzhwinter 已提交
5156
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5157 5158 5159 5160

    Examples:
        .. code-block:: python

5161 5162 5163 5164 5165 5166
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5167
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5168 5169 5170 5171 5172 5173 5174 5175
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5176 5177 5178 5179 5180 5181 5182 5183
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5184
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5185 5186 5187
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5188
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5211
    .. math::
5212 5213

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5214 5215 5216 5217 5218

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5219
        x(Variable|list): The input tensor to l2_normalize layer.
5220
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5221 5222
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5223
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5224
            the default value is 1e-12.
5225
        name(str|None): A name for this layer(optional). If set None, the layer \
5226
            will be named automatically.
C
caoying03 已提交
5227 5228

    Returns:
5229
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5230 5231

    Examples:
5232

C
caoying03 已提交
5233 5234
        .. code-block:: python

5235
            import paddle.fluid as fluid
5236 5237 5238 5239
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5240 5241
    """

F
fengjiayi 已提交
5242 5243
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5244 5245
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5246 5247
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5248
    helper.append_op(
5249 5250 5251 5252
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5253
        attrs={
5254 5255
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5256 5257
        })
    return out
5258 5259


S
sneaxiy 已提交
5260
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5261
    """
Y
ying 已提交
5262 5263 5264 5265
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5266

C
chengduoZH 已提交
5267
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5268
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5269

5270 5271 5272 5273 5274
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5275
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5276

C
chengduoZH 已提交
5277
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5278
      performs in the following way.
G
guosheng 已提交
5279

5280
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5281
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5282
        last two dimensions and a batched matrix multiply supporting broadcast
5283
        applies on the two tensors.
G
guosheng 已提交
5284

Y
ying 已提交
5285 5286
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5287
    removed after matrix multiplication.
G
guosheng 已提交
5288 5289 5290

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5291 5292 5293
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5294
        alpha (float): The scale of output. Default 1.0.
5295
        name(str|None): A name for this layer(optional). If set None, the layer
5296
            will be named automatically.
G
guosheng 已提交
5297 5298

    Returns:
石晓伟 已提交
5299
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5300

G
guosheng 已提交
5301 5302 5303
    Examples:
        .. code-block:: python

5304
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5305
            # x: [B, ..., M, K], y: [B, ..., K, N]
5306
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5307

5308
            # x: [B, M, K], y: [B, K, N]
5309
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5310

5311
            # x: [B, M, K], y: [K, N]
5312
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5313

5314
            # x: [M, K], y: [K, N]
5315
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5316 5317

            # x: [B, M, K], y: [K]
5318
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5319

5320
            # x: [K], y: [K]
5321
            # fluid.layers.matmul(x, y)  # out: [1]
5322

Y
ying 已提交
5323
            # x: [M], y: [N]
5324 5325
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5326
            import paddle.fluid as fluid
5327 5328 5329
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5330
    """
Y
ying 已提交
5331 5332 5333 5334 5335 5336 5337

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5338
            y_shape = y_shape + [1]
Y
ying 已提交
5339 5340 5341 5342 5343 5344 5345

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5346 5347
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5348

C
chengduo 已提交
5349
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5350
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5351 5352 5353
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5354
                if dim_x != y_shape[i]:
C
chengduo 已提交
5355 5356
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5357 5358 5359

    __check_input(x, y)

5360
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5361
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5362
    helper.append_op(
5363 5364 5365 5366
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5367 5368 5369
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5370
            'alpha': float(alpha),
S
sneaxiy 已提交
5371
        })
5372
    return out
5373 5374


5375
def topk(input, k, name=None):
Q
qingqing01 已提交
5376 5377 5378 5379
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5380
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5381 5382 5383 5384 5385 5386
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5408 5409 5410
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5411
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5412
                 of input.
5413
        name(str|None): A name for this layer(optional). If set None, the layer
5414
                       will be named automatically.
F
fengjiayi 已提交
5415
                       Default: None
Q
qingqing01 已提交
5416 5417

    Returns:
5418 5419 5420
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5421
        within the last dimension of input.
Q
qingqing01 已提交
5422

F
fengjiayi 已提交
5423 5424
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5425 5426 5427 5428

    Examples:
        .. code-block:: python

5429
            import paddle.fluid as fluid
5430 5431
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5432 5433 5434
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5435 5436
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5437 5438 5439 5440 5441 5442
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5443 5444
    helper.append_op(
        type="top_k",
W
whs 已提交
5445
        inputs=inputs,
Q
qingqing01 已提交
5446 5447
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5448
        attrs=attrs)
Q
qingqing01 已提交
5449 5450 5451 5452 5453
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5454 5455 5456 5457 5458 5459
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5460
    """
R
ruri 已提交
5461
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5462 5463 5464 5465 5466 5467 5468 5469
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5470

Y
ying 已提交
5471
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5472

5473
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5474
    the total number denoted by `batch_size`, and the separation is specified
5475 5476
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5477

5478
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5479 5480
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5481

5482
    Args:
5483 5484
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5485
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5486
                          the length of reference string.
5487
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5488
                                     calculating edit distance.
5489 5490
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5491

W
wanghaoshuang 已提交
5492
    Returns:
5493 5494 5495
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5496 5497 5498

    Examples:
        .. code-block:: python
5499
            
R
ruri 已提交
5500 5501
            import paddle.fluid as fluid

5502 5503 5504 5505
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5506

5507 5508 5509 5510 5511 5512 5513 5514
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5515

5516
    """
5517
    helper = LayerHelper("edit_distance", **locals())
5518

5519
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5520
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5521 5522
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5523 5524 5525 5526 5527

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5528
            attrs={"tokens": ignored_tokens})
5529 5530 5531 5532 5533
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5534
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5535
            attrs={"tokens": ignored_tokens})
5536 5537
        label = erased_label

5538 5539 5540 5541 5542
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5543
    # edit distance op
X
Xin Pan 已提交
5544 5545
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5546 5547
    helper.append_op(
        type="edit_distance",
5548
        inputs=this_inputs,
5549 5550
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5551 5552
        attrs={"normalized": normalized})

5553
    return edit_distance_out, sequence_num
5554 5555 5556 5557 5558


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5559

Y
ying 已提交
5560 5561 5562 5563
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5581
        input.lod = [[4, 4]]
M
minqiyang 已提交
5582

W
whs 已提交
5583
        Computation:
5584

W
whs 已提交
5585 5586 5587 5588 5589 5590
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5591 5592 5593 5594 5595

        output.data = [[2],
                       [1],
                       [3]]

5596
        output.lod = [[2, 1]]
5597

W
whs 已提交
5598

5599 5600
    Args:

Y
ying 已提交
5601 5602 5603 5604 5605 5606 5607 5608 5609
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5610
        name (str): The name of this layer. It is optional.
5611 5612

    Returns:
H
haowang101779990 已提交
5613 5614 5615
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5616
                  LoD [[]] and dims [1, 1].
5617 5618 5619 5620

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5621
            import paddle.fluid as fluid
5622 5623
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5624
    """
5625
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5626
    _, topk_indices = topk(input, k=1)
5627 5628

    # ctc align op
X
Xin Pan 已提交
5629
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5630 5631 5632
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5633
        outputs={"Output": [ctc_out]},
5634 5635
        attrs={"merge_repeated": True,
               "blank": blank})
5636
    return ctc_out
5637 5638


W
Wu Yi 已提交
5639
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5640
    """
5641 5642
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5643
    to compute Connectionist Temporal Classification (CTC) loss.
5644 5645
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5646 5647 5648
    input tensor.

    Args:
5649
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5650 5651 5652 5653
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5654
       label (Variable): The ground truth of variable-length sequence,
5655 5656 5657
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5658 5659
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5660 5661 5662
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5663
         follewed by a mean_op.
W
Wu Yi 已提交
5664
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5665 5666

    Returns:
5667 5668
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5669 5670

    Examples:
5671

W
wanghaoshuang 已提交
5672
        .. code-block:: python
5673

B
Bai Yifan 已提交
5674 5675 5676 5677 5678
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5679
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5680 5681

    """
F
fengjiayi 已提交
5682
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5683 5684
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5685 5686 5687 5688 5689 5690
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5691 5692 5693 5694 5695
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5696
    return loss_out
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5712 5713 5714
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5715 5716 5717 5718 5719
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5720

5721
            out.lod  = [[0, 1, 3]]
5722 5723 5724 5725

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5726 5727 5728 5729 5730 5731 5732
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5733 5734 5735

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5736 5737

    Returns:
5738

5739 5740 5741 5742 5743
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5744 5745 5746
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5747
    """
L
lujun 已提交
5748
    assert not in_dygraph_mode(), (
5749
        "sequence layer is not supported in dygraph mode yet.")
5750
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5751
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5752 5753 5754 5755 5756 5757
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5758 5759


5760 5761 5762 5763
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5764 5765 5766 5767 5768 5769
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5770
        num_neg_samples=None,
5771 5772 5773
        name=None,
        sampler="uniform",
        custom_dist=None,
5774 5775
        seed=0,
        is_sparse=False):
5776 5777 5778 5779 5780 5781 5782
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5783 5784
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5785
            sample is 1.0.
C
chengduo 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5795
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5796 5797
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5798 5799 5800
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5801
        custom_dist (float[]): A float[] with size=num_total_classes.
5802 5803 5804 5805
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5806
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5807

5808
    Returns:
Y
Yibing Liu 已提交
5809 5810 5811 5812 5813 5814
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5849
    """
Y
Yang Yu 已提交
5850 5851 5852
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5853 5854

    dim = input.shape[1]
Y
Yang Yu 已提交
5855 5856 5857 5858 5859 5860
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5861
    inputs = {}
C
chengduo 已提交
5862 5863 5864 5865 5866 5867 5868
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5869 5870 5871
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5872

5873 5874 5875 5876
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5877 5878 5879 5880 5881 5882 5883

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5884 5885
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5886
        custom_dist_len = num_total_classes
5887 5888 5889 5890 5891 5892
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5893
            if normal_prob - 1.0 > 0:
5894
                bigs.append((i, normal_prob))
5895
            elif 1.0 - normal_prob > 0:
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5911
            if big_left - 1.0 > 0:
5912
                bigs.append((big_idx, big_left))
5913
            elif 1.0 - big_left > 0:
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5943 5944 5945 5946
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5947 5948 5949 5950 5951
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5952 5953 5954 5955
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5956

Y
Yang Yu 已提交
5957 5958
    attrs = {
        'num_total_classes': int(num_total_classes),
5959 5960
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5961
        'sampler': sampler,
5962 5963
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5964
    }
Y
Yang Yu 已提交
5965 5966 5967

    helper.append_op(
        type='nce',
C
chengduo 已提交
5968
        inputs=inputs,
Y
Yang Yu 已提交
5969 5970 5971 5972 5973 5974
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5975
    return cost / (num_neg_samples + 1)
5976 5977


C
chengduo 已提交
5978 5979
def hsigmoid(input,
             label,
5980
             num_classes,
C
chengduo 已提交
5981 5982
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5983
             name=None,
5984 5985 5986
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5987
             is_sparse=False):
W
weixing02 已提交
5988 5989
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5990
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5991
    complete binary tree, or you can use is_custom to pass your own tree to
5992
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5993 5994 5995 5996 5997 5998
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5999
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6000
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6001

6002 6003
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6004 6005 6006 6007
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6008
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6009
       related to the same batch of inputs.
6010

W
weixing02 已提交
6011
    Args:
M
minqiyang 已提交
6012
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6013 6014 6015 6016
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6017 6018
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6019
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6031
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6032
            it should be in leaf -> root order
M
minqiyang 已提交
6033 6034 6035
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6036
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6037
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6038
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6039
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6040
             of W and input will be sparse.
W
weixing02 已提交
6041 6042

    Returns:
J
JiabinYang 已提交
6043
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6044 6045 6046 6047 6048

    Examples:

        .. code-block:: python

6049
            import paddle.fluid as fluid
G
guosheng 已提交
6050 6051 6052
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6053 6054 6055 6056
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6057 6058
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6059
    dim = input.shape[1]
6060
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6061 6062 6063
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6064 6065 6066 6067 6068 6069 6070 6071 6072
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6073
    if (is_custom) and (path_code is None):
6074
        raise ValueError("path_code should not be None with custom tree")
6075
    elif (is_custom) and (path_table is None):
6076
        raise ValueError("path_table should not be None with custom tree")
6077
    elif (is_custom) and (num_classes is None):
6078
        raise ValueError("num_classes should not be None with custom tree")
6079 6080 6081
    else:
        pass

J
JiabinYang 已提交
6082
    weights = None
6083 6084 6085 6086
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6087
    if not is_custom:
J
JiabinYang 已提交
6088 6089 6090 6091 6092 6093 6094 6095
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6096
            shape=[num_classes, dim],
J
JiabinYang 已提交
6097 6098
            is_bias=False,
            dtype=input.dtype)
6099 6100 6101
    inputs = {
        "X": input,
        "W": weights,
6102
        "PathTable": path_table,
6103
        "PathCode": path_code,
6104 6105
        "Label": label
    }
W
weixing02 已提交
6106
    if helper.bias_attr:
6107
        if not is_custom:
J
JiabinYang 已提交
6108 6109
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6110
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6111 6112 6113 6114 6115 6116
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6117
                shape=[num_classes, 1],
J
JiabinYang 已提交
6118 6119 6120
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6121 6122
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6123
        inputs=inputs,
W
weixing02 已提交
6124
        outputs={"Out": out,
6125 6126 6127 6128 6129 6130 6131
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6132 6133 6134
    return out


Y
fix ci.  
ying 已提交
6135
def transpose(x, perm, name=None):
Y
ying 已提交
6136 6137 6138 6139 6140 6141 6142
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6143 6144 6145
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6146 6147 6148 6149 6150 6151 6152

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6153
            # use append_batch_size=False to avoid prepending extra
6154
            # batch size in shape
6155
            import paddle.fluid as fluid
6156
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6157
                            dtype='float32', append_batch_size=False)
6158
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6159 6160
    """

Y
fix ci.  
ying 已提交
6161
    if len(perm) != len(x.shape):
Y
ying 已提交
6162 6163
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6164
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6165 6166 6167 6168 6169 6170
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6171 6172

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6173 6174
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6175
    helper.append_op(
6176
        type='transpose2',
Y
fix ci.  
ying 已提交
6177
        inputs={'X': [x]},
6178 6179
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6180 6181
        attrs={'axis': perm})
    return out
6182 6183


6184 6185 6186 6187 6188 6189 6190
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6191
    """
6192 6193 6194 6195 6196 6197 6198
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6227 6228 6229 6230 6231 6232 6233 6234 6235
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6236 6237 6238
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6239 6240 6241 6242 6243
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6271 6272 6273
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6286
            output.dims = {8, 8}
6287

6288
            output.lod = [[4, 4]]
6289

T
Tink_Y 已提交
6290
    Examples:
6291 6292 6293

        .. code-block:: python

B
Bai Yifan 已提交
6294 6295 6296
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6297
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6298 6299
                input=data, stride=[1, 1], filter_size=[2, 2])

6300 6301

    """
L
lujun 已提交
6302
    assert not in_dygraph_mode(), (
6303
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6314
    inputs = {"X": input}
6315
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6316 6317 6318 6319 6320
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6321
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6322
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6323
    helper.append_op(
6324
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6325
    return out
6326 6327


Y
yuyang18 已提交
6328
@templatedoc()
6329
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6330 6331
    """
    ${comment}
6332 6333

    Args:
Y
yuyang18 已提交
6334
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6335 6336
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6337 6338 6339 6340 6341
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6342
        ${out_comment}.
6343 6344

    Examples:
Y
yuyang18 已提交
6345 6346 6347 6348
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6349 6350 6351 6352 6353 6354
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6355
    out = helper.create_variable_for_type_inference(dtype)
6356 6357 6358 6359 6360
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6361
    return helper.append_activation(out)
6362 6363


Y
yuyang18 已提交
6364
@templatedoc()
6365 6366
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6367 6368
    ${comment}

L
lujun 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6412 6413

    Args:
Y
yuyang18 已提交
6414 6415
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6416 6417

    Returns:
Y
yuyang18 已提交
6418
        ${out_comment}.
6419 6420
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6421 6422 6423 6424 6425

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6426
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6427 6428 6429 6430 6431 6432
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6433 6434


6435 6436 6437
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6438
                               ignore_index=kIgnoreIndex,
6439
                               numeric_stable_mode=True,
6440 6441
                               return_softmax=False,
                               axis=-1):
6442 6443
    """
    **Softmax With Cross Entropy Operator.**
6444

6445
    Cross entropy loss with softmax is used as the output layer extensively. This
6446 6447 6448
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6449

6450 6451 6452
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6453

6454 6455 6456 6457
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6458

6459
    The equation is as follows:
6460

6461
    1) Hard label (one-hot label, so every sample has exactly one class)
6462

6463 6464 6465 6466
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6467

6468 6469 6470
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6471

6472 6473 6474 6475
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6476 6477
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6478 6479

    .. math::
6480

H
haowang101779990 已提交
6481
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6482

H
haowang101779990 已提交
6483
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6484

H
haowang101779990 已提交
6485
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6486 6487 6488

    and then cross entropy loss is calculated by softmax and label.

6489
    Args:
6490 6491 6492 6493 6494 6495
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6496
        soft_label (bool): A flag to indicate whether to interpretate the given
6497
            labels as soft labels. Default False.
M
minqiyang 已提交
6498 6499
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6500 6501
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6502 6503
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6504 6505 6506 6507
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6508
                                    Note that the speed may be slower when use
6509
                                    stable algorithm. Default: True
6510
        return_softmax (bool): A flag indicating whether to return the softmax
6511
                               along with the cross entropy loss. Default: False
6512 6513 6514
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6515

6516
    Returns:
H
haowang101779990 已提交
6517 6518
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6519 6520 6521 6522
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6523 6524 6525 6526

    Examples:
        .. code-block:: python

6527 6528
            import paddle.fluid as fluid

6529 6530 6531
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6532 6533
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6534 6535
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6536 6537
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6538 6539 6540 6541 6542 6543
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6544 6545 6546
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6547 6548
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6549
        })
6550 6551 6552 6553

    if return_softmax:
        return loss, softmax

6554 6555 6556
    return loss


6557 6558 6559
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6560
                                       num_true=1,
6561
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6562 6563 6564
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6565
                                       seed=0):
X
xuezhong 已提交
6566 6567 6568 6569 6570
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6571
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6572 6573 6574 6575 6576 6577 6578 6579
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6580
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6581 6582 6583 6584 6585 6586 6587 6588
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6589
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6601
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6602 6603 6604 6605 6606
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6607
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6608
            logits.
X
xuezhong 已提交
6609 6610 6611 6612 6613
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6614 6615 6616
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6617 6618 6619 6620 6621 6622 6623
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6624 6625 6626
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6627
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6628
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6629
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6630
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6631 6632 6633 6634 6635 6636 6637 6638
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6639 6640
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6641 6642
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6643 6644 6645 6646 6647

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6648
            'Labels': label,
X
xuezhong 已提交
6649 6650
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6651 6652 6653 6654
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6655
            'SampledLabels': sampled_label,
6656 6657 6658
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6659 6660
        },
        attrs={
X
xuezhong 已提交
6661
            'use_customized_samples': use_customized_samples,
6662
            'uniq': True,
X
xuezhong 已提交
6663 6664 6665 6666
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6667 6668
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6669 6670 6671 6672 6673 6674
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6675 6676
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6677
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6678
                'Label': sampled_softlabel},
X
xuezhong 已提交
6679 6680 6681
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6682
            'soft_label': True,
X
xuezhong 已提交
6683 6684 6685
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6686
    return loss / num_true
X
xuezhong 已提交
6687 6688


6689 6690
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6691 6692
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6693
    For each instance, it computes the smooth L1 loss element by element first
6694
    and then sums all the losses. So the shape of ouput Variable is
6695
    [batch_size, 1].
6696

6697 6698
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6699
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6700
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6701
            L1 loss op with same shape as :attr:`x`.
6702
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6703 6704
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6705
            by this tensor element by element.
6706
        outside_weight (Variable|None): A tensor with rank at least 2. This
6707 6708
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6709
            element by element.
6710
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6711 6712
           scalar with default value 1.0.

6713
    Returns:
6714
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6715 6716 6717 6718

    Examples:
        .. code-block:: python

6719
            import paddle.fluid as fluid
6720
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6721 6722
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6723
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6724
            out = fluid.layers.smooth_l1(x=fc, y=label)
6725
    """
6726

6727
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6728 6729
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6740
        attrs={'sigma': sigma if sigma is not None else 1.0})
6741
    return loss
6742 6743


6744
def one_hot(input, depth, allow_out_of_range=False):
6745
    """
Y
Yibing Liu 已提交
6746
    This layer creates the one-hot representations for input indices.
6747 6748

    Args:
Y
Yibing Liu 已提交
6749 6750
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6751 6752 6753 6754
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6755 6756

    Returns:
Y
Yibing Liu 已提交
6757
        Variable: The one-hot representations of input.
6758 6759

    Examples:
C
caoying03 已提交
6760
        .. code-block:: python
6761

6762
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6763 6764
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6765 6766
    """
    helper = LayerHelper("one_hot", **locals())
6767

X
Xin Pan 已提交
6768
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6779
            depth.stop_gradient = True
6780 6781
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6782 6783
    helper.append_op(
        type="one_hot",
6784 6785
        inputs=inputs,
        attrs=attrs,
6786 6787
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6788
    return one_hot_out
Y
Yu Yang 已提交
6789 6790


Y
Yu Yang 已提交
6791
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6792
    """
Y
yi.wu 已提交
6793 6794 6795
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6796 6797 6798 6799 6800 6801

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6802 6803
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6804 6805 6806 6807

    Examples:
        .. code-block:: python

6808
           import paddle.fluid as fluid
Y
yi.wu 已提交
6809
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6810
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6811 6812
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6813 6814
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6815 6816 6817 6818 6819
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6820
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6821
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6822 6823
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6824
            outputs={'Out': [counter]},
M
minqiyang 已提交
6825 6826
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6827 6828 6829
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6830 6831


6832
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6833
    """
C
caoying03 已提交
6834 6835
    Gives a new shape to the input Tensor without changing its data.

6836 6837 6838 6839 6840
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6841

6842
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6843

6844 6845 6846 6847
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6848
    2. 0 means the actual dimension value is going to be copied from the
6849 6850 6851 6852
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6853 6854

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6855
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6856
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6857

6858
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6859 6860
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6861 6862
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6863
    dimensions.
C
caoying03 已提交
6864

6865
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6866 6867 6868 6869
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6870 6871

    Args:
6872
        x(variable): The input tensor.
C
caoying03 已提交
6873 6874
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6875 6876 6877 6878 6879
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6880 6881
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6882 6883 6884
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6885
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6886
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6887

6888
    Returns:
G
guosheng 已提交
6889 6890 6891 6892
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6893

X
Xin Pan 已提交
6894 6895 6896
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6897 6898
    Examples:
        .. code-block:: python
G
guosheng 已提交
6899

6900
            import paddle.fluid as fluid
6901
            data = fluid.layers.data(
6902
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6903
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6904
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6905 6906 6907
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6908
        raise ValueError("Input shape must be a python list or tuple.")
6909

X
Xin Pan 已提交
6910 6911 6912 6913 6914
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6915

6916 6917
    # Validate the shape
    unk_dim_idx = -1
6918
    contain_var = False
6919
    for dim_idx, dim_size in enumerate(shape):
6920 6921 6922 6923
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6936
    helper = LayerHelper("reshape2", **locals())
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6959 6960
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6961
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6962
    helper.append_op(
6963
        type="reshape2",
X
Xin Pan 已提交
6964
        inputs=inputs,
6965
        attrs=attrs,
6966 6967
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6968

D
dzhwinter 已提交
6969
    return helper.append_activation(out)
6970

6971

6972
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6973
    """
M
minqiyang 已提交
6974 6975 6976
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6977
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6978

H
haowang101779990 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7000

Y
Yibing Liu 已提交
7001
    Args:
7002
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7003
        axes (list): List of integers, indicating the dimensions to be squeezed.
7004
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7005 7006 7007 7008 7009 7010 7011

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7012
            import paddle.fluid as fluid
7013
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7014
            x = layers.data(name='x', shape=[5, 1, 10])
7015
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7016
    """
L
lujun 已提交
7017
    assert not in_dygraph_mode(), (
L
lujun 已提交
7018
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7019
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7020 7021
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7022
    helper.append_op(
7023
        type="squeeze2",
7024
        inputs={"X": input},
Y
Yibing Liu 已提交
7025
        attrs={"axes": axes},
7026 7027
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7028

7029 7030 7031
    return out


7032
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7033
    """
M
minqiyang 已提交
7034 7035 7036
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7037

M
minqiyang 已提交
7038
    For example:
H
haowang101779990 已提交
7039 7040 7041

    .. code-block:: text

M
minqiyang 已提交
7042
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7043
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7044

Y
Yibing Liu 已提交
7045
    Args:
7046
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7047
        axes (list): List of integers, indicating the dimensions to be inserted.
7048
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7049 7050 7051 7052 7053 7054 7055

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7056 7057 7058
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7059 7060
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7061 7062
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7063
    helper.append_op(
7064
        type="unsqueeze2",
7065
        inputs={"X": input},
Y
Yibing Liu 已提交
7066
        attrs={"axes": axes},
7067 7068
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7069

7070 7071
    return out

7072

Y
yangyaming 已提交
7073
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7074
    """
Y
Yibing Liu 已提交
7075
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7076 7077 7078 7079
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7080
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7081 7082 7083 7084 7085 7086

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7087
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7088 7089 7090
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7091
            target_lod: [4, 2]
Y
yangyaming 已提交
7092 7093

            then we get a 1-level LoDTensor:
7094
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7095 7096 7097 7098 7099 7100
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7101
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7102 7103 7104 7105
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7106
                y.data = [[2, 4]]
Y
yangyaming 已提交
7107 7108 7109
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7110
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7111 7112 7113 7114 7115 7116
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7117
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7118 7119 7120 7121
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7122
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7123 7124 7125 7126
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7127
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7128 7129 7130 7131
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7132
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7133
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7134
                           from :attr:`y`.
Y
yangyaming 已提交
7135
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7136
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7137 7138

    Returns:
Y
Yibing Liu 已提交
7139
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7140 7141

    Raises:
Y
Yibing Liu 已提交
7142
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7143 7144 7145 7146

    Examples:
        .. code-block:: python

7147
            import paddle.fluid as fluid
7148 7149 7150
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7151 7152
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7191
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7192 7193 7194 7195 7196 7197

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7198

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7209 7210 7211
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7212 7213
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7214 7215 7216 7217 7218 7219 7220 7221

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7222
    helper.append_op(
7223
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7224
    return out
D
dragonwarrior 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7236
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7265
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7266 7267
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7280 7281 7282
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7296 7297 7298 7299


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7300
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7301
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7302

G
guosheng 已提交
7303
    Specifically, the number of values padded before the contents of :attr:`x`
7304
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7305
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7306
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7329
                         The length of :attr:paddings must be
G
guosheng 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7340

G
guosheng 已提交
7341
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7342 7343
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7344 7345 7346 7347 7348
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7349
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7350 7351 7352 7353 7354 7355 7356
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7357 7358


C
chengduo 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7390 7391
		And
            pad_value = -1,
C
chengduo 已提交
7392

T
Tink_Y 已提交
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7423 7424 7425
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7426 7427 7428 7429 7430
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7431
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7432 7433 7434 7435 7436 7437 7438 7439 7440
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7441 7442 7443 7444 7445 7446 7447
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7448 7449
    called label-smoothing regularization (LSR).

7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7473
                              be :math:`(1, class\_num)`.
7474 7475
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7476
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7477 7478 7479 7480 7481 7482 7483 7484 7485
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7486
            
7487
            import paddle.fluid as fluid
7488
            import paddle.fluid.layers as layers
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7499
    smooth_label = helper.create_variable_for_type_inference(dtype)
7500 7501 7502 7503 7504 7505 7506
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7507 7508


W
wopeizl 已提交
7509 7510 7511 7512 7513 7514 7515
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7516 7517 7518 7519 7520
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7561 7562


J
jerrywgz 已提交
7563 7564 7565 7566 7567 7568
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7569 7570
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7571 7572 7573 7574 7575
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7576 7577 7578 7579 7580
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7591
            import paddle.fluid as fluid
J
jerrywgz 已提交
7592 7593 7594 7595
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7596 7597 7598
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7599 7600 7601 7602 7603 7604
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7605
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7646 7647
        .. code-block:: python

S
SunGaofeng 已提交
7648 7649 7650
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7651
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7652
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7653 7654
    """
    label = one_hot(label, depth=input.shape[-1])
7655
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7656 7657 7658 7659 7660 7661
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7662 7663


7664 7665 7666 7667
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7668
                 resample='BILINEAR',
7669 7670
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7671
                 align_mode=1):
7672
    """
Q
qiaolongfei 已提交
7673
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7674

7675
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7676 7677 7678
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7679

7680
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7681

7682
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7683

7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7694
    Align_corners and align_mode are optinal parameters,the calculation method 
7695 7696 7697 7698
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7699
    .. code-block:: text
7700

T
Tink_Y 已提交
7701
        For scale:
7702
          
T
Tink_Y 已提交
7703
            if align_corners = True && out_size > 1 :
7704

T
Tink_Y 已提交
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7716

T
Tink_Y 已提交
7717 7718
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7719

T
Tink_Y 已提交
7720 7721
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7722

T
Tink_Y 已提交
7723 7724
          else:
              align_corners = True
7725

T
Tink_Y 已提交
7726 7727
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7728

T
Tink_Y 已提交
7729 7730
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7731

T
Tink_Y 已提交
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7742

T
Tink_Y 已提交
7743 7744 7745 7746
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7747

T
Tink_Y 已提交
7748 7749
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7750 7751 7752 7753 7754 7755 7756 7757 7758

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7759
    Args:
7760
        input (Variable): The input tensor of image resize layer,
7761 7762
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7763
        out_shape(list|tuple|Variable|None): Output shape of image resize
7764 7765
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7766
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7767
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7768
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7769
             Default: None.
7770 7771
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7772
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7773
                       currently.
7774
                       Default: 'BILINEAR'
7775 7776 7777
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7778
                                :attr:`out_shape` and :attr:`scale` specifying
7779 7780 7781 7782 7783 7784 7785
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7786 7787
                                constructing stage.
                                Default: None
7788 7789 7790 7791
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7792
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7793 7794
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7795 7796

    Returns:
Q
update  
qiaolongfei 已提交
7797 7798
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7799

7800 7801 7802
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7803
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7804 7805 7806
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7807
        ValueError: scale should be greater than zero.
7808 7809
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7810

7811 7812 7813
    Examples:
        .. code-block:: python

7814
            import paddle.fluid as fluid
R
ruri 已提交
7815
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7816
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7817
    """
7818 7819 7820 7821
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7822 7823
    if resample not in resample_methods:
        raise ValueError(
7824
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7825
        )
7826
    resample_type = resample_methods[resample]
7827 7828 7829 7830 7831 7832

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7833
    if out_shape is None and scale is None:
7834
        raise ValueError("One of out_shape and scale must not be None.")
7835
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7836
    dtype = helper.input_dtype()
7837 7838 7839 7840

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7841
    inputs = {"X": input}
D
dengkaipeng 已提交
7842
    attrs = {
D
dengkaipeng 已提交
7843 7844
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7845 7846 7847 7848 7849
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7850
    if out_shape is not None:
7851 7852 7853 7854
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7855
            inputs['OutSize'] = out_shape
7856 7857
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7858 7859
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7860 7861 7862 7863 7864 7865 7866
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7867
    else:
D
dengkaipeng 已提交
7868 7869
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7870
        attrs['scale'] = float(scale)
7871

7872 7873 7874 7875 7876
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7877
    out = helper.create_variable_for_type_inference(dtype)
7878
    helper.append_op(
7879
        type='{}_interp'.format(resample_type),
7880
        inputs=inputs,
7881
        outputs={"Out": out},
D
dengkaipeng 已提交
7882
        attrs=attrs)
7883
    return out
F
stash  
fengjiayi 已提交
7884 7885


7886
@templatedoc(op_type="bilinear_interp")
7887 7888 7889 7890
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7891 7892
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7893
                    align_mode=1):
7894
    """
7895 7896
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7897 7898
    in priority order.

7899 7900 7901 7902
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7903 7904
    again in the other direction.

7905
    For details of bilinear interpolation, please refer to Wikipedia:
7906
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7907

T
tink2123 已提交
7908
    Align_corners and align_mode are optinal parameters,the calculation 
7909 7910 7911 7912
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7913
    .. code-block:: text
7914

T
Tink_Y 已提交
7915
        For scale:
7916
          
T
Tink_Y 已提交
7917
            if align_corners = True && out_size > 1 :
7918

T
Tink_Y 已提交
7919 7920 7921 7922 7923
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7924

T
Tink_Y 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7935 7936


T
Tink_Y 已提交
7937
          else:
T
tink2123 已提交
7938

T
Tink_Y 已提交
7939 7940
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7941

T
Tink_Y 已提交
7942 7943
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7944 7945 7946



Y
yuyang18 已提交
7947 7948 7949
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7950 7951 7952
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7953

Y
yuyang18 已提交
7954
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7955
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7956
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7957
             Default: None.
Y
yuyang18 已提交
7958 7959

        name(str|None): The output variable name.
7960 7961 7962
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7963
                                :attr:`out_shape` and :attr:`scale` specifying
7964 7965 7966 7967 7968 7969 7970
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7971 7972
                                constructing stage.
                                Default: None
7973 7974
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7975 7976 7977

    Returns:
        ${out_comment}.
7978 7979 7980 7981

    Examples:
        .. code-block:: python

7982
            import paddle.fluid as fluid
R
ruri 已提交
7983
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7984
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7985 7986
    """

7987 7988
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7989 7990


7991
@templatedoc(op_type="nearest_interp")
7992 7993 7994 7995
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7996 7997
                   actual_shape=None,
                   align_corners=True):
7998
    """
7999
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8000 8001
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8002 8003
    out_shape and scale in priority order.

8004 8005
    Example:

T
Tink_Y 已提交
8006 8007 8008 8009 8010
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8011

T
Tink_Y 已提交
8012 8013 8014 8015 8016 8017 8018 8019
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8020
          
T
Tink_Y 已提交
8021 8022
          if:
              align_corners = False
8023

T
Tink_Y 已提交
8024 8025
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8026

T
Tink_Y 已提交
8027 8028
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8029

T
Tink_Y 已提交
8030 8031
          else:
              align_corners = True
8032

T
Tink_Y 已提交
8033 8034
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8035

T
Tink_Y 已提交
8036 8037
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8038 8039


8040
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8041
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8042 8043 8044 8045

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
8046 8047 8048
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8049

Y
yuyang18 已提交
8050
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8051
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8052
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8053
             Default: None.
Y
yuyang18 已提交
8054 8055

        name(str|None): The output variable name.
8056 8057 8058
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8059
                                :attr:`out_shape` and :attr:`scale` specifying
8060 8061 8062 8063 8064 8065 8066
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8067 8068
                                constructing stage.
                                Default: None
8069
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8070 8071 8072

    Returns:
        ${out_comment}.
8073 8074 8075 8076

    Examples:
        .. code-block:: python

8077
            import paddle.fluid as fluid
R
ruri 已提交
8078
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8079
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8080 8081
    """

8082 8083
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8084 8085 8086 8087


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8088 8089 8090
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8091 8092 8093 8094 8095 8096 8097
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8098
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8099

8100
    Returns:
Q
update  
qiaolongfei 已提交
8101
        Variable: The output is a 4-D tensor of the shape
8102
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8103 8104 8105 8106

    Examples:
        .. code-block:: python

8107
            import paddle.fluid as fluid
R
ruri 已提交
8108 8109
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8120 8121 8122
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8123 8124 8125
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8126
def gather(input, index, overwrite=True):
W
whs 已提交
8127
    """
Q
qiaolongfei 已提交
8128 8129
    **Gather Layer**

8130
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8131 8132 8133 8134
    of X indexed by `index` and concatenate them together.

    .. math::

8135
        Out = X[Index]
W
whs 已提交
8136 8137 8138 8139 8140 8141 8142


    .. code-block:: text


                Given:

8143 8144
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8155
        input (Variable): The source input with rank>=1.
W
whs 已提交
8156
        index (Variable): The index input with rank=1.
8157 8158 8159 8160 8161 8162
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8163 8164 8165 8166 8167

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8168

W
whs 已提交
8169 8170
        .. code-block:: python

8171
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8172 8173
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8174 8175 8176 8177
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8178
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8179 8180 8181 8182
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8183 8184
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8185 8186 8187
    return out


8188
def scatter(input, index, updates, name=None, overwrite=True):
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8206 8207 8208 8209
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8210 8211 8212 8213 8214 8215 8216 8217

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8218 8219 8220 8221 8222
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8223

8224
            output = fluid.layers.scatter(input, index, updates)
8225 8226 8227
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8228
    out = helper.create_variable_for_type_inference(dtype)
8229 8230 8231 8232 8233
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8234
        attrs={'overwrite': overwrite},
8235 8236 8237 8238
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8239 8240 8241 8242 8243 8244 8245 8246 8247
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8248

Q
Qingsheng Li 已提交
8249
    Given the following input:
H
haowang101779990 已提交
8250

Q
Qingsheng Li 已提交
8251
    .. code-block:: text
H
haowang101779990 已提交
8252

Q
Qingsheng Li 已提交
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8265

Q
Qingsheng Li 已提交
8266
    .. code-block:: text
H
haowang101779990 已提交
8267

Q
Qingsheng Li 已提交
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8283
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8284 8285 8286 8287

    Examples:

        .. code-block:: python
8288
	
8289
            import paddle.fluid as fluid
8290
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8291

8292 8293 8294
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8295 8296 8297
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8298
    assert not in_dygraph_mode(), (
8299
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8300 8301
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8302
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8303 8304 8305 8306 8307 8308 8309 8310 8311
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8325

8326
    Examples:
8327
        >>> import paddle.fluid as fluid
8328 8329
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8330
    """
F
stash  
fengjiayi 已提交
8331
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8332
    dtype = x.dtype
X
Xin Pan 已提交
8333
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8334
    if seed is None:
8335
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8336
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8337
    if isinstance(seed, int):
F
fengjiayi 已提交
8338 8339 8340 8341 8342
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8343 8344 8345 8346
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8347
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8348 8349
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8350 8351
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8352
    return out
W
whs 已提交
8353 8354


8355
def log(x, name=None):
W
wanghaoshuang 已提交
8356 8357 8358 8359 8360
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8361
        Out = \\ln(x)
W
wanghaoshuang 已提交
8362 8363

    Args:
8364
        x (Variable): Input tensor.
8365 8366
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8367 8368 8369 8370 8371 8372 8373 8374

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8375
            import paddle.fluid as fluid
8376
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8377
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8378 8379
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8380
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8381
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8382
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8383 8384 8385
    return out


8386
def relu(x, name=None):
W
wanghaoshuang 已提交
8387 8388
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8389
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8390 8391 8392 8393
    the tensor elementwise.

    .. math::

8394
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8395 8396

    Args:
8397
        x (Variable): The input tensor.
8398 8399
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8400 8401 8402 8403 8404 8405 8406 8407

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8408
            import paddle.fluid as fluid
8409
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8410
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8411 8412
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8413
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8414
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8415 8416
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8417
    return out
8418 8419


C
chengduo 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8444 8445 8446 8447 8448 8449
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8465 8466 8467
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8468 8469 8470 8471
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8472
    .. math::
8473

H
haowang101779990 已提交
8474
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8475

8476
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8477 8478 8479 8480 8481
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8482
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8483
                           Its shape should be the same as input.
8484
        num_classes (int): The possible number of labels.
W
whs 已提交
8485 8486

    Returns:
M
minqiyang 已提交
8487 8488
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8489
                     Three variables:
M
minqiyang 已提交
8490

H
haowang101779990 已提交
8491 8492 8493
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8494 8495 8496 8497

    Examples:

        .. code-block:: python
8498

B
Bai Yifan 已提交
8499 8500 8501 8502 8503
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8504 8505 8506
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8507 8508 8509
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8510 8511
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8512 8513
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8514
        outputs={
W
whs 已提交
8515 8516 8517
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8518 8519 8520
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8563
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8564
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8565
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8583
            import paddle.fluid as fluid
8584 8585 8586 8587 8588 8589
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8590
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8591 8592 8593 8594 8595

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8596
            isinstance(shape, Variable)):
8597 8598 8599 8600 8601
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8602
    out = helper.create_variable_for_type_inference(x.dtype)
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8620 8621


W
whs 已提交
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8639

W
whs 已提交
8640
              out_shape = [2, 3, 5, 5]
8641

W
whs 已提交
8642
          Step 1:
8643

W
whs 已提交
8644 8645 8646
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8647

W
whs 已提交
8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8693
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8694
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8707

S
SunGaofeng 已提交
8708
            import paddle.fluid as fluid
W
whs 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8720
            isinstance(out_shape, Variable)):
W
whs 已提交
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8742 8743
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8744

8745 8746
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8747
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8748 8749 8750
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8751

8752 8753
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8754

H
haowang101779990 已提交
8755 8756
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8757 8758
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8759

H
haowang101779990 已提交
8760 8761 8762 8763 8764 8765 8766 8767
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8768 8769 8770

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8788
            import paddle.fluid as fluid
8789 8790 8791
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8806
    out = helper.create_variable_for_type_inference("float32")
8807 8808 8809 8810 8811 8812 8813 8814

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8815 8816


M
minqiyang 已提交
8817 8818
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8819
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8820
    which compares left score and right score passed in.
M
minqiyang 已提交
8821
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8822 8823 8824

    .. math::

H
haowang101779990 已提交
8825
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8826 8827

    Args:
M
minqiyang 已提交
8828
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8829 8830
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8831
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8832 8833
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8834

M
minqiyang 已提交
8835
    Returns:
M
minqiyang 已提交
8836
       Variable: The ranking loss.
H
haowang101779990 已提交
8837

M
minqiyang 已提交
8838
    Raises:
M
minqiyang 已提交
8839
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8840

M
minqiyang 已提交
8841
    Examples:
H
haowang101779990 已提交
8842

M
minqiyang 已提交
8843
        .. code-block:: python
H
haowang101779990 已提交
8844

8845
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
8846 8847 8848
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8849 8850
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8851
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8852 8853 8854 8855 8856 8857
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8858 8859
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8883
        .. code-block:: text
W
whs 已提交
8884

T
Tink_Y 已提交
8885
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8886

T
Tink_Y 已提交
8887 8888
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8889

T
Tink_Y 已提交
8890
	      Case 0:
M
minqiyang 已提交
8891

T
Tink_Y 已提交
8892 8893 8894
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8895

T
Tink_Y 已提交
8896 8897 8898
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8899

T
Tink_Y 已提交
8900
	      Case 1:
M
minqiyang 已提交
8901

T
Tink_Y 已提交
8902 8903
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8904

T
Tink_Y 已提交
8905 8906 8907
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8908

T
Tink_Y 已提交
8909
	      Case 2:
M
minqiyang 已提交
8910

T
Tink_Y 已提交
8911 8912
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8913

T
Tink_Y 已提交
8914 8915 8916
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8917 8918


W
whs 已提交
8919 8920
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8921
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8939 8940 8941 8942 8943
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8944 8945 8946 8947
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8948
    out = helper.create_variable_for_type_inference(dtype)
8949 8950 8951 8952 8953 8954 8955 8956 8957
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8958
    helper.append_op(
8959
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8960 8961 8962 8963

    return out


8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8976 8977 8978 8979 8980

    Examples:

        .. code-block:: python

8981
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8982 8983
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8984 8985
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8986
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9007 9008 9009 9010 9011

    Examples:

        .. code-block:: python

9012
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9013 9014
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9015 9016
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9017
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9038 9039 9040 9041 9042

    Examples:

        .. code-block:: python

9043
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9044 9045
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9046 9047
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9048
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9070 9071 9072 9073 9074

    Examples:

        .. code-block:: python

9075
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9076
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9077
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9078 9079
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9080
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9103 9104 9105 9106 9107

    Examples:

        .. code-block:: python

9108
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9109 9110
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9111 9112
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9113
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9135 9136 9137 9138 9139

    Examples:

        .. code-block:: python

9140
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9141 9142
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9143 9144
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9145
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9146 9147 9148 9149 9150 9151 9152 9153
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9154 9155 9156 9157
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9158 9159
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9160

J
jerrywgz 已提交
9161 9162 9163 9164 9165 9166 9167 9168
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9169 9170
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9171
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9172
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9173
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9174
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9175
          will be named automatically.
J
jerrywgz 已提交
9176 9177 9178 9179 9180 9181 9182 9183

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9184 9185 9186
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9187
            mode = 'channel'
J
jerrywgz 已提交
9188 9189 9190
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9202
        attr=helper.param_attr,
J
jerrywgz 已提交
9203 9204 9205 9206
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9207
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9208 9209 9210 9211 9212 9213 9214 9215 9216
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9217 9218 9219 9220 9221 9222 9223 9224 9225 9226
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9227
    Returns:
9228
        output(${out_type}): ${out_comment}
9229 9230 9231

    Examples:

9232
    .. code-block:: python
9233

9234
            import paddle.fluid as fluid
H
haowang101779990 已提交
9235 9236
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9237 9238
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9239
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9258
    Returns:
9259
        output(${out_type}): ${out_comment}
9260 9261 9262 9263 9264

    Examples:

        .. code-block:: python

9265
            import paddle.fluid as fluid
H
haowang101779990 已提交
9266 9267
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9268 9269
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9270
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9288
    Returns:
9289
        output(${out_type}): ${out_comment}
9290 9291 9292

    Examples:

9293 9294 9295 9296 9297
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9298
            y = fluid.layers.soft_relu(x, threshold=20.0)
9299 9300
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9301
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9302 9303 9304 9305 9306 9307 9308 9309
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9310 9311 9312 9313
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9314

H
haowang101779990 已提交
9315
    For Example:
M
minqiyang 已提交
9316

H
haowang101779990 已提交
9317
    .. code-block:: text
9318

H
haowang101779990 已提交
9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9340 9341 9342

    Args:
        x (Variable): A tensor of rank >= axis.
9343 9344
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9345 9346 9347 9348 9349 9350 9351 9352
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9353 9354 9355
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9356 9357 9358 9359
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9360
        ValueError: If axis is not in range [0, rank(x)].
9361 9362 9363 9364 9365

    Examples:

        .. code-block:: python

9366
            import paddle.fluid as fluid
9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9378 9379
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9380
    helper.append_op(
9381
        type='flatten2',
9382
        inputs={"X": x},
9383 9384
        outputs={'Out': out,
                 'XShape': x_shape},
9385 9386
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9387 9388


C
chenweihang 已提交
9389
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9390
    """
C
chenweihang 已提交
9391
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9392
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9393 9394
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9395

H
haowang101779990 已提交
9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9413 9414

    Args:
C
chenweihang 已提交
9415 9416 9417
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9418 9419 9420 9421 9422 9423 9424

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9425 9426 9427
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9428 9429
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9430
    assert not in_dygraph_mode(), (
9431
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9432
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9433 9434
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9435 9436 9437 9438 9439 9440
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9441
    return out
9442

9443

S
sneaxiy 已提交
9444 9445 9446 9447 9448 9449 9450 9451 9452
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9453

S
sneaxiy 已提交
9454
    .. math::
9455

S
sneaxiy 已提交
9456 9457 9458
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9459
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9460 9461 9462 9463
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9464 9465 9466
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9467 9468
    Returns:
        Variable: The output sequence mask.
9469

9470 9471 9472
    Examples:
        .. code-block:: python
	
9473
            import paddle.fluid as fluid
9474 9475 9476 9477 9478
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9479
    """
L
lujun 已提交
9480
    assert not in_dygraph_mode(), (
9481
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9482

Q
qingqing01 已提交
9483
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9484
    if name is None:
X
Xin Pan 已提交
9485
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9486
    else:
X
Xin Pan 已提交
9487
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9488

9489 9490 9491 9492 9493 9494 9495 9496
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9497
    helper.append_op(
9498 9499 9500
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9501
    return out
S
sneaxiy 已提交
9502 9503


X
Xin Pan 已提交
9504
def stack(x, axis=0):
S
sneaxiy 已提交
9505 9506 9507 9508
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9509 9510 9511 9512 9513 9514 9515

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9516
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9517
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9518

C
chengduozh 已提交
9519 9520
    For Example:

C
chengduozh 已提交
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9559
    Args:
9560
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9561
        axis (int|None): The axis along which all inputs are stacked.
9562

S
sneaxiy 已提交
9563 9564
    Returns:
        Variable: The stacked variable.
9565

9566 9567 9568
    Examples:
        .. code-block:: python

9569
            import paddle.fluid as fluid
9570
            import paddle.fluid.layers as layers
9571 9572
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9573 9574
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9575 9576
    """

X
Xin Pan 已提交
9577 9578 9579 9580 9581 9582
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9583
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9584
    helper.append_op(
S
sneaxiy 已提交
9585 9586
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9587

X
Xin Pan 已提交
9588
    return out
D
dzhwinter 已提交
9589 9590 9591 9592 9593 9594 9595


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9596

D
dzhwinter 已提交
9597 9598 9599
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9600
    raised.
D
dzhwinter 已提交
9601 9602

    Args:
M
minqiyang 已提交
9603
        x (Variable): Input variable.
D
dzhwinter 已提交
9604 9605
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9606

D
dzhwinter 已提交
9607 9608
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9609

9610 9611 9612 9613 9614 9615
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9616 9617 9618 9619 9620 9621 9622 9623 9624 9625
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9626
    for _ in range(num):
X
Xin Pan 已提交
9627
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9628 9629 9630 9631 9632 9633 9634 9635

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9648

W
whs 已提交
9649 9650 9651 9652
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9653

W
whs 已提交
9654
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9655

W
whs 已提交
9656
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9657

W
whs 已提交
9658 9659 9660 9661
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9662

W
whs 已提交
9663 9664 9665 9666 9667 9668 9669 9670 9671 9672
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9673 9674 9675
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9676 9677 9678 9679
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9680
    out = helper.create_variable_for_type_inference(dtype)
9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9698
                    ele.stop_gradient = True
9699 9700 9701
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
9702 9703
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
9704 9705 9706 9707 9708 9709 9710 9711 9712
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9713
    helper.append_op(
9714
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9715
    return out
S
sneaxiy 已提交
9716 9717


G
fix  
gongweibao 已提交
9718 9719 9720
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9721
@templatedoc()
G
fix  
gongweibao 已提交
9722 9723 9724 9725 9726 9727 9728 9729 9730
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9731
    ${comment}
G
fix  
gongweibao 已提交
9732 9733

    Args:
G
gongweibao 已提交
9734 9735 9736
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9737
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9738 9739 9740
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9741 9742
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9743
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9744

9745 9746 9747
    Examples:
        .. code-block:: python

9748
            import paddle.fluid as fluid
9749 9750
            import paddle.fluid.layers as layers 

9751 9752
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9753 9754 9755
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9756
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9773 9774


G
gongweibao 已提交
9775
@templatedoc()
X
Xin Pan 已提交
9776
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9777
    """
G
gongweibao 已提交
9778
    ${comment}
G
fix  
gongweibao 已提交
9779 9780

    Args:
G
gongweibao 已提交
9781 9782 9783 9784
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9785 9786 9787
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9788
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9789

9790 9791 9792
    Examples:
        .. code-block:: python

9793
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9794
            import paddle.fluid.layers as layers
9795
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9796 9797 9798
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9799
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9810
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9811 9812 9813 9814 9815
        })

    return out


G
gongweibao 已提交
9816
@templatedoc()
G
fix  
gongweibao 已提交
9817
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9818
    """
G
gongweibao 已提交
9819
    ${comment}
G
fix  
gongweibao 已提交
9820 9821

    Args:
G
gongweibao 已提交
9822 9823 9824 9825
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9826
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9827 9828

    Returns:
G
gongweibao 已提交
9829
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9830

9831 9832 9833
    Examples:
        .. code-block:: python

9834
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9835
            x = fluid.layers.data(
9836 9837 9838 9839 9840
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9841
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9842 9843 9844
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9845
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9857
@templatedoc()
G
fix  
gongweibao 已提交
9858 9859 9860 9861 9862 9863 9864 9865 9866
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9867
    ${comment}
G
fix  
gongweibao 已提交
9868 9869

    Args:
G
gongweibao 已提交
9870 9871
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9872
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9873 9874 9875 9876
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9877
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9878 9879

    Returns:
G
gongweibao 已提交
9880
        out (Variable): ${out_comment}
9881 9882 9883 9884

    Examples:
        .. code-block:: python

9885
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9886
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9887

Y
Yibing Liu 已提交
9888
            out = fluid.layers.gaussian_random_batch_size_like(
9889
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9890 9891 9892
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9893
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9912
@templatedoc()
X
Xin Pan 已提交
9913
def sum(x):
G
fix  
gongweibao 已提交
9914
    """
G
gongweibao 已提交
9915
    ${comment}
G
fix  
gongweibao 已提交
9916 9917

    Args:
G
gongweibao 已提交
9918
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9919 9920

    Returns:
G
gongweibao 已提交
9921
        out (Variable): ${out_comment}
9922 9923 9924 9925

    Examples:
        .. code-block:: python

9926
            import paddle.fluid as fluid
9927 9928 9929 9930
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9931 9932 9933
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9934 9935
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9936 9937 9938 9939
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9940
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9941 9942 9943 9944

    return out


G
gongweibao 已提交
9945
@templatedoc()
G
fix  
gongweibao 已提交
9946 9947
def slice(input, axes, starts, ends):
    """
9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9963

9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9981
    Args:
G
gongweibao 已提交
9982 9983 9984 9985
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9986 9987

    Returns:
G
gongweibao 已提交
9988
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9989

9990 9991 9992
    Examples:
        .. code-block:: python

9993 9994
            import paddle.fluid as fluid
 
9995 9996 9997 9998
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9999
            input = fluid.layers.data(
10000 10001
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10002
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10003 10004 10005
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10006 10007
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10021 10022
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10023
    Get the shape of the input.
G
fix  
gongweibao 已提交
10024 10025

    Args:
C
chengduozh 已提交
10026
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10027 10028

    Returns:
C
fix doc  
chengduozh 已提交
10029
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10030

10031 10032 10033
    Examples:
        .. code-block:: python

10034 10035 10036
            import paddle.fluid as fluid

            input = fluid.layers.data(
10037
                name="input", shape=[3, 100, 100], dtype="float32")
10038
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10039 10040 10041
    """

    helper = LayerHelper('shape', **locals())
10042
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10043
    helper.append_op(
G
fix  
gongweibao 已提交
10044
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10045 10046

    return out
G
merge  
gongweibao 已提交
10047 10048


Z
zhoukunsheng 已提交
10049 10050 10051 10052
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10053
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10054 10055 10056 10057 10058 10059 10060 10061 10062 10063

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10064 10065 10066 10067
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10068 10069 10070 10071 10072 10073 10074 10075
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10105 10106 10107 10108
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10109
    if in_dygraph_mode():
X
Xin Pan 已提交
10110 10111 10112
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10113 10114 10115 10116
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10117 10118
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10119
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10120 10121 10122
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10123

S
sneaxiy 已提交
10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10135
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10136 10137 10138 10139 10140 10141 10142 10143
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10144
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10145
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10146 10147 10148

    Returns:
        out(${out_type}): ${out_comment}
10149 10150 10151 10152 10153 10154 10155 10156

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10157 10158 10159
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10160
    if name is None:
X
Xin Pan 已提交
10161
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10162 10163 10164
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10165 10166 10167 10168 10169 10170 10171 10172 10173 10174

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10175
    return helper.append_activation(out)
S
sneaxiy 已提交
10176 10177


X
Xin Pan 已提交
10178
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10179 10180 10181
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10182
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10183 10184 10185
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10186
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10187 10188 10189
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10190
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10191 10192 10193
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10194
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10195 10196 10197
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10198
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10199 10200 10201
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10202
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10203 10204 10205
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10206 10207 10208 10209 10210 10211 10212 10213
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10214
for func in [
10215 10216 10217 10218 10219 10220 10221 10222 10223
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10224 10225 10226 10227 10228
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10229 10230
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10231
        ])
10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10269 10270


10271
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10272 10273
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10274 10275
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10276 10277 10278

    if out is None:
        if name is None:
X
Xin Pan 已提交
10279
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10295
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10307 10308 10309 10310

    Examples:
        .. code-block:: python

10311
            import paddle.fluid as fluid
10312
            left = fluid.layers.data(
石晓伟 已提交
10313
                name='left', shape=[1], dtype='bool')
10314
            right = fluid.layers.data(
石晓伟 已提交
10315
                name='right', shape=[1], dtype='bool')
10316
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10317 10318 10319 10320 10321 10322 10323
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10324
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10336 10337 10338 10339

    Examples:
        .. code-block:: python

10340
            import paddle.fluid as fluid
10341
            left = fluid.layers.data(
石晓伟 已提交
10342
                name='left', shape=[1], dtype='bool')
10343
            right = fluid.layers.data(
石晓伟 已提交
10344
                name='right', shape=[1], dtype='bool')
10345
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10346 10347 10348 10349 10350 10351 10352
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10353
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10365 10366 10367 10368

    Examples:
        .. code-block:: python

10369
            import paddle.fluid as fluid
10370
            left = fluid.layers.data(
石晓伟 已提交
10371
                name='left', shape=[1], dtype='bool')
10372
            right = fluid.layers.data(
石晓伟 已提交
10373
                name='right', shape=[1], dtype='bool')
10374
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10375 10376 10377 10378 10379 10380 10381
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10382
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10383 10384 10385 10386 10387 10388 10389 10390 10391 10392
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10393 10394 10395 10396

    Examples:
        .. code-block:: python

10397
            import paddle.fluid as fluid
10398
            left = fluid.layers.data(
石晓伟 已提交
10399
                name='left', shape=[1], dtype='bool')
10400
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10401 10402 10403 10404
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10420 10421 10422 10423

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10424
            import paddle.fluid as fluid
10425 10426 10427
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10428 10429 10430 10431 10432
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10433 10434
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10435 10436 10437

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10461 10462 10463 10464

    Examples:
        .. code-block:: python

10465
            import paddle.fluid as fluid
10466 10467 10468
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10469 10470 10471 10472 10473
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10474 10475
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10476 10477 10478

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10479 10480 10481 10482 10483 10484 10485 10486

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10500 10501 10502 10503

    Examples:
        .. code-block:: python

10504
            import paddle.fluid as fluid
10505 10506 10507
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10508 10509 10510 10511 10512
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10513
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10514 10515 10516 10517 10518 10519 10520 10521 10522 10523
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10535 10536 10537 10538

    Examples:
        .. code-block:: python

10539
            import paddle.fluid as fluid
10540 10541 10542 10543 10544
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10583 10584 10585 10586 10587
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10588
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10589 10590 10591 10592 10593 10594 10595 10596 10597
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10598 10599
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10600 10601 10602 10603 10604 10605
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10606 10607 10608
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10609 10610
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10611 10612 10613 10614 10615 10616
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10617
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10618
        name(basestring|None): Name of the output.
10619 10620
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10621 10622 10623

    Returns:
        out(${out_type}): ${out_comment}
10624 10625 10626 10627

    Examples:
        .. code-block:: python

10628
            import paddle.fluid as fluid
10629 10630 10631 10632 10633 10634 10635 10636 10637 10638
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10639 10640 10641 10642 10643
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10644
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10645 10646 10647 10648 10649 10650 10651 10652
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10653 10654
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10671 10672 10673 10674

    Examples:
        .. code-block:: python

10675
            import paddle.fluid as fluid
J
jerrywgz 已提交
10676 10677 10678 10679 10680
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10681 10682 10683 10684
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10685
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10686 10687 10688 10689 10690 10691 10692 10693 10694 10695
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10696 10697


J
JiabinYang 已提交
10698
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10699
    """
J
JiabinYang 已提交
10700
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10701 10702 10703

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10704
    The attr blocksize indicates the input block size.
10705 10706

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10707
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10708 10709

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10710
    (but keeping all data)
J
JiabinYang 已提交
10711

J
JiabinYang 已提交
10712
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10713
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10714 10715 10716 10717 10718
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10719
    Args:
J
JiabinYang 已提交
10720
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10721
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10722 10723

    Returns:
J
JiabinYang 已提交
10724
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10725 10726

    Raises:
J
JiabinYang 已提交
10727
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10728 10729 10730

    Examples:
        .. code-block:: python
10731 10732 10733
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10734 10735

            data = fluid.layers.data(
10736
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10737
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10738
                x=data, blocksize=2)
10739

10740
            exe = fluid.Executor(fluid.CPUPlace())
10741 10742 10743 10744
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10745

J
JiabinYang 已提交
10746 10747
    """

J
JiabinYang 已提交
10748
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10749

J
JiabinYang 已提交
10750 10751
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10752 10753

    if name is None:
J
JiabinYang 已提交
10754 10755
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10756 10757 10758 10759 10760
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10761
        type="space_to_depth",
J
JiabinYang 已提交
10762
        inputs={"X": x},
J
JiabinYang 已提交
10763
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10764
        outputs={"Out": out})
J
JiabinYang 已提交
10765 10766
    return out

J
JiabinYang 已提交
10767

S
sneaxiy 已提交
10768 10769
@templatedoc()
def sequence_reverse(x, name=None):
10770
    """
S
sneaxiy 已提交
10771 10772 10773 10774 10775 10776 10777 10778
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10779 10780 10781 10782 10783 10784 10785

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10786
    """
L
lujun 已提交
10787
    assert not in_dygraph_mode(), (
10788
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10789 10790
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10791
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10792 10793 10794 10795 10796 10797 10798 10799 10800 10801
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10802 10803


10804 10805 10806 10807 10808 10809
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10810 10811 10812 10813 10814
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10815

10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10828
        act (str, default None): Activation to be applied to the output of this layer.
10829 10830 10831

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10846 10847 10848 10849
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10850
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10862
    return helper.append_activation(out)
10863 10864


B
barrierye 已提交
10865
def similarity_focus(input, axis, indexes, name=None):
10866
    """
B
barrierye 已提交
10867
    SimilarityFocus Operator
B
barrierye 已提交
10868 10869

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10870

10871 10872 10873
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10874
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10875 10876 10877 10878 10879 10880 10881
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10882
       each index.
B
barrierye 已提交
10883 10884 10885 10886
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10936
    Args:
10937
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10938
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10939
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10940
            1, 2 or 3.
B
barrierye 已提交
10941
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10942 10943

    Returns:
H
haowang101779990 已提交
10944 10945
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10946

B
barrierye 已提交
10947 10948
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10949

10950
            import paddle.fluid as fluid
B
barrierye 已提交
10951
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10952 10953
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10966 10967 10968 10969 10970
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10971 10972 10973 10974 10975 10976 10977
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10978 10979


M
minqiyang 已提交
10980 10981
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10982 10983
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10984 10985
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10986 10987 10988 10989 10990 10991 10992 10993

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
10994
        input.data = 
10995
            [[1, 2],
10996
             [3, 4]]
M
minqiyang 已提交
10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11010 11011
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11012 11013 11014 11015
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11016
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11017 11018
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11019
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11020
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11021 11022

    Returns:
11023
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11024 11025 11026

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11027

11028 11029
            import paddle.fluid as fluid

11030 11031 11032 11033
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11034 11035


11036 11037 11038 11039
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11040 11041
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11042 11043
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11044 11045 11046 11047 11048 11049 11050
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11051 11052


D
dengkaipeng 已提交
11053
@templatedoc()
11054 11055
def grid_sampler(x, grid, name=None):
    """
11056
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11057
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11058 11059 11060 11061
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11062
    interpolation value of 4 nearest corner points.
11063

H
haowang101779990 已提交
11064
    .. code-block:: text
11065

H
haowang101779990 已提交
11066 11067
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11068

H
haowang101779990 已提交
11069 11070
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11071

H
haowang101779990 已提交
11072 11073 11074
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11075

H
haowang101779990 已提交
11076 11077 11078 11079 11080 11081 11082 11083 11084
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11085

H
haowang101779990 已提交
11086 11087 11088 11089
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11090

H
haowang101779990 已提交
11091 11092 11093 11094
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11095

H
haowang101779990 已提交
11096 11097 11098 11099
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11100

H
haowang101779990 已提交
11101 11102
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11103 11104

    Args:
11105 11106 11107
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11108 11109

    Returns:
H
haowang101779990 已提交
11110
        Variable: Output of shape [N, C, H, W] data samples input X
11111 11112
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11113 11114 11115 11116
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11117 11118 11119 11120 11121
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11122
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11123

D
dengkaipeng 已提交
11124 11125 11126 11127 11128 11129 11130 11131 11132
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11133
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11134 11135
    ipts = {'X': x, 'Grid': grid}

11136
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11137 11138 11139
    return out


G
gmcather 已提交
11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11167
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11168 11169
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11208
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11209 11210 11211 11212 11213 11214 11215
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11216 11217
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11218

11219 11220 11221 11222 11223
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11224
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11225

H
heqiaozhi 已提交
11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11239 11240 11241 11242
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11243
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11244 11245
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11246
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11247 11248

    .. math::
H
haowang101779990 已提交
11249 11250 11251
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11252 11253

    Where:
H
haowang101779990 已提交
11254 11255
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11269 11270 11271 11272 11273 11274 11275 11276 11277
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11278

G
gmcather 已提交
11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11295 11296 11297 11298 11299 11300 11301 11302 11303 11304


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11305
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11306

Q
Qiao Longfei 已提交
11307
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11308 11309 11310
    For example:

    .. math::
H
haowang101779990 已提交
11311
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11312

Q
Qiao Longfei 已提交
11313
    In this formula:
11314 11315
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11316
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11317
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11318 11319 11320
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11321 11322
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11323 11324 11325
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11326
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11327
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11328
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11329 11330 11331 11332
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11333
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11334 11335 11336 11337

    Examples:
        .. code-block:: python

11338
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11339 11340 11341
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11342 11343
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11344
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11345 11346 11347 11348

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11349
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11380 11381 11382 11383 11384 11385 11386 11387

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11388 11389 11390 11391 11392 11393 11394 11395 11396 11397
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11398 11399


S
shippingwang 已提交
11400
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11401 11402
    """
    **Shuffle Channel Operator**
11403

S
shippingwang 已提交
11404 11405 11406 11407 11408 11409
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11410
    
S
shippingwang 已提交
11411
    .. code-block:: text
11412

S
shippingwang 已提交
11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11441
    Args: 
S
shippingwang 已提交
11442 11443
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11444 11445

    Returns:
S
shippingwang 已提交
11446 11447
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11448 11449

    Raises:
S
shippingwang 已提交
11450
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11451 11452 11453

    Examples:
        .. code-block:: python
11454

11455
            import paddle.fluid as fluid
11456
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11457
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11458 11459 11460
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11461
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11462 11463 11464 11465 11466 11467 11468 11469 11470

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11471
    return out
S
Add  
shippingwang 已提交
11472 11473


11474
@templatedoc()
D
dengkaipeng 已提交
11475
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11476 11477 11478 11479 11480 11481 11482 11483
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11484
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11485
        name (str, default None): The name of this layer.
11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11497
            import paddle.fluid as fluid
11498
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11499
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11512 11513
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11514 11515 11516
    return out


S
sneaxiy 已提交
11517
class PyFuncRegistry(object):
S
sneaxiy 已提交
11518 11519 11520
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11521
        if func is None or not callable(func):
S
sneaxiy 已提交
11522 11523 11524
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11525
        # find named args using reflection
S
sneaxiy 已提交
11526 11527 11528 11529 11530 11531 11532
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11533 11534 11535
        '''
        Why record self here?

M
minqiyang 已提交
11536 11537
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11538
           to find the registered function corresponding
M
minqiyang 已提交
11539
           to :code:`idx`.
S
sneaxiy 已提交
11540

M
minqiyang 已提交
11541 11542
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11543
           whose reference count is 1 would cause
M
minqiyang 已提交
11544
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11545 11546
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11547
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11562 11563 11564 11565 11566 11567 11568 11569 11570
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11571

S
sneaxiy 已提交
11572 11573
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11574 11575

        ret = []
S
sneaxiy 已提交
11576 11577 11578
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11579 11580
                continue

S
sneaxiy 已提交
11581 11582
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11583

S
sneaxiy 已提交
11584 11585 11586
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11587

S
sneaxiy 已提交
11588
        return tuple(ret)
S
sneaxiy 已提交
11589 11590


S
sneaxiy 已提交
11591 11592 11593 11594
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11595

S
sneaxiy 已提交
11596 11597 11598 11599 11600 11601 11602 11603
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11604
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11605

S
sneaxiy 已提交
11606 11607
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11608 11609 11610 11611
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11612
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11613
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11614 11615
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11616 11617 11618 11619 11620
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11621
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11622
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11623
                                       None means no backward. Default None.
S
sneaxiy 已提交
11624
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11625
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11626 11627
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11628
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11629 11630 11631

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11632 11633

    Examples:
M
minqiyang 已提交
11634

S
sneaxiy 已提交
11635 11636 11637 11638 11639
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11640
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11641 11642
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11643
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11644 11645 11646
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11647
        >>>
S
sneaxiy 已提交
11648 11649 11650 11651 11652
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11653
        >>>     print(x)
S
sneaxiy 已提交
11654 11655 11656 11657 11658 11659
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11660
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11661 11662
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11663 11664
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11665 11666 11667 11668 11669 11670 11671 11672
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11673
    """
S
sneaxiy 已提交
11674
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11675 11676 11677
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11678
        x = [x]
S
sneaxiy 已提交
11679 11680
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11681

S
sneaxiy 已提交
11682 11683 11684
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11685
        out_list = [out]
S
sneaxiy 已提交
11686
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11687
        out_list = out
S
sneaxiy 已提交
11688 11689 11690
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11691

S
sneaxiy 已提交
11692 11693
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11694
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11695 11696

    for each_out in out_list:
S
sneaxiy 已提交
11697 11698
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11699 11700
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11701

S
sneaxiy 已提交
11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11717 11718 11719 11720

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11721 11722
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11723 11724 11725
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11726
        })
S
sneaxiy 已提交
11727
    return out
S
sneaxiy 已提交
11728 11729 11730


# For debug usage
S
sneaxiy 已提交
11731 11732 11733 11734
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11748 11749 11750 11751 11752
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11765 11766 11767 11768
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11794

M
minqiyang 已提交
11795

M
minqiyang 已提交
11796
def huber_loss(input, label, delta):
11797
    """
M
minqiyang 已提交
11798 11799 11800
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11801 11802 11803 11804

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11805
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11806 11807 11808 11809

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11810
        huber\_loss = 0.5 * (label - input) * (label - input)
11811 11812 11813 11814 11815 11816 11817


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11818
        delta (float): The parameter of huber loss, which controls
11819 11820 11821
                       the range of outliers

    Returns:
M
minqiyang 已提交
11822
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11823 11824 11825 11826

    Examples:
        .. code-block:: python

11827 11828 11829 11830 11831 11832 11833 11834 11835
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11836
    """
M
minqiyang 已提交
11837
    helper = LayerHelper('huber_loss', **locals())
11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11849 11850


D
dengkaipeng 已提交
11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

11868
            import paddle.fluid as fluid
D
dengkaipeng 已提交
11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11914
          import paddle.fluid as fluid
T
Tao Luo 已提交
11915 11916 11917
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11918
          # edges must be directional
T
Tao Luo 已提交
11919 11920 11921 11922
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11923
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11924 11925
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11926
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11927
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11951 11952


C
ceci3 已提交
11953
from .ops import square
C
ceci3 已提交
11954
from .control_flow import equal
C
ceci3 已提交
11955 11956


C
ceci3 已提交
11957 11958 11959
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11960

C
ceci3 已提交
11961
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11962 11963

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11964
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11965 11966 11967 11968 11969
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11970 11971
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11972 11973 11974 11975 11976 11977 11978

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

11979
       import paddle.fluid as fluid
C
ceci3 已提交
11980 11981 11982 11983 11984 11985 11986 11987
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11988 11989 11990 11991 11992 11993 11994
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11995
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11996 11997
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11998 11999
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12000 12001 12002 12003
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12004 12005 12006
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12007 12008 12009
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12010 12011


R
ruri 已提交
12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12041
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12042 12043 12044 12045 12046 12047 12048 12049 12050

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12051
            import paddle.fluid as fluid
R
ruri 已提交
12052
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12103 12104 12105 12106 12107 12108
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12109 12110 12111 12112 12113 12114 12115 12116
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12117 12118 12119 12120


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12121

H
heqiaozhi 已提交
12122
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12123

H
fix doc  
heqiaozhi 已提交
12124
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12125 12126 12127
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12128
    
H
fix doc  
heqiaozhi 已提交
12129
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12130

H
heqiaozhi 已提交
12131
    Args:
H
fix doc  
heqiaozhi 已提交
12132 12133

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12134 12135
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12136
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12137
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12138

H
heqiaozhi 已提交
12139
    Returns:
H
fix doc  
heqiaozhi 已提交
12140 12141 12142

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12143
    Examples:
H
fix doc  
heqiaozhi 已提交
12144

H
heqiaozhi 已提交
12145
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12146

12147
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12148 12149 12150 12151 12152 12153 12154 12155 12156 12157
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12158

H
heqiaozhi 已提交
12159 12160 12161 12162 12163 12164 12165 12166 12167
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12168
    return out
Z
zhoukunsheng 已提交
12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12187
             import paddle.fluid as fluid
12188 12189 12190
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12191
             # condition is a tensor [True, False, True]
12192 12193 12194
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12195 12196

             # condition is a tensor [[True, False], [False, True]]
12197 12198 12199
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12200 12201

             # condition is a tensor [False, False, False]
12202 12203 12204 12205
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12206 12207 12208 12209 12210 12211 12212 12213 12214
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12232 12233 12234
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12235
          # [1, 0, -1]
12236 12237
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12250 12251


Z
zhoukunsheng 已提交
12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12445
          import paddle.fluid as fluid
12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12677
        import paddle.fluid as fluid
C
cjt222 已提交
12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
12739 12740


K
Kevin 已提交
12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out