nn.py 369.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
shippingwang 已提交
182
    'shuffle_channel',
S
sneaxiy 已提交
183
    'py_func',
184
    'psroi_pool',
H
heqiaozhi 已提交
185
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
186
    'huber_loss',
Z
zhaozhehao 已提交
187
    'tree_conv',
Y
Yu Yang 已提交
188 189
]

J
jerrywgz 已提交
190 191
kIgnoreIndex = -100

Y
Yu Yang 已提交
192 193 194 195 196 197 198

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
199
       is_test=False,
200
       name=None):
Y
Yu Yang 已提交
201
    """
202
    **Fully Connected Layer**
Y
Yu Yang 已提交
203

204 205 206 207 208 209 210 211
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
212
    to the output as well.
C
caoying03 已提交
213

C
caoying03 已提交
214
    This process can be formulated as follows:
215 216 217

    .. math::

218
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
219 220 221

    In the above equation:

C
caoying03 已提交
222 223 224 225
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
226
    * :math:`Act`: The activation function.
C
caoying03 已提交
227
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
228 229

    Args:
R
ranqiu 已提交
230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
240
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
241 242 243 244
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
245 246
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
247
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
248
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
249
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
250

251
    Returns:
F
fengjiayi 已提交
252
        Variable: The transformation result.
253 254

    Raises:
C
caoying03 已提交
255
        ValueError: If rank of the input tensor is less than 2.
256 257 258 259

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
260
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
261
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
262
    """
C
caoying03 已提交
263

C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
265 266 267 268

    dtype = helper.input_dtype()

    mul_results = []
269 270
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
271 272 273
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
274

Y
Yu Yang 已提交
275
        w = helper.create_parameter(
276
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
277
        tmp = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
282
            outputs={"Out": tmp},
M
mozga-intel 已提交
283 284
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
285 286 287 288
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
289
    else:
X
Xin Pan 已提交
290
        pre_bias = helper.create_variable_for_type_inference(dtype)
291
        helper.append_op(
292 293 294
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
295
            attrs={"use_mkldnn": False})
296 297 298 299
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
300 301


302 303 304
def embedding(input,
              size,
              is_sparse=False,
305
              is_distributed=False,
306 307 308
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
309
    """
310 311
    **Embedding Layer**

312
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
313 314
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
315 316 317

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
318 319

    Args:
320 321 322 323 324
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
325
        is_distributed(bool): Whether to run lookup table from remote parameter server.
326 327
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
328
            with zeros whenever lookup encounters it in :attr:`input`. If
329
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
330 331
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
333

334 335 336
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
337

338 339
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
340

C
chengduoZH 已提交
341
          dict_size = len(dataset.ids)
342
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
343
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
344 345 346
    """

    helper = LayerHelper('embedding', **locals())
347
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
348 349
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
350 351
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
352
    tmp = helper.create_variable_for_type_inference(dtype)
353 354
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
355 356 357 358 359
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
360 361 362
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
363
            'remote_prefetch': remote_prefetch,
364 365
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
366 367 368
    return tmp


W
wopeizl 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
385

W
wopeizl 已提交
386 387 388 389 390 391 392 393 394 395 396
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
489 490


P
phlrain 已提交
491 492 493 494 495 496
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
497
         dropout_prob=0.0,
P
phlrain 已提交
498 499 500 501 502
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
503
    """
P
phlrain 已提交
504
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
505 506

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
507
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
508 509
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
510
    .. math::
M
minqiyang 已提交
511 512 513 514 515 516 517

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
518
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
519 520 521 522

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
523 524

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
525 526 527 528 529 530
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
531 532 533
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
534
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
535

M
minqiyang 已提交
536
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
537 538 539 540 541
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
542
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
543 544 545 546 547
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
548
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
549 550
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
551 552
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
553 554 555 556 557 558
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
559
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
560

L
liuhongyu 已提交
561 562

    Returns:
M
minqiyang 已提交
563 564
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
565
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
566

H
haowang101779990 已提交
567 568 569 570
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
571
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
572 573
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
590
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
591 592 593 594 595 596
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
597 598 599
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
659 660 661
def dynamic_lstmp(input,
                  size,
                  proj_size,
662 663
                  h_0=None,
                  c_0=None,
Y
Yibing Liu 已提交
664 665 666
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
667 668
                  cell_clip=None,
                  proj_clip=None,
Y
Yibing Liu 已提交
669 670 671 672
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
673
                  proj_activation='identity',
674 675
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
676 677 678
    """
    **Dynamic LSTMP Layer**

679 680 681 682 683 684
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
685 686 687 688 689

    The formula is as follows:

    .. math::

690
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
691

692
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
693

694
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
695

696
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
697

698
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
699

700
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
701

702
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
703

Y
Yibing Liu 已提交
704 705 706 707 708 709
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
710
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
711
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
712
          bias vector).
Y
Yibing Liu 已提交
713 714 715
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
716
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
717
    * :math:`h`: The hidden state.
718
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
719 720
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
721
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
722
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
723
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
724 725
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
726 727 728 729

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
730

Y
Yibing Liu 已提交
731 732 733 734 735 736 737 738 739 740 741 742
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
743 744 745 746 747 748
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
749
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
750 751
                               hidden-hidden weight and projection weight.

752 753
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
754 755
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
756 757
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
758
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
759 760 761 762 763

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
764
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
765 766 767 768 769 770
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
771
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
772 773 774
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
775
                                - The shape is (1 x 7D).
C
chengduo 已提交
776 777 778 779 780

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
781 782
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
783 784 785 786 787
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
788 789 790 791 792 793 794
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
795
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
796 797
                              default "tanh".
        proj_activation(str): The activation for projection output.
798
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
799
                              default "identity".
Y
Yibing Liu 已提交
800
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
801 802
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
803 804

    Returns:
805 806 807 808
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
809 810

    Examples:
811

Y
Yibing Liu 已提交
812 813
        .. code-block:: python

814 815 816 817
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
818
            hidden_dim, proj_dim = 512, 256
819
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
820
                                     act=None, bias_attr=None)
821 822 823
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
824 825 826 827
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
828
    """
829

C
chengduo 已提交
830
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
831
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
832
    size = size // 4
Y
Yibing Liu 已提交
833 834 835 836 837 838 839 840 841 842
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
843 844 845 846 847 848
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
864

X
xuezhong 已提交
865 866 867 868 869
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
870 871
    helper.append_op(
        type='lstmp',
872
        inputs=inputs,
Y
Yibing Liu 已提交
873 874 875 876 877 878 879 880 881
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
882 883
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
884 885 886 887 888 889 890 891 892
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
893 894 895 896 897 898 899
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
900 901
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
902
    """
903
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
904

905 906 907
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
908

G
guosheng 已提交
909 910 911 912 913 914 915 916 917
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
918

G
guosheng 已提交
919
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
920

Q
Qiao Longfei 已提交
921 922 923

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
924 925 926 927 928 929 930 931 932 933 934 935
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
936
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
937 938
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
939 940 941 942
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
943
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
944 945

    Args:
946 947
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
948
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
949
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
950 951
            is the hidden size.
        size(int): The dimension of the gru cell.
952
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
953 954
            hidden-hidden weight matrix. Note:

955
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
956
              :math:`D` is the hidden size.
957
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
958
              The first part are weights of the update gate and reset gate with
959
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
960
              candidate hidden state with shape :math:`(D \\times D)`.
961 962 963 964 965

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
966
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
967
            the bias in the update gate, reset gate and candidate calculations.
968 969 970
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
971 972
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
973
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
974 975 976
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
977
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
978
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
979 980 981 982
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
983 984

    Returns:
G
guosheng 已提交
985
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
986
            and sequence length is the same with the input.
987

G
guosheng 已提交
988
    Examples:
989

G
guosheng 已提交
990 991
        .. code-block:: python

992 993 994 995
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
996
            hidden_dim = 512
997
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
998
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1008
    batch_size = input.shape[0]
G
guosheng 已提交
1009
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1010
    if h_0:
G
guosheng 已提交
1011
        assert h_0.shape == (
Y
Yancey 已提交
1012 1013 1014
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1015

X
Xin Pan 已提交
1016 1017 1018 1019
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1033 1034
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1035 1036 1037 1038
        })
    return hidden


Y
Yu Yang 已提交
1039 1040 1041
def gru_unit(input,
             hidden,
             size,
1042 1043
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1044
             activation='tanh',
Q
Qiao Longfei 已提交
1045 1046
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1047
    """
1048 1049 1050
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1051
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1052
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1053

1054 1055
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1056

1057
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1058

1059
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1076 1077

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1078 1079 1080
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1081 1082
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1083 1084
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1085 1086 1087
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1088 1089 1090

    Args:
        input (Variable): The fc transformed input value of current step.
1091
        hidden (Variable): The hidden value of gru unit from previous step.
1092
        size (integer): The input dimension value.
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1107
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1108
            the bias in the update gate, reset gate and candidate calculations.
1109 1110 1111
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1112 1113
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1114 1115 1116 1117
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1118

1119 1120 1121 1122 1123 1124
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1125

1126
             # assuming we have x_t_data and prev_hidden of size=10
1127
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1128 1129
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1142
    size = size // 3
Y
Yu Yang 已提交
1143 1144

    # create weight
1145 1146
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1147

X
Xin Pan 已提交
1148 1149 1150
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1151
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1152
    # create bias
1153
    if helper.bias_attr:
Y
Yu Yang 已提交
1154 1155 1156
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1157
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1158 1159 1160

    helper.append_op(
        type='gru_unit',
1161
        inputs=inputs,
Y
Yu Yang 已提交
1162 1163 1164 1165 1166 1167
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1168 1169
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1170 1171 1172 1173 1174
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1175
@templatedoc()
1176
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1177 1178 1179 1180 1181 1182 1183
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1184
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1185 1186 1187 1188
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1189 1190 1191
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1192 1193

    """
Y
Yu Yang 已提交
1194 1195 1196 1197 1198 1199
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1200 1201 1202 1203 1204 1205 1206 1207
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1223 1224 1225 1226
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1227

W
wopeizl 已提交
1228 1229
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1230

W
wopeizl 已提交
1231
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1232

W
wopeizl 已提交
1233
        label(${label_type}): ${label_comment}
1234

W
wopeizl 已提交
1235 1236
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1237

W
wopeizl 已提交
1238 1239
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1240

W
wopeizl 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1251
                "Transition": transition,
W
wopeizl 已提交
1252 1253
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1254

W
wopeizl 已提交
1255
    return viterbi_path
Y
Yu Yang 已提交
1256 1257


Y
yi.wu 已提交
1258
@templatedoc()
F
fengjiayi 已提交
1259
def cos_sim(X, Y):
Y
Yu Yang 已提交
1260
    """
Y
yi.wu 已提交
1261 1262 1263
    ${comment}

    Args:
1264 1265
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1266

Y
yi.wu 已提交
1267
    Returns:
1268
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1269
    """
F
fengjiayi 已提交
1270
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1271 1272 1273
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1284 1285 1286 1287 1288
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1289
            dropout_implementation="downgrade_in_infer"):
1290 1291 1292 1293 1294
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1295
    training. The dropout operator randomly sets (according to the given dropout
1296 1297 1298
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1299 1300
    dropout op can be removed from the program to make the program more efficient.

1301
    Args:
1302 1303
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1304 1305 1306 1307 1308 1309 1310
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1311 1312
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1313
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1314 1315 1316 1317 1318 1319

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1320
                                        2. upscale_in_train, upscale the outcome at training time
1321

H
haowang101779990 已提交
1322 1323
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1324

H
haowang101779990 已提交
1325 1326
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1327

M
minqiyang 已提交
1328

1329
    Returns:
1330
        Variable: A tensor variable is the shape with `x`.
1331 1332

    Examples:
1333

1334 1335
        .. code-block:: python

1336 1337
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1338 1339
    """

F
fengjiayi 已提交
1340
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1341 1342 1343
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1344 1345 1346 1347

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1348 1349 1350 1351 1352
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1353 1354 1355 1356
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1357 1358
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1359
        })
1360 1361 1362
    return out


J
jerrywgz 已提交
1363
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1364
    """
Y
Yibing Liu 已提交
1365 1366
    **Cross Entropy Layer**

1367 1368 1369
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1370 1371

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1372
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1373

Y
Yibing Liu 已提交
1374
        .. math::
Y
yangyaming 已提交
1375

Y
Yibing Liu 已提交
1376 1377 1378
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1379 1380
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1381 1382 1383 1384 1385

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1386
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1387 1388 1389
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1390 1391
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1392
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1393

Y
Yibing Liu 已提交
1394
    Args:
Y
yangyaming 已提交
1395
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1396 1397 1398 1399
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1400
        label (Variable|list): the ground truth which is a 2-D tensor. When
1401 1402 1403 1404
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1405
        soft_label (bool): a flag indicating whether to
1406
                                           interpretate the given labels as soft
1407
                                           labels. Default: `False`.
M
minqiyang 已提交
1408 1409
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1410
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1411 1412 1413 1414 1415

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1416 1417 1418
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1419

H
haowang101779990 已提交
1420 1421
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1422

H
haowang101779990 已提交
1423 1424
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1425 1426 1427 1428 1429 1430

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1431
    """
F
fengjiayi 已提交
1432
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1433
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1434 1435 1436 1437 1438
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1439 1440
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1441 1442 1443
    return out


F
frankwhzhang 已提交
1444
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1445 1446 1447
    """
    Bayesian Personalized Ranking Loss Operator.

1448
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1449 1450 1451 1452 1453 1454
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1455 1456 1457 1458 1459 1460
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1461 1462
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1463 1464 1465
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1466 1467 1468
    Examples:
        .. code-block:: python

1469
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1470
    """
1471 1472 1473 1474 1475 1476

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1477
                'Label': [label]},
1478 1479 1480 1481
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1482
def square_error_cost(input, label):
Y
Yu Yang 已提交
1483
    """
1484 1485
    **Square error cost layer**

1486 1487
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1502 1503
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1504 1505

    Returns:
G
guosheng 已提交
1506
        Variable: The tensor variable storing the element-wise squared error \
1507
                  difference of input and label.
1508 1509 1510 1511 1512 1513 1514 1515

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1516
    """
F
fengjiayi 已提交
1517
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1518
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1519 1520 1521 1522 1523 1524
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1525
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1526
    helper.append_op(
F
fengjiayi 已提交
1527 1528
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1529 1530 1531
    return square_out


Y
yi.wu 已提交
1532
@templatedoc()
Y
Yu Yang 已提交
1533 1534 1535 1536
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1537
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1538
    """
Y
yi.wu 已提交
1539
    **Chunk Evaluator**
Y
yi.wu 已提交
1540

Y
yangyaming 已提交
1541
    This function computes and outputs the precision, recall and
1542
    F1-score of chunk detection.
Y
yi.wu 已提交
1543

M
minqiyang 已提交
1544
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1545
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1546 1547 1548 1549 1550 1551

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1552

Y
yi.wu 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1578

Y
yi.wu 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1603
    Args:
1604 1605 1606 1607 1608
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1609

Y
yi.wu 已提交
1610
    Returns:
Y
update  
yi.wu 已提交
1611 1612 1613
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1614

Y
yi.wu 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1627
    """
F
fengjiayi 已提交
1628
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1629 1630

    # prepare output
X
Xin Pan 已提交
1631 1632 1633 1634 1635 1636 1637
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1638 1639 1640 1641 1642 1643 1644 1645

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1646 1647 1648 1649
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1650 1651 1652
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1653 1654
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1655
        })
1656 1657
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1658 1659


1660
@templatedoc()
Y
Yu Yang 已提交
1661 1662 1663 1664 1665 1666 1667
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1668 1669
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1670 1671 1672 1673
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1674 1675 1676 1677 1678 1679 1680

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1694

1695 1696
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1697 1698 1699 1700 1701 1702 1703
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1704
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1715
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1716 1717 1718 1719 1720 1721
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1722
def sequence_softmax(input, use_cudnn=False, name=None):
1723 1724 1725
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1726
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1743 1744 1745
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1758 1759
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1760
    softmax_out = helper.create_variable_for_type_inference(dtype)
1761 1762 1763 1764 1765 1766 1767 1768
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1769
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1770
    """
1771
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1772
    has the same shape as the input.
Q
qiaolongfei 已提交
1773

1774 1775 1776 1777 1778 1779
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1780
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1781 1782 1783 1784 1785 1786 1787

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1788
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1789 1790 1791 1792 1793 1794 1795 1796

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1797 1798 1799
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1812 1813
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1814
    softmax_out = helper.create_variable_for_type_inference(dtype)
1815 1816 1817 1818 1819 1820 1821 1822
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1823 1824 1825
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1826 1827
           stride=1,
           padding=0,
1828
           dilation=1,
Y
Yu Yang 已提交
1829 1830 1831
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1832
           use_cudnn=True,
1833 1834
           act=None,
           name=None):
Y
Yu Yang 已提交
1835
    """
C
chengduoZH 已提交
1836
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1837 1838
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1839
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1840 1841 1842 1843 1844 1845 1846
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1847 1848 1849
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1850

1851
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1852

C
chengduoZH 已提交
1853 1854
    .. math::

C
refine  
chengduoZH 已提交
1855
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1856

T
tensor-tang 已提交
1857
    Where:
C
chengduoZH 已提交
1858

1859 1860 1861 1862 1863
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1864
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1865 1866 1867

    Example:

1868 1869
        - Input:

W
weixing02 已提交
1870
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1871

W
weixing02 已提交
1872
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1873

1874
        - Output:
T
tensor-tang 已提交
1875

W
weixing02 已提交
1876
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1877

C
chengduoZH 已提交
1878
        Where
1879 1880

        .. math::
C
chengduoZH 已提交
1881

W
weixing02 已提交
1882 1883
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1884 1885

    Args:
1886
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1887
        num_filters(int): The number of filter. It is as same as the output
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1905 1906 1907 1908 1909
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1910
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1911 1912 1913 1914 1915
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1916 1917
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1918 1919
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1920
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1921
            will be named automatically. Default: None
C
chengduoZH 已提交
1922 1923

    Returns:
G
guosheng 已提交
1924
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1925 1926
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1927
    Raises:
1928 1929
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1930

C
chengduoZH 已提交
1931 1932 1933
    Examples:
        .. code-block:: python

1934 1935
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1936 1937 1938
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1939
    assert param_attr is not False, "param_attr should not be False here."
1940
    l_type = 'conv2d'
X
xzl 已提交
1941 1942
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1943
        l_type = 'depthwise_conv2d'
1944 1945 1946 1947

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1948 1949 1950 1951 1952
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1953
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1954

C
chengduoZH 已提交
1955 1956 1957
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1958
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1959

C
chengduoZH 已提交
1960 1961
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1962 1963

    input_shape = input.shape
M
minqiyang 已提交
1964
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1965 1966

    def _get_default_param_initializer():
C
chengduo 已提交
1967 1968
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1969 1970 1971 1972 1973 1974 1975 1976
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1977
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1993
    helper.append_op(
1994
        type=l_type,
Y
Yu Yang 已提交
1995 1996 1997 1998 1999
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2000 2001 2002
        attrs={
            'strides': stride,
            'paddings': padding,
2003
            'dilations': dilation,
C
chengduoZH 已提交
2004
            'groups': groups,
2005
            'use_cudnn': use_cudnn,
2006
            'use_mkldnn': False,
2007
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2008
        })
Y
Yu Yang 已提交
2009 2010 2011 2012 2013 2014

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2032 2033 2034 2035 2036 2037
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2047 2048
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2049 2050 2051
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2052
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2078
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2079 2080
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2081
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2082 2083
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2084
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2085 2086
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2087
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2088 2089 2090 2091 2092 2093
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2104 2105
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2106 2107
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2108
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2109
            will be named automatically. Default: None.
C
chengduoZH 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2122 2123
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2124 2125 2126
    """

    l_type = 'conv3d'
C
chengduo 已提交
2127
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2138
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2152 2153 2154
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2155 2156 2157 2158 2159 2160 2161 2162
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2163
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2178
            'use_mkldnn': False
C
chengduoZH 已提交
2179 2180
        })

2181
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2182 2183 2184 2185

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2186
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2187
    """
Y
yangyaming 已提交
2188 2189 2190
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2202
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2203 2204 2205 2206 2207
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2208
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2209 2210 2211 2212 2213 2214 2215

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2216 2217
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2218

L
Luo Tao 已提交
2219 2220
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2221
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2222
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2223
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2224 2225 2226 2227 2228 2229 2230

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2231

Y
yangyaming 已提交
2232
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2233 2234 2235 2236 2237
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2238 2239
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2240
    """
F
fengjiayi 已提交
2241
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2242
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2243 2244
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2245 2246 2247 2248 2249 2250

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2251 2252
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2253

Y
yangyaming 已提交
2254 2255 2256 2257 2258
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2259 2260 2261
    return pool_out


C
add doc  
chengduoZH 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2281
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2282 2283 2284 2285 2286
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2287
def sequence_first_step(input):
L
Luo Tao 已提交
2288
    """
L
Luo Tao 已提交
2289
    This function gets the first step of sequence.
L
Luo Tao 已提交
2290 2291 2292 2293

    .. code-block:: text

       x is a 1-level LoDTensor:
2294
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2295 2296 2297 2298 2299
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2300
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2301
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2302

L
Luo Tao 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2312

Y
yangyaming 已提交
2313
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2314 2315 2316
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2317 2318 2319
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2320
def sequence_last_step(input):
L
Luo Tao 已提交
2321
    """
L
Luo Tao 已提交
2322
    This function gets the last step of sequence.
L
Luo Tao 已提交
2323 2324 2325 2326

    .. code-block:: text

       x is a 1-level LoDTensor:
2327
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2328 2329 2330 2331 2332
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2333
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2334
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2335

L
Luo Tao 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2345

Y
yangyaming 已提交
2346
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2347 2348 2349
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2350 2351 2352
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2353 2354 2355 2356
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2357
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2358 2359 2360 2361 2362
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2363

H
haowang101779990 已提交
2364
              - Case:
Y
Yibing Liu 已提交
2365

2366
            Given the input Variable **input**:
2367

2368 2369 2370
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2371

2372
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2373

2374
            the output Variable will be
2375

2376 2377 2378
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2379

M
minqiyang 已提交
2380
    Note:
H
haowang101779990 已提交
2381
          The first dimension size of **input**, **offset** and **length**
2382
          should be equal. The **offset** should start from 0.
2383

Y
Yibing Liu 已提交
2384
    Args:
2385
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2386
                         sequences.
Y
Yibing Liu 已提交
2387 2388 2389 2390 2391 2392
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2393
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2404
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2405 2406 2407 2408
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2409
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2424
@templatedoc()
Y
Yu Yang 已提交
2425
def pool2d(input,
C
chengduoZH 已提交
2426 2427
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2428 2429
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2430
           global_pooling=False,
C
chengduoZH 已提交
2431
           use_cudnn=True,
2432
           ceil_mode=False,
2433 2434
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2435
    """
F
fengjiayi 已提交
2436
    ${comment}
2437 2438

    Args:
2439 2440 2441
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2442
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2443
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2444 2445
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2446
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2447 2448 2449 2450 2451 2452
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2453 2454 2455
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2456
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2457
                        layer will be named automatically.
2458
        exclusive (bool): Whether to exclude padding points in average pooling
2459
                          mode, default is true
F
fengjiayi 已提交
2460

2461
    Returns:
F
fengjiayi 已提交
2462
        Variable: The pooling result.
F
fengjiayi 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2476 2477 2478 2479
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2480
                            global_pooling=False)
Y
Yu Yang 已提交
2481 2482 2483 2484 2485
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2486

C
chengduoZH 已提交
2487 2488 2489 2490 2491
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2492 2493 2494 2495
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2496 2497
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2498

C
Add doc  
chengduoZH 已提交
2499
    l_type = 'pool2d'
2500 2501

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2502
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2503
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2504 2505

    helper.append_op(
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2517 2518
            "use_mkldnn": False,
            "exclusive": exclusive,
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2532 2533
           name=None,
           exclusive=True):
2534 2535
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2536
    pooling configurations mentioned in input parameters.
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2549
        exclusive (bool): Whether to exclude padding points in average pooling
2550
                          mode, default is true
2551

2552
    Returns:
2553
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2554 2555 2556 2557 2558
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2559

C
chengduoZH 已提交
2560 2561 2562 2563 2564
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2565 2566 2567
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2568

C
chengduoZH 已提交
2569 2570
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2571

2572 2573
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2574
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2575
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2576 2577

    helper.append_op(
2578
        type=l_type,
Y
Yu Yang 已提交
2579 2580 2581 2582 2583 2584 2585
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2586
            "paddings": pool_padding,
2587
            "use_cudnn": use_cudnn,
2588
            "ceil_mode": ceil_mode,
2589 2590
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2591 2592 2593 2594 2595
        })

    return pool_out


2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2629
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2630
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2631
          # of input data into m * n grids averagely and performs poolings in each
2632 2633
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2634
          #
2635 2636 2637 2638 2639 2640 2641 2642
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2643 2644
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2645
          pool_out = fluid.layers.adaptive_pool2d(
2646 2647
                            input=data,
                            pool_size=[3, 3],
2648
                            pool_type='avg')
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2659
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2685
    return (pool_out, mask) if require_index else pool_out
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2721 2722
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2723
          # of input data into l * m * n grids averagely and performs poolings in each
2724 2725
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2726
          #
2727 2728 2729 2730 2731 2732 2733 2734 2735
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2736
          #                 output[:, :, i, j, k] =
2737 2738
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2739 2740
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2741
          pool_out, mask = fluid.layers.adaptive_pool3d(
2742 2743
                            input=data,
                            pool_size=[3, 3],
2744
                            pool_type='avg')
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2755
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2781
    return (pool_out, mask) if require_index else pool_out
2782 2783


Y
Yu Yang 已提交
2784 2785 2786 2787 2788 2789 2790
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2791
               data_layout='NCHW',
Y
Yang Yang 已提交
2792
               in_place=False,
2793 2794
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2795
               moving_variance_name=None,
2796
               do_model_average_for_mean_and_var=False,
2797 2798
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2799
    """
Q
qiaolongfei 已提交
2800 2801 2802 2803
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2804

Q
qiaolongfei 已提交
2805
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2806

Q
qiaolongfei 已提交
2807 2808
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2809 2810 2811
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2838
    Args:
Q
qiaolongfei 已提交
2839
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2840 2841 2842 2843
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2844 2845 2846 2847 2848 2849 2850 2851
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2852
        data_layout(string, default NCHW): NCHW|NHWC
2853
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2854 2855 2856 2857
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2858
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2859
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2860 2861 2862 2863 2864
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2865 2866

    Returns:
Q
qiaolongfei 已提交
2867
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2868 2869 2870 2871 2872 2873 2874

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2875
    """
C
chengduo 已提交
2876
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2877 2878 2879
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2880 2881 2882 2883
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2901 2902 2903
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2904 2905

    bias = helper.create_parameter(
2906
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2907 2908
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2909
        bias.stop_gradient = True
Y
Yu Yang 已提交
2910

2911 2912
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2913 2914 2915
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2916
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2917
        shape=param_shape,
W
Wu Yi 已提交
2918
        dtype=dtype)
2919 2920 2921 2922 2923 2924
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2925
            trainable=False,
W
wanghaoshuang 已提交
2926
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2927
        shape=param_shape,
W
Wu Yi 已提交
2928
        dtype=dtype)
2929
    variance.stop_gradient = True
Y
Yu Yang 已提交
2930 2931 2932 2933 2934 2935

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2936 2937 2938 2939
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2940

X
Xin Pan 已提交
2941 2942
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2960 2961 2962 2963
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2964
            "data_layout": data_layout,
X
Xin Pan 已提交
2965
            "use_mkldnn": False,
2966 2967
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2968
        })
Y
Yu Yang 已提交
2969 2970 2971 2972

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3100
@templatedoc()
G
guosheng 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3111
    ${comment}
G
guosheng 已提交
3112 3113 3114

    The formula is as follows:

Y
yuyang18 已提交
3115
    ..  math::
G
guosheng 已提交
3116 3117 3118 3119 3120 3121 3122

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3123 3124 3125 3126 3127 3128 3129 3130
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3131

G
guosheng 已提交
3132 3133
    Args:
        input(Variable): The input tensor variable.
3134
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3135
            normalization. Default True.
3136
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3137 3138
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3139
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3140
            Default 1.
3141
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3142
            division by zero. Default 1e-05.
G
guosheng 已提交
3143
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3144 3145
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3146 3147
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3148
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3149 3150
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3151
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3152
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3153
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3154 3155 3156
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3157 3158

    Returns:
Y
yuyang18 已提交
3159
        ${y_comment}
G
guosheng 已提交
3160 3161 3162

    Examples:

Y
yuyang18 已提交
3163 3164 3165
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3181
    if shift:
G
guosheng 已提交
3182 3183 3184 3185 3186 3187
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3188 3189 3190 3191 3192
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3220
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3268 3269
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
Dun 已提交
3270
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3286 3287 3288 3289
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3290 3291 3292
                     padding=0,
                     stride=1,
                     dilation=1,
3293
                     groups=None,
C
caoying03 已提交
3294
                     param_attr=None,
3295
                     bias_attr=None,
C
chengduoZH 已提交
3296
                     use_cudnn=True,
3297
                     act=None,
C
caoying03 已提交
3298
                     name=None):
Y
Yu Yang 已提交
3299
    """
3300 3301 3302 3303 3304 3305 3306 3307
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3308 3309
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3310 3311 3312
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3313 3314 3315 3316 3317

    For each input :math:`X`, the equation is:

    .. math::

3318
        Out = \sigma (W \\ast X + b)
3319

3320
    Where:
3321 3322 3323

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3324 3325 3326 3327
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3328

3329 3330 3331 3332
    Example:

        - Input:

3333
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3334

3335
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3336 3337 3338

        - Output:

3339
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3340 3341

        Where
Y
Yu Yang 已提交
3342

3343 3344
        .. math::

3345 3346
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3347 3348
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3349 3350

    Args:
3351 3352 3353 3354
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3355 3356 3357 3358
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3387
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3388 3389 3390
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3391
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3392
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3393 3394

    Returns:
3395
        Variable: The tensor variable storing the convolution transpose result.
3396 3397

    Raises:
3398 3399
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3400 3401 3402 3403

    Examples:
       .. code-block:: python

3404 3405
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3406
    """
C
chengduo 已提交
3407
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3408 3409 3410 3411 3412 3413 3414 3415
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3416 3417 3418
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3419 3420 3421
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3422

C
chengduoZH 已提交
3423 3424
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3425

Y
Yu Yang 已提交
3426 3427 3428 3429 3430
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3431

Y
Yu Yang 已提交
3432 3433
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3434

C
chengduoZH 已提交
3435
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3436
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3437
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3438
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3439
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3440 3441 3442
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3443

3444 3445 3446 3447 3448 3449 3450
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3451
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3452
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3453

Y
Yu Yang 已提交
3454 3455 3456
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3457
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3458
    helper.append_op(
3459
        type=op_type,
Y
Yu Yang 已提交
3460 3461
        inputs={'Input': [input],
                'Filter': [img_filter]},
3462
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3463
        attrs={
3464
            'output_size': output_size,
3465 3466 3467 3468 3469
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3470 3471
        })

3472 3473 3474
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3475 3476


3477
def conv3d_transpose(input,
Y
Yu Yang 已提交
3478 3479 3480
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3481 3482 3483
                     padding=0,
                     stride=1,
                     dilation=1,
3484
                     groups=None,
C
caoying03 已提交
3485
                     param_attr=None,
3486
                     bias_attr=None,
C
chengduoZH 已提交
3487
                     use_cudnn=True,
3488
                     act=None,
C
caoying03 已提交
3489
                     name=None):
Y
Yu Yang 已提交
3490
    """
3491
    **Convlution3D transpose layer**
3492

3493
    The convolution3D transpose layer calculates the output based on the input,
3494
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3495 3496 3497 3498 3499 3500
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3501 3502 3503
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3504 3505 3506 3507 3508

    For each input :math:`X`, the equation is:

    .. math::

3509
        Out = \sigma (W \\ast X + b)
3510 3511 3512

    In the above equation:

3513 3514
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3515 3516 3517 3518
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3519

3520 3521 3522 3523
    Example:

        - Input:

3524
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3525

3526
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3527 3528 3529

        - Output:

3530
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3531 3532

        Where
Y
Yu Yang 已提交
3533

3534 3535
        .. math::

3536 3537 3538
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3539 3540

    Args:
3541
        input(Variable): The input image with [N, C, D, H, W] format.
3542 3543 3544
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3545
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3546 3547
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3548
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3549 3550 3551
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3552 3553
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3554
        stride(int|tuple): The stride size. If stride is a tuple, it must
3555 3556
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3557
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3558 3559 3560
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3561 3562 3563 3564 3565
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3575 3576
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3577 3578
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3579 3580
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3581 3582

    Returns:
3583
        Variable: The tensor variable storing the convolution transpose result.
3584 3585

    Raises:
3586 3587
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3588 3589 3590 3591

    Examples:
       .. code-block:: python

3592 3593
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3594
    """
C
chengduo 已提交
3595
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3596 3597
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3598
    if not isinstance(input, Variable):
3599
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3600 3601
    input_channel = input.shape[1]

3602 3603 3604
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3605

C
chengduoZH 已提交
3606 3607 3608
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3609 3610 3611 3612 3613 3614
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3615 3616 3617
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3618

3619
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3620
                         padding[0] - 1) // dilation[0] + 1
3621
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3622
                         padding[1] - 1) // dilation[1] + 1
3623
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3624
                         padding[2] - 1) // dilation[2] + 1
3625
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3626
    else:
3627 3628
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3629

3630
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3631
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3632 3633 3634
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3635
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3636
    helper.append_op(
3637
        type=l_type,
Y
Yu Yang 已提交
3638 3639
        inputs={'Input': [input],
                'Filter': [img_filter]},
3640
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3641 3642 3643 3644
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3645
            'groups': groups,
C
chengduoZH 已提交
3646 3647
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3648

3649 3650
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3651
    return out
Y
yangyaming 已提交
3652 3653


Y
yangyaming 已提交
3654
def sequence_expand(x, y, ref_level=-1, name=None):
3655
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3656 3657 3658 3659
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3660 3661 3662 3663 3664

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3665
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3666
                x.data = [[a], [b], [c], [d]]
3667 3668 3669
                x.dims = [4, 1]

            y is a LoDTensor:
3670 3671
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3672

Y
yangyaming 已提交
3673
            ref_level: 0
3674

Y
yangyaming 已提交
3675
            then output is a 1-level LoDTensor:
3676
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3677
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3678 3679 3680 3681
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3682
                x.data = [[a], [b], [c]]
3683 3684 3685
                x.dims = [3, 1]

            y is a LoDTensor:
3686
                y.lod = [[2, 0, 3]]
3687

Y
yangyaming 已提交
3688
            ref_level: -1
3689

Y
yangyaming 已提交
3690 3691 3692
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3693 3694 3695
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3696 3697
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3698
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3699
                        will be named automatically.
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3710
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3711
    """
Y
yangyaming 已提交
3712
    helper = LayerHelper('sequence_expand', input=x, **locals())
3713
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3714
    tmp = helper.create_variable_for_type_inference(dtype)
3715
    helper.append_op(
Y
yangyaming 已提交
3716 3717 3718 3719 3720
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3721
    return tmp
3722 3723


C
chengduo 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3780
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3781 3782 3783 3784 3785 3786 3787 3788
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3789
@templatedoc()
3790
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3791 3792 3793 3794 3795
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3796 3797 3798
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3799
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3800 3801 3802 3803
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3804 3805 3806
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3807

F
fengjiayi 已提交
3808
    Returns:
M
minqiyang 已提交
3809
        Variable: The padded sequence batch and the original lengths before
3810
                  padding. All sequences has the same length.
M
minqiyang 已提交
3811

F
fengjiayi 已提交
3812 3813 3814 3815 3816 3817 3818
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3819
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3820
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3821 3822 3823 3824 3825
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3826 3827
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3828 3829 3830 3831

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3832 3833 3834 3835 3836 3837
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3838 3839
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3840
        attrs={'padded_length': maxlen})
3841
    return out, length
F
fengjiayi 已提交
3842 3843


3844
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3845
    """
3846
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3847

3848 3849
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3859 3860 3861
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3862
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3863 3864 3865 3866 3867 3868

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3869
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3870 3871 3872 3873 3874 3875

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3876 3877
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3892
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3904 3905 3906 3907 3908 3909 3910
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3911
                is_accumulated=True,
3912 3913
                name=None,
                return_parent_idx=False):
3914
    """
3915 3916
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3917 3918 3919

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3920 3921

    This layer does the search in beams for one time step. Specifically, it
3922 3923 3924
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3936 3937 3938 3939

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3940

3941
    Args:
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3965 3966
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
3967 3968
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
3969 3970 3971 3972
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
3973

3974
    Returns:
3975 3976 3977 3978
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
3979 3980 3981 3982

    Examples:
        .. code-block:: python

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4000
    helper = LayerHelper('beam_search', **locals())
4001 4002 4003 4004 4005 4006
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4007

X
Xin Pan 已提交
4008 4009 4010
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4011 4012 4013 4014 4015
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4016 4017 4018

    helper.append_op(
        type='beam_search',
4019
        inputs=inputs,
Q
Qiao Longfei 已提交
4020 4021 4022
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4023
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4024 4025 4026 4027 4028 4029
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4030
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4031
        })
4032 4033 4034 4035
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4036 4037


4038 4039 4040 4041 4042 4043 4044
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4055

4056 4057 4058 4059 4060 4061
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4062

4063 4064
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4065

4066 4067 4068 4069 4070 4071
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4072 4073
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4089 4090 4091 4092
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4093
              param_attr=None,
C
caoying03 已提交
4094 4095
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4096 4097 4098 4099
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4100
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4101

4102
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4103

4104
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4105

4106
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4107 4108 4109

            h_t & = o_t tanh(c_t)

4110 4111 4112 4113 4114 4115
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4116 4117 4118

        .. math::

4119
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4120 4121 4122 4123 4124 4125 4126 4127

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4128
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4129 4130

    Args:
Y
yangyaming 已提交
4131 4132 4133 4134 4135 4136
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4137
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4150 4151
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4152 4153

    Returns:
Y
yangyaming 已提交
4154
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4155 4156

    Raises:
4157 4158 4159 4160
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4161 4162 4163 4164 4165 4166

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4167
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4168
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4169
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4186
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4187 4188 4189 4190
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4191 4192
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4193 4194 4195
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4196
    size = cell_t_prev.shape[1]
4197
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4198 4199
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4200
                param_attr=param_attr,
4201
                bias_attr=bias_attr)
Y
yangyaming 已提交
4202
    dtype = x_t.dtype
X
Xin Pan 已提交
4203 4204
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4214
    return h, c
G
guosheng 已提交
4215 4216


C
caoying03 已提交
4217
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4218
    """
Y
yangyaming 已提交
4219
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4220 4221 4222

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4223
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4224 4225
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4226 4227
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4228
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4229
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4230
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4231 4232
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4233 4234 4235

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4236

G
guosheng 已提交
4237 4238 4239 4240 4241 4242
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4243
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4244 4245 4246 4247
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4248 4249 4250 4251

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4252
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4253 4254 4255
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4256 4257
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4258
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4259 4260
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4261 4262 4263 4264 4265
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4266
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4267 4268 4269 4270
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4271 4272


C
caoying03 已提交
4273
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4274
    """
Y
Yibing Liu 已提交
4275
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4276 4277 4278

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4279 4280 4281
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4282
            must be in the range :math:`[-rank(input), rank(input))`. If
4283
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4284
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4285 4286
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4287
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4288
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4289
                       will be named automatically.
G
guosheng 已提交
4290 4291

    Returns:
Y
Yibing Liu 已提交
4292
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4293

G
guosheng 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4304 4305
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4306 4307 4308 4309 4310 4311 4312

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4313 4314
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4315
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4316 4317
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4318 4319 4320 4321 4322
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4323
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4324 4325 4326 4327
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4328 4329


C
caoying03 已提交
4330
def reduce_max(input, dim=None, keep_dim=False, name=None):
4331
    """
Y
yangyaming 已提交
4332
    Computes the maximum of tensor elements over the given dimension.
4333 4334 4335

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4336
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4337 4338 4339
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4340
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4341 4342
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4343
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4344 4345
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4346 4347 4348

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4361 4362 4363 4364 4365 4366 4367

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4368 4369
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4370
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4371 4372
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4373 4374 4375 4376 4377
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4378
            'dim': dim if dim != None else [0],
4379 4380 4381 4382 4383 4384
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4385
def reduce_min(input, dim=None, keep_dim=False, name=None):
4386
    """
Y
yangyaming 已提交
4387
    Computes the minimum of tensor elements over the given dimension.
4388 4389 4390

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4391
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4392 4393 4394
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4395
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4396 4397
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4398
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4399 4400
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4401 4402 4403

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4404

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4416 4417 4418 4419 4420 4421 4422

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4423 4424
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4425
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4426 4427
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4428 4429 4430 4431 4432
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4433
            'dim': dim if dim != None else [0],
4434 4435 4436 4437
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4438 4439


4440 4441 4442 4443 4444 4445
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4446
        dim (list|int|None): The dimensions along which the product is performed. If
4447 4448
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4449 4450
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4451 4452 4453
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4454
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4455
            layer will be named automatically.
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4470
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4471
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4472 4473 4474 4475 4476 4477 4478

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4479 4480
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4481
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4482 4483
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4484 4485 4486 4487 4488
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4489
            'dim': dim if dim != None else [0],
4490 4491 4492 4493 4494 4495
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4496
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4497
    """
C
caoying03 已提交
4498
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4499 4500 4501

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4502 4503 4504 4505 4506
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4507
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4508
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4509
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4510 4511
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4512 4513

    Returns:
D
dzhwinter 已提交
4514
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4524 4525
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4541
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4564
    .. math::
4565 4566

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4567 4568 4569 4570 4571

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4572
        x(Variable|list): The input tensor to l2_normalize layer.
4573
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4574 4575
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4576
        epsilon(float): The epsilon value is used to avoid division by zero, \
4577
            the defalut value is 1e-10.
4578
        name(str|None): A name for this layer(optional). If set None, the layer \
4579
            will be named automatically.
C
caoying03 已提交
4580 4581

    Returns:
4582
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4583 4584

    Examples:
4585

C
caoying03 已提交
4586 4587
        .. code-block:: python

4588 4589 4590 4591
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4592 4593
    """

F
fengjiayi 已提交
4594 4595
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4596 4597
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4598 4599
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4600
    helper.append_op(
4601 4602 4603 4604
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4605
        attrs={
4606 4607
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4608 4609
        })
    return out
4610 4611


S
sneaxiy 已提交
4612
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4613
    """
Y
ying 已提交
4614 4615 4616 4617
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4618

C
chengduoZH 已提交
4619
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4620
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4621

4622 4623 4624 4625 4626
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4627
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4628

C
chengduoZH 已提交
4629
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4630
      performs in the following way.
G
guosheng 已提交
4631

4632
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4633
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4634
        last two dimensions and a batched matrix multiply supporting broadcast
4635
        applies on the two tensors.
G
guosheng 已提交
4636

Y
ying 已提交
4637 4638
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4639
    removed after matrix multiplication.
G
guosheng 已提交
4640 4641 4642

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4643 4644 4645
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4646
        alpha (float): The scale of output. Default 1.0.
4647
        name(str|None): A name for this layer(optional). If set None, the layer
4648
            will be named automatically.
G
guosheng 已提交
4649 4650

    Returns:
4651
        Variable: The product Tensor variable.
G
guosheng 已提交
4652

G
guosheng 已提交
4653 4654 4655
    Examples:
        .. code-block:: python

4656
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4657 4658
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4659

4660 4661
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4662

4663 4664
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4665

4666 4667
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4668 4669 4670 4671

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4672 4673
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4674

Y
ying 已提交
4675
            # x: [M], y: [N]
4676
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4677
    """
Y
ying 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4690
            y_shape = y_shape + [1]
Y
ying 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4707
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4708
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4709
    helper.append_op(
4710 4711 4712 4713
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4714 4715 4716
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4717
            'alpha': float(alpha),
S
sneaxiy 已提交
4718
        })
4719
    return out
4720 4721


4722
def topk(input, k, name=None):
Q
qingqing01 已提交
4723 4724 4725 4726
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4727
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4728 4729 4730 4731 4732 4733
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4755 4756 4757
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4758
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4759
                 of input.
4760
        name(str|None): A name for this layer(optional). If set None, the layer
4761
                       will be named automatically.
F
fengjiayi 已提交
4762
                       Default: None
Q
qingqing01 已提交
4763 4764

    Returns:
4765 4766 4767
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4768
        within the last dimension of input.
Q
qingqing01 已提交
4769

F
fengjiayi 已提交
4770 4771
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4772 4773 4774 4775 4776 4777 4778

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4779 4780
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4781 4782 4783 4784 4785 4786
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4787 4788
    helper.append_op(
        type="top_k",
W
whs 已提交
4789
        inputs=inputs,
Q
qingqing01 已提交
4790 4791
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4792
        attrs=attrs)
Q
qingqing01 已提交
4793 4794 4795 4796 4797
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4798
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4799
    """
Y
ying 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4809

Y
ying 已提交
4810
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4811

4812
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4813 4814
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4815
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4816

4817
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4818 4819
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4820

4821 4822 4823
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4824
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4825
                          the length of reference string.
4826
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4827
                                     calculating edit distance.
4828
        name (str): The name of this layer. It is optional.
4829

W
wanghaoshuang 已提交
4830
    Returns:
W
wanghaoshuang 已提交
4831
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4832 4833 4834 4835

    Examples:
        .. code-block:: python

T
tink2123 已提交
4836 4837
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4838
            cost = fluid.layers.edit_distance(input=x,label=y)
4839
    """
4840
    helper = LayerHelper("edit_distance", **locals())
4841

4842
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4843
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4844 4845
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4846 4847 4848 4849 4850

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4851
            attrs={"tokens": ignored_tokens})
4852 4853 4854 4855 4856
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4857
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4858
            attrs={"tokens": ignored_tokens})
4859 4860
        label = erased_label

4861
    # edit distance op
X
Xin Pan 已提交
4862 4863
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4864 4865 4866 4867
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4868 4869
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4870 4871
        attrs={"normalized": normalized})

4872
    return edit_distance_out, sequence_num
4873 4874 4875 4876 4877


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4878

Y
ying 已提交
4879 4880 4881 4882
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4900
        input.lod = [[4, 4]]
M
minqiyang 已提交
4901

W
whs 已提交
4902
        Computation:
4903

W
whs 已提交
4904 4905 4906 4907 4908 4909
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4910 4911 4912 4913 4914

        output.data = [[2],
                       [1],
                       [3]]

4915
        output.lod = [[2, 1]]
4916

W
whs 已提交
4917

4918 4919
    Args:

Y
ying 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4929
        name (str): The name of this layer. It is optional.
4930 4931

    Returns:
H
haowang101779990 已提交
4932 4933 4934
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4935
                  LoD [[]] and dims [1, 1].
4936 4937 4938 4939 4940

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4941

4942
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4943
    """
4944
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4945
    _, topk_indices = topk(input, k=1)
4946 4947

    # ctc align op
X
Xin Pan 已提交
4948
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4949 4950 4951
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4952
        outputs={"Output": [ctc_out]},
4953 4954
        attrs={"merge_repeated": True,
               "blank": blank})
4955
    return ctc_out
4956 4957


W
Wu Yi 已提交
4958
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4959
    """
4960 4961
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4962
    to compute Connectionist Temporal Classification (CTC) loss.
4963 4964
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4965 4966 4967
    input tensor.

    Args:
4968
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4969 4970 4971 4972
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4973
       label (Variable): The ground truth of variable-length sequence,
4974 4975 4976
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4977 4978
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4979 4980 4981
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4982
         follewed by a mean_op.
W
Wu Yi 已提交
4983
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4984 4985

    Returns:
4986 4987
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4988 4989

    Examples:
4990

W
wanghaoshuang 已提交
4991
        .. code-block:: python
4992

4993 4994 4995
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4996 4997

    """
F
fengjiayi 已提交
4998
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4999 5000
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5001 5002 5003 5004 5005 5006
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5007 5008 5009 5010 5011
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5012
    return loss_out
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5028 5029 5030
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5031 5032 5033 5034 5035
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5036

5037
            out.lod  = [[0, 1, 3]]
5038 5039 5040 5041

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5042 5043 5044 5045 5046 5047 5048
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5049 5050 5051

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5052 5053

    Returns:
5054

5055 5056 5057 5058 5059
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5060
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5061
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5062 5063
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5064
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5065 5066 5067 5068 5069 5070
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5071 5072


5073 5074 5075 5076
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5077 5078 5079 5080 5081 5082
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5083
        num_neg_samples=None,
5084 5085 5086
        name=None,
        sampler="uniform",
        custom_dist=None,
5087 5088
        seed=0,
        is_sparse=False):
5089 5090 5091 5092 5093 5094 5095
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5096 5097
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5098
            sample is 1.0.
C
chengduo 已提交
5099 5100 5101 5102 5103 5104 5105 5106 5107
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5108
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5109 5110
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5111 5112 5113
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5114
        custom_dist (float[]): A float[] with size=num_total_classes.
5115 5116 5117 5118
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5119
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5120

5121
    Returns:
Y
Yibing Liu 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5149 5150 5151 5152 5153 5154 5155 5156 5157

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5158

5159
    """
Y
Yang Yu 已提交
5160 5161 5162
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5163 5164

    dim = input.shape[1]
Y
Yang Yu 已提交
5165 5166 5167 5168 5169 5170
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5171
    inputs = {}
C
chengduo 已提交
5172 5173 5174 5175 5176 5177 5178
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5179 5180 5181
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5182

5183 5184 5185 5186
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5187 5188 5189 5190 5191 5192 5193

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5194 5195 5196 5197 5198 5199 5200 5201 5202
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5203
            if normal_prob - 1.0 > 0:
5204
                bigs.append((i, normal_prob))
5205
            elif 1.0 - normal_prob > 0:
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5221
            if big_left - 1.0 > 0:
5222
                bigs.append((big_idx, big_left))
5223
            elif 1.0 - big_left > 0:
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5253 5254 5255 5256
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5257 5258 5259 5260 5261
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5262 5263 5264 5265
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5266

Y
Yang Yu 已提交
5267 5268
    attrs = {
        'num_total_classes': int(num_total_classes),
5269 5270
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5271
        'sampler': sampler,
5272 5273
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5274
    }
Y
Yang Yu 已提交
5275 5276 5277

    helper.append_op(
        type='nce',
C
chengduo 已提交
5278
        inputs=inputs,
Y
Yang Yu 已提交
5279 5280 5281 5282 5283 5284
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5285
    return cost / (num_neg_samples + 1)
5286 5287


C
chengduo 已提交
5288 5289
def hsigmoid(input,
             label,
5290
             num_classes,
C
chengduo 已提交
5291 5292
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5293
             name=None,
5294 5295 5296
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5297
             is_sparse=False):
W
weixing02 已提交
5298 5299
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5300
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5301
    complete binary tree, or you can use is_custom to pass your own tree to
5302
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5303 5304 5305 5306 5307 5308
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5309
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5310
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5311

5312 5313
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5314 5315 5316 5317
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5318
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5319
       related to the same batch of inputs.
5320

W
weixing02 已提交
5321
    Args:
M
minqiyang 已提交
5322
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5323 5324 5325 5326
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5327 5328
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5329
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5341
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5342
            it should be in leaf -> root order
M
minqiyang 已提交
5343 5344 5345
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5346
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5347
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5348
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5349
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5350
             of W and input will be sparse.
W
weixing02 已提交
5351 5352

    Returns:
J
JiabinYang 已提交
5353
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5354 5355 5356 5357 5358

    Examples:

        .. code-block:: python

G
guosheng 已提交
5359 5360 5361
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5362 5363 5364 5365
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5366 5367
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5368
    dim = input.shape[1]
5369
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5370 5371 5372
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5373 5374 5375 5376
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5377 5378
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5379 5380 5381
    else:
        pass

J
JiabinYang 已提交
5382
    weights = None
5383 5384 5385 5386
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5387
    if not is_custom:
J
JiabinYang 已提交
5388 5389 5390 5391 5392 5393 5394 5395
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5396
            shape=[num_classes, dim],
J
JiabinYang 已提交
5397 5398
            is_bias=False,
            dtype=input.dtype)
5399 5400 5401
    inputs = {
        "X": input,
        "W": weights,
5402
        "PathTable": path_table,
5403
        "PathCode": path_code,
5404 5405
        "Label": label
    }
W
weixing02 已提交
5406
    if helper.bias_attr:
5407
        if not is_custom:
J
JiabinYang 已提交
5408 5409
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5410
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5411 5412 5413 5414 5415 5416
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5417
                shape=[num_classes, 1],
J
JiabinYang 已提交
5418 5419 5420
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5421 5422
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5423
        inputs=inputs,
W
weixing02 已提交
5424
        outputs={"Out": out,
5425 5426 5427 5428 5429 5430 5431
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5432 5433 5434
    return out


Y
fix ci.  
ying 已提交
5435
def transpose(x, perm, name=None):
Y
ying 已提交
5436 5437 5438 5439 5440 5441 5442
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5443 5444 5445
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5446 5447 5448 5449 5450 5451 5452

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5453
            # use append_batch_size=False to avoid prepending extra
5454
            # batch size in shape
5455
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5456
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5457
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5458 5459
    """

Y
fix ci.  
ying 已提交
5460
    if len(perm) != len(x.shape):
Y
ying 已提交
5461 5462 5463
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5464 5465 5466 5467 5468 5469
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5470 5471

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5472 5473
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5474
    helper.append_op(
5475
        type='transpose2',
Y
fix ci.  
ying 已提交
5476
        inputs={'X': [x]},
5477 5478
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5479 5480
        attrs={'axis': perm})
    return out
5481 5482


5483 5484 5485 5486 5487 5488 5489
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5490
    """
5491 5492 5493 5494 5495 5496 5497
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5526 5527 5528 5529 5530 5531 5532 5533 5534
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5535 5536 5537
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5538 5539 5540 5541 5542
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5570 5571 5572
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5585
            output.dims = {8, 8}
5586

5587
            output.lod = [[4, 4]]
5588

T
Tink_Y 已提交
5589
    Examples:
5590 5591 5592

        .. code-block:: python

5593 5594
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5595 5596

    """
W
wanghaoshuang 已提交
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5607 5608 5609 5610 5611 5612 5613
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5614
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5615
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5616
    helper.append_op(
5617
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5618
    return out
5619 5620


Y
yuyang18 已提交
5621
@templatedoc()
5622
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5623 5624
    """
    ${comment}
5625 5626

    Args:
Y
yuyang18 已提交
5627
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5628 5629
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5630 5631 5632 5633 5634
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5635
        ${out_comment}.
5636 5637

    Examples:
Y
yuyang18 已提交
5638 5639 5640 5641
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5642 5643 5644 5645 5646 5647
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5648
    out = helper.create_variable_for_type_inference(dtype)
5649 5650 5651 5652 5653
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5654
    return helper.append_activation(out)
5655 5656


Y
yuyang18 已提交
5657
@templatedoc()
5658 5659
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5660 5661 5662 5663 5664 5665 5666
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5667 5668

    Args:
Y
yuyang18 已提交
5669 5670
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5671 5672

    Returns:
Y
yuyang18 已提交
5673
        ${out_comment}.
5674 5675
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5676 5677 5678 5679 5680

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5681
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5682 5683 5684 5685 5686 5687
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5688 5689


5690 5691 5692
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5693
                               ignore_index=kIgnoreIndex,
5694 5695
                               numeric_stable_mode=False,
                               return_softmax=False):
5696 5697
    """
    **Softmax With Cross Entropy Operator.**
5698

5699 5700 5701 5702
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5703

5704 5705 5706
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5707

5708 5709 5710
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5711

5712
    The equation is as follows:
5713

5714
    1) Hard label (one-hot label, so every sample has exactly one class)
5715

5716 5717 5718 5719
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5720

5721 5722 5723
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5724

5725 5726 5727 5728
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5729 5730 5731
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5732

H
haowang101779990 已提交
5733
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5734

H
haowang101779990 已提交
5735
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5736

H
haowang101779990 已提交
5737
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5738 5739 5740

    and then cross entropy loss is calculated by softmax and label.

5741 5742 5743 5744 5745 5746 5747 5748
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5749 5750
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5751
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5752 5753 5754
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5755 5756 5757
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5758
                                    stable algorithm. Default: False
5759
        return_softmax (bool): A flag indicating whether to return the softmax
5760
                               along with the cross entropy loss. Default: False
5761

5762
    Returns:
H
haowang101779990 已提交
5763 5764 5765 5766 5767
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5768 5769 5770 5771 5772 5773 5774

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5775 5776
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5777 5778
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5779 5780
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5781 5782 5783 5784 5785 5786
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5787 5788 5789 5790 5791
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5792 5793 5794 5795

    if return_softmax:
        return loss, softmax

5796 5797 5798 5799 5800
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5801 5802
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5803
    For each instance, it computes the smooth L1 loss element by element first
5804
    and then sums all the losses. So the shape of ouput Variable is
5805
    [batch_size, 1].
5806

5807 5808
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5809
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5810
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5811
            L1 loss op with same shape as :attr:`x`.
5812
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5813 5814
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5815
            by this tensor element by element.
5816
        outside_weight (Variable|None): A tensor with rank at least 2. This
5817 5818
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5819
            element by element.
5820
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5821 5822
           scalar with default value 1.0.

5823
    Returns:
5824
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5825 5826 5827 5828 5829

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5830 5831
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5832
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5833
            out = fluid.layers.smooth_l1(x=fc, y=label)
5834
    """
5835

5836
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5837 5838
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5851 5852 5853 5854


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5855
    This layer creates the one-hot representations for input indices.
5856 5857

    Args:
Y
Yibing Liu 已提交
5858 5859
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5860 5861

    Returns:
Y
Yibing Liu 已提交
5862
        Variable: The one-hot representations of input.
5863 5864

    Examples:
C
caoying03 已提交
5865
        .. code-block:: python
5866

Y
Yibing Liu 已提交
5867 5868
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5869 5870
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5871
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5872 5873 5874 5875 5876 5877
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5878 5879


Y
Yu Yang 已提交
5880
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5881
    """
Y
yi.wu 已提交
5882 5883 5884
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5885 5886 5887 5888 5889 5890

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5891 5892
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5893 5894 5895 5896 5897 5898

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5899 5900
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5901 5902
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5903 5904 5905 5906 5907
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5908
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5909
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5910 5911
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5912
            outputs={'Out': [counter]},
M
minqiyang 已提交
5913 5914
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5915 5916 5917
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5918 5919


5920
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5921
    """
C
caoying03 已提交
5922 5923
    Gives a new shape to the input Tensor without changing its data.

5924 5925 5926 5927 5928
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5929

5930
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5931

5932 5933 5934 5935
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5936
    2. 0 means the actual dimension value is going to be copied from the
5937 5938 5939 5940
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5941 5942

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5943
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5944
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5945

5946
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5947 5948
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5949 5950
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5951
    dimensions.
C
caoying03 已提交
5952

5953
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5954 5955 5956 5957
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5958 5959

    Args:
5960
        x(variable): The input tensor.
C
caoying03 已提交
5961 5962
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5963 5964 5965 5966 5967
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5968 5969
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
5970 5971 5972
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
5973
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
5974
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5975

5976
    Returns:
G
guosheng 已提交
5977 5978 5979 5980
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5981

X
Xin Pan 已提交
5982 5983 5984
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5985 5986
    Examples:
        .. code-block:: python
G
guosheng 已提交
5987

5988
            data = fluid.layers.data(
5989
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5990
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5991
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5992 5993 5994
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5995
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5996 5997 5998 5999 6000
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6001

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6017
    helper = LayerHelper("reshape2", **locals())
6018 6019
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6020
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6021
    helper.append_op(
6022
        type="reshape2",
X
Xin Pan 已提交
6023
        inputs=inputs,
D
dzhwinter 已提交
6024
        attrs={"shape": shape},
6025 6026
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6027

D
dzhwinter 已提交
6028
    return helper.append_activation(out)
6029

6030

6031
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6032
    """
M
minqiyang 已提交
6033 6034 6035
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6036
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6037

H
haowang101779990 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6059

Y
Yibing Liu 已提交
6060
    Args:
6061
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6062
        axes (list): List of integers, indicating the dimensions to be squeezed.
6063
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6064 6065 6066 6067 6068 6069 6070 6071

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6072
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6073 6074
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6075 6076
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6077
    helper.append_op(
6078
        type="squeeze2",
6079
        inputs={"X": input},
Y
Yibing Liu 已提交
6080
        attrs={"axes": axes},
6081 6082
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6083

6084 6085 6086
    return out


6087
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6088
    """
M
minqiyang 已提交
6089 6090 6091
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6092

M
minqiyang 已提交
6093
    For example:
H
haowang101779990 已提交
6094 6095 6096

    .. code-block:: text

M
minqiyang 已提交
6097
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6098
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6099

Y
Yibing Liu 已提交
6100
    Args:
6101
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6102
        axes (list): List of integers, indicating the dimensions to be inserted.
6103
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6104 6105 6106 6107 6108 6109 6110 6111

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6112
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6113 6114
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6115 6116
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6117
    helper.append_op(
6118
        type="unsqueeze2",
6119
        inputs={"X": input},
Y
Yibing Liu 已提交
6120
        attrs={"axes": axes},
6121 6122
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6123

6124 6125
    return out

6126

Y
yangyaming 已提交
6127
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6128
    """
Y
Yibing Liu 已提交
6129
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6130 6131 6132 6133
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6134
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6135 6136 6137 6138 6139 6140

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6141
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6142 6143 6144
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6145
            target_lod: [4, 2]
Y
yangyaming 已提交
6146 6147

            then we get a 1-level LoDTensor:
6148
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6149 6150 6151 6152 6153 6154
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6155
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6156 6157 6158 6159
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6160
                y.data = [[2, 4]]
Y
yangyaming 已提交
6161 6162 6163
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6164
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6165 6166 6167 6168 6169 6170
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6171
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6172 6173 6174 6175
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6176
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6177 6178 6179 6180
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6181
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6182 6183 6184 6185 6186
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6187
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6188
                           from :attr:`y`.
Y
yangyaming 已提交
6189
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6190
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6191 6192

    Returns:
Y
Yibing Liu 已提交
6193
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6194 6195

    Raises:
Y
Yibing Liu 已提交
6196
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6206
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6232
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6261 6262
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6275 6276 6277
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6291 6292 6293 6294


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6295
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6296
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6297

G
guosheng 已提交
6298 6299 6300 6301
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6324
                         The length of :attr:paddings must be
G
guosheng 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6335

G
guosheng 已提交
6336 6337 6338 6339 6340 6341
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6342
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6343 6344 6345 6346 6347 6348 6349
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6350 6351


C
chengduo 已提交
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6383 6384
		And
            pad_value = -1,
C
chengduo 已提交
6385

T
Tink_Y 已提交
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6421
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6422 6423 6424 6425 6426 6427 6428 6429 6430
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6431 6432 6433 6434 6435 6436 6437
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6438 6439
    called label-smoothing regularization (LSR).

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6463
                              be :math:`(1, class\_num)`.
6464 6465
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6466
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6486
    smooth_label = helper.create_variable_for_type_inference(dtype)
6487 6488 6489 6490 6491 6492 6493
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6494 6495


W
wopeizl 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6532 6533


J
jerrywgz 已提交
6534 6535 6536 6537 6538 6539
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6540 6541
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6558 6559 6560
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6561 6562 6563 6564 6565 6566
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6567
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6608 6609
        .. code-block:: python

W
whs 已提交
6610 6611 6612 6613
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6614
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6615 6616 6617 6618 6619 6620
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6621 6622


6623 6624 6625 6626
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6627
                 resample='BILINEAR',
6628 6629
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6630
                 align_mode=1):
6631
    """
Q
qiaolongfei 已提交
6632
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6633

6634
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6635 6636 6637
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6638

6639
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6640

6641
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6642

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6653
    Align_corners and align_mode are optinal parameters,the calculation method 
6654 6655 6656 6657
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6658
      For scale:
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6671
      if:
6672 6673 6674 6675 6676 6677 6678 6679
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6680
      else:
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6691
      if:
6692 6693 6694 6695 6696 6697 6698 6699 6700
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6701
      else:
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6717
    Args:
6718
        input (Variable): The input tensor of image resize layer,
6719 6720
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6721
        out_shape(list|tuple|Variable|None): Output shape of image resize
6722 6723
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6724
        scale(float|None): The multiplier for the input height or width.
6725 6726 6727
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6728 6729
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6730
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6731
                       currently.
6732
                       Default: 'BILINEAR'
6733 6734 6735
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6736
                                :attr:`out_shape` and :attr:`scale` specifying
6737 6738 6739 6740 6741 6742 6743
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6744 6745
                                constructing stage.
                                Default: None
6746 6747 6748 6749
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6750
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6751 6752
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6753 6754

    Returns:
Q
update  
qiaolongfei 已提交
6755 6756
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6757

6758 6759 6760
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6761
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6762 6763 6764
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6765 6766
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6767

6768 6769 6770
    Examples:
        .. code-block:: python

6771
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6772
    """
6773 6774 6775 6776
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6777 6778
    if resample not in resample_methods:
        raise ValueError(
6779
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6780
        )
6781
    resample_type = resample_methods[resample]
6782 6783 6784 6785 6786 6787

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6788
    if out_shape is None and scale is None:
6789
        raise ValueError("One of out_shape and scale must not be None.")
6790
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6791
    dtype = helper.input_dtype()
6792 6793 6794 6795

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6796 6797 6798
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6799
    if out_shape is not None:
6800 6801 6802 6803
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6804
            inputs['OutSize'] = out_shape
6805 6806 6807 6808 6809 6810 6811 6812
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6813 6814 6815 6816
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6817 6818 6819 6820 6821
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6822
    out = helper.create_variable_for_type_inference(dtype)
6823
    helper.append_op(
6824
        type='{}_interp'.format(resample_type),
6825
        inputs=inputs,
6826
        outputs={"Out": out},
6827 6828 6829 6830 6831 6832 6833
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6834
    return out
F
stash  
fengjiayi 已提交
6835 6836


6837
@templatedoc(op_type="bilinear_interp")
6838 6839 6840 6841
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6842 6843
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6844
                    align_mode=1):
6845
    """
6846 6847
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6848 6849
    in priority order.

6850 6851 6852 6853
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6854 6855
    again in the other direction.

6856
    For details of bilinear interpolation, please refer to Wikipedia:
6857
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6858

T
tink2123 已提交
6859
    Align_corners and align_mode are optinal parameters,the calculation 
6860 6861 6862
    method of interpolation can be selected by them.


T
tink2123 已提交
6863
    Align_corners and align_mode are optinal parameters,the calculation method 
6864 6865 6866 6867
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6868
      For scale:
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6880
      if:
6881 6882 6883 6884 6885 6886 6887 6888 6889
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6890 6891
      else:

6892 6893 6894 6895 6896 6897 6898 6899
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6900 6901 6902 6903
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6904

Y
yuyang18 已提交
6905 6906 6907 6908 6909
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6910 6911 6912
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6913
                                :attr:`out_shape` and :attr:`scale` specifying
6914 6915 6916 6917 6918 6919 6920
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6921 6922
                                constructing stage.
                                Default: None
6923 6924
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
6925 6926 6927

    Returns:
        ${out_comment}.
6928 6929 6930 6931 6932

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6933 6934
    """

6935 6936
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
6937 6938


6939
@templatedoc(op_type="nearest_interp")
6940 6941 6942 6943
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
6944 6945
                   actual_shape=None,
                   align_corners=True):
6946
    """
6947
    Resize input by performing nearest neighbor interpolation in both the
6948 6949
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6950 6951
    out_shape and scale in priority order.

6952 6953
    Example:

T
tink2123 已提交
6954
      For scale:
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6967
      if:
6968 6969 6970 6971 6972 6973 6974 6975
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6976
      else:
6977 6978 6979 6980 6981 6982 6983 6984 6985
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


6986
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6987
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6988 6989 6990 6991 6992

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6993

Y
yuyang18 已提交
6994 6995 6996 6997 6998
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6999 7000 7001
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7002
                                :attr:`out_shape` and :attr:`scale` specifying
7003 7004 7005 7006 7007 7008 7009
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7010 7011
                                constructing stage.
                                Default: None
7012
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7013 7014 7015

    Returns:
        ${out_comment}.
7016 7017 7018 7019 7020

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7021 7022
    """

7023 7024
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7025 7026 7027 7028


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7029 7030 7031
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7032 7033 7034 7035 7036 7037 7038
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7039
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7040

7041
    Returns:
Q
update  
qiaolongfei 已提交
7042
        Variable: The output is a 4-D tensor of the shape
7043
        (num_batches, channls, out_h, out_w).
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7054 7055 7056
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7057 7058 7059
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7060 7061
def gather(input, index):
    """
Q
qiaolongfei 已提交
7062 7063
    **Gather Layer**

7064
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7065 7066 7067 7068
    of X indexed by `index` and concatenate them together.

    .. math::

7069
        Out = X[Index]
W
whs 已提交
7070 7071 7072 7073 7074 7075 7076


    .. code-block:: text


                Given:

7077 7078
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7089
        input (Variable): The source input with rank>=1.
W
whs 已提交
7090 7091 7092 7093 7094 7095
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7096

W
whs 已提交
7097 7098 7099 7100 7101 7102
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7103
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7104 7105 7106 7107 7108 7109 7110 7111
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7143
    out = helper.create_variable_for_type_inference(dtype)
7144 7145 7146 7147 7148 7149 7150 7151 7152
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7162

Q
Qingsheng Li 已提交
7163
    Given the following input:
H
haowang101779990 已提交
7164

Q
Qingsheng Li 已提交
7165
    .. code-block:: text
H
haowang101779990 已提交
7166

Q
Qingsheng Li 已提交
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7179

Q
Qingsheng Li 已提交
7180
    .. code-block:: text
H
haowang101779990 已提交
7181

Q
Qingsheng Li 已提交
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7197
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7208
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7209 7210 7211 7212 7213 7214 7215 7216 7217
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7231

7232 7233 7234
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7235
    """
F
stash  
fengjiayi 已提交
7236
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7237
    dtype = x.dtype
X
Xin Pan 已提交
7238
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7239
    if seed is None:
7240
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7241
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7242
    if isinstance(seed, int):
F
fengjiayi 已提交
7243 7244 7245 7246 7247
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7248 7249 7250 7251
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7252
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7253 7254
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7255 7256
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7257
    return out
W
whs 已提交
7258 7259


7260
def log(x, name=None):
W
wanghaoshuang 已提交
7261 7262 7263 7264 7265
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7266
        Out = \\ln(x)
W
wanghaoshuang 已提交
7267 7268

    Args:
7269
        x (Variable): Input tensor.
7270 7271
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7272 7273 7274 7275 7276 7277 7278 7279

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7280
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7281 7282
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7283
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7284
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7285
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7286 7287 7288
    return out


7289
def relu(x, name=None):
W
wanghaoshuang 已提交
7290 7291
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7292
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7293 7294 7295 7296
    the tensor elementwise.

    .. math::

7297
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7298 7299

    Args:
7300
        x (Variable): The input tensor.
7301 7302
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7303 7304 7305 7306 7307 7308 7309 7310

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7311
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7312 7313
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7314
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7315
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7316 7317
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7318
    return out
7319 7320


C
chengduo 已提交
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7362 7363 7364
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7365 7366 7367 7368
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7369
    .. math::
7370

H
haowang101779990 已提交
7371
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7372

7373
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7374 7375 7376 7377 7378
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7379
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7380
                           Its shape should be the same as input.
7381
        num_classes (int): The possible number of labels.
W
whs 已提交
7382 7383

    Returns:
M
minqiyang 已提交
7384 7385
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7386
                     Three variables:
M
minqiyang 已提交
7387

H
haowang101779990 已提交
7388 7389 7390
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7391 7392 7393 7394

    Examples:

        .. code-block:: python
7395

W
whs 已提交
7396 7397 7398 7399
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7400 7401 7402
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7403 7404
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7405 7406
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7407
        outputs={
W
whs 已提交
7408 7409 7410
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7411 7412 7413
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7482
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7483 7484 7485 7486 7487

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7488
            isinstance(shape, Variable)):
7489 7490 7491 7492 7493
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7494
    out = helper.create_variable_for_type_inference(x.dtype)
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7512 7513


W
whs 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7531

W
whs 已提交
7532
              out_shape = [2, 3, 5, 5]
7533

W
whs 已提交
7534
          Step 1:
7535

W
whs 已提交
7536 7537 7538
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7539

W
whs 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7585
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7586
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7599

W
whs 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7611
            isinstance(out_shape, Variable)):
W
whs 已提交
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7633 7634
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7635

7636 7637
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7638
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7639 7640 7641
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7642

7643 7644
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7645

H
haowang101779990 已提交
7646 7647
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7648 7649
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7650

H
haowang101779990 已提交
7651 7652 7653 7654 7655 7656 7657 7658
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7659 7660 7661

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7696
    out = helper.create_variable_for_type_inference("float32")
7697 7698 7699 7700 7701 7702 7703 7704

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7705 7706


M
minqiyang 已提交
7707 7708
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7709
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7710
    which compares left score and right score passed in.
M
minqiyang 已提交
7711
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7712 7713 7714

    .. math::

H
haowang101779990 已提交
7715
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7716 7717

    Args:
M
minqiyang 已提交
7718
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7719 7720
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7721
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7722 7723
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7724

M
minqiyang 已提交
7725
    Returns:
M
minqiyang 已提交
7726
       Variable: The ranking loss.
H
haowang101779990 已提交
7727

M
minqiyang 已提交
7728
    Raises:
M
minqiyang 已提交
7729
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7730

M
minqiyang 已提交
7731
    Examples:
H
haowang101779990 已提交
7732

M
minqiyang 已提交
7733
        .. code-block:: python
H
haowang101779990 已提交
7734

M
minqiyang 已提交
7735 7736 7737 7738 7739
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7740
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7741 7742 7743 7744 7745 7746
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7747 7748
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7772
        .. code-block:: text
W
whs 已提交
7773

T
Tink_Y 已提交
7774
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7775

T
Tink_Y 已提交
7776 7777
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7778

T
Tink_Y 已提交
7779
	      Case 0:
M
minqiyang 已提交
7780

T
Tink_Y 已提交
7781 7782 7783
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7784

T
Tink_Y 已提交
7785 7786 7787
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7788

T
Tink_Y 已提交
7789
	      Case 1:
M
minqiyang 已提交
7790

T
Tink_Y 已提交
7791 7792
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7793

T
Tink_Y 已提交
7794 7795 7796
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7797

T
Tink_Y 已提交
7798
	      Case 2:
M
minqiyang 已提交
7799

T
Tink_Y 已提交
7800 7801
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7802

T
Tink_Y 已提交
7803 7804 7805
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7806 7807


W
whs 已提交
7808 7809
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7810
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7834
    out = helper.create_variable_for_type_inference(dtype)
7835 7836 7837 7838 7839 7840 7841 7842 7843
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7844
    helper.append_op(
7845
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7846 7847 7848 7849

    return out


7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7862 7863 7864 7865 7866

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7867 7868
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7869 7870
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7871
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7892 7893 7894 7895 7896

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7897 7898
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7899 7900
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7901
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7922 7923 7924 7925 7926

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7927 7928
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7929 7930
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7931
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7953 7954 7955 7956 7957

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7958
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7959
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7960 7961
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7962
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7985 7986 7987 7988 7989

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7990 7991
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7992 7993
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7994
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8016 8017 8018 8019 8020

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8021 8022
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8023 8024
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8025
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8026 8027 8028 8029 8030 8031 8032 8033
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8034 8035 8036 8037
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8038 8039
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8040 8041 8042

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8043
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8044
          weight (alpha).
J
jerrywgz 已提交
8045
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8046 8047 8048
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8049
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8050
          will be named automatically.
J
jerrywgz 已提交
8051 8052 8053 8054 8055 8056 8057 8058

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8059
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8073
        attr=helper.param_attr,
J
jerrywgz 已提交
8074 8075 8076 8077
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8078
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8098
    Returns:
8099
        output(${out_type}): ${out_comment}
8100 8101 8102

    Examples:

8103
    .. code-block:: python
8104

H
haowang101779990 已提交
8105 8106
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8107 8108
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8109
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8128
    Returns:
8129
        output(${out_type}): ${out_comment}
8130 8131 8132 8133 8134

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8135 8136
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8137 8138
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8139
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8157
    Returns:
8158
        output(${out_type}): ${out_comment}
8159 8160 8161 8162 8163

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8164 8165
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8166 8167
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8169 8170 8171 8172 8173 8174 8175 8176
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8177 8178 8179 8180
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8181

H
haowang101779990 已提交
8182
    For Example:
M
minqiyang 已提交
8183

H
haowang101779990 已提交
8184
    .. code-block:: text
8185

H
haowang101779990 已提交
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8207 8208 8209

    Args:
        x (Variable): A tensor of rank >= axis.
8210 8211
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8212 8213 8214 8215 8216 8217 8218 8219
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8220 8221 8222
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8223 8224 8225 8226
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8227
        ValueError: If axis is not in range [0, rank(x)].
8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8244 8245
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8246
    helper.append_op(
8247
        type='flatten2',
8248
        inputs={"X": x},
8249 8250
        outputs={'Out': out,
                 'XShape': x_shape},
8251 8252
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8253 8254


C
chenweihang 已提交
8255
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8256
    """
C
chenweihang 已提交
8257
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8258
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8259 8260
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8261

H
haowang101779990 已提交
8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8279 8280

    Args:
C
chenweihang 已提交
8281 8282 8283
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8295 8296
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8297 8298 8299 8300 8301 8302
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8303
    return out
8304

8305

S
sneaxiy 已提交
8306 8307 8308 8309 8310 8311 8312 8313 8314
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8315

S
sneaxiy 已提交
8316
    .. math::
8317

S
sneaxiy 已提交
8318 8319 8320
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8321
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8322 8323 8324 8325
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8326 8327 8328
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8329 8330
    Returns:
        Variable: The output sequence mask.
8331

S
sneaxiy 已提交
8332 8333
    """

Q
qingqing01 已提交
8334
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8335
    if name is None:
X
Xin Pan 已提交
8336
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8337
    else:
X
Xin Pan 已提交
8338
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8339

Q
qingqing01 已提交
8340 8341 8342
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8343 8344
        outputs={'Y': out},
        attrs={
8345
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8346 8347 8348
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8349 8350


X
Xin Pan 已提交
8351
def stack(x, axis=0):
S
sneaxiy 已提交
8352 8353 8354 8355
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8356 8357 8358 8359 8360 8361 8362

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8363
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8364
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8365

C
chengduozh 已提交
8366 8367
    For Example:

C
chengduozh 已提交
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8406
    Args:
8407
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8408
        axis (int|None): The axis along which all inputs are stacked.
8409

S
sneaxiy 已提交
8410 8411
    Returns:
        Variable: The stacked variable.
8412

S
sneaxiy 已提交
8413 8414
    """

X
Xin Pan 已提交
8415 8416 8417 8418 8419 8420
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8421
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8422
    helper.append_op(
S
sneaxiy 已提交
8423 8424
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8425

X
Xin Pan 已提交
8426
    return out
D
dzhwinter 已提交
8427 8428 8429 8430 8431 8432 8433


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8434

D
dzhwinter 已提交
8435 8436 8437
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8438
    raised.
D
dzhwinter 已提交
8439 8440

    Args:
M
minqiyang 已提交
8441
        x (Variable): Input variable.
D
dzhwinter 已提交
8442 8443
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8444

D
dzhwinter 已提交
8445 8446
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8447

D
dzhwinter 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8458
    for _ in range(num):
X
Xin Pan 已提交
8459
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8460 8461 8462 8463 8464 8465 8466 8467

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8480

W
whs 已提交
8481 8482 8483 8484
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8485

W
whs 已提交
8486
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8487

W
whs 已提交
8488
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8489

W
whs 已提交
8490 8491 8492 8493
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8494

W
whs 已提交
8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8511
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8512 8513 8514 8515 8516 8517
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8518 8519


G
fix  
gongweibao 已提交
8520 8521 8522
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8523
@templatedoc()
G
fix  
gongweibao 已提交
8524 8525 8526 8527 8528 8529 8530 8531 8532
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8533
    ${comment}
G
fix  
gongweibao 已提交
8534 8535

    Args:
G
gongweibao 已提交
8536 8537 8538
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8539
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8540 8541 8542
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8543 8544
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8545
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8546

8547 8548 8549 8550 8551
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8552 8553 8554
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8555
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8572 8573


G
gongweibao 已提交
8574
@templatedoc()
X
Xin Pan 已提交
8575
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8576
    """
G
gongweibao 已提交
8577
    ${comment}
G
fix  
gongweibao 已提交
8578 8579

    Args:
G
gongweibao 已提交
8580 8581 8582 8583
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8584 8585 8586
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8587
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8588

8589 8590 8591 8592
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8593 8594 8595
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8596
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8607
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8608 8609 8610 8611 8612
        })

    return out


G
gongweibao 已提交
8613
@templatedoc()
G
fix  
gongweibao 已提交
8614
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8615
    """
G
gongweibao 已提交
8616
    ${comment}
G
fix  
gongweibao 已提交
8617 8618

    Args:
G
gongweibao 已提交
8619 8620 8621 8622
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8623
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8624 8625

    Returns:
G
gongweibao 已提交
8626
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8627

8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8638 8639 8640
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8641
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8653
@templatedoc()
G
fix  
gongweibao 已提交
8654 8655 8656 8657 8658 8659 8660 8661 8662
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8663
    ${comment}
G
fix  
gongweibao 已提交
8664 8665

    Args:
G
gongweibao 已提交
8666 8667
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8668
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8669 8670 8671 8672
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8673
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8674 8675

    Returns:
G
gongweibao 已提交
8676
        out (Variable): ${out_comment}
8677 8678 8679 8680 8681 8682 8683 8684

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8685 8686 8687
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8688
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8707
@templatedoc()
X
Xin Pan 已提交
8708
def sum(x):
G
fix  
gongweibao 已提交
8709
    """
G
gongweibao 已提交
8710
    ${comment}
G
fix  
gongweibao 已提交
8711 8712

    Args:
G
gongweibao 已提交
8713
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8714 8715

    Returns:
G
gongweibao 已提交
8716
        out (Variable): ${out_comment}
8717 8718 8719 8720 8721 8722

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8723 8724 8725
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8726 8727
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8728 8729 8730 8731
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8732
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8733 8734 8735 8736

    return out


G
gongweibao 已提交
8737
@templatedoc()
G
fix  
gongweibao 已提交
8738 8739
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8740
    ${comment}
G
fix  
gongweibao 已提交
8741 8742

    Args:
G
gongweibao 已提交
8743 8744 8745 8746
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8747 8748

    Returns:
G
gongweibao 已提交
8749
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8750

8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8762 8763 8764
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8765 8766
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
8780 8781
    **Shape Layer**

C
fix doc  
chengduozh 已提交
8782
    Get the shape of the input.
G
fix  
gongweibao 已提交
8783 8784

    Args:
C
chengduozh 已提交
8785
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
8786 8787

    Returns:
C
fix doc  
chengduozh 已提交
8788
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
8789

8790 8791 8792 8793 8794 8795
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8796 8797 8798
    """

    helper = LayerHelper('shape', **locals())
8799
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8800
    helper.append_op(
G
fix  
gongweibao 已提交
8801
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8802 8803

    return out
G
merge  
gongweibao 已提交
8804 8805


S
sneaxiy 已提交
8806 8807 8808 8809 8810 8811 8812 8813
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8814 8815
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8816
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8817 8818 8819
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8820

S
sneaxiy 已提交
8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8832
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8833 8834 8835 8836 8837 8838 8839 8840
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8841
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8842
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8843 8844 8845 8846 8847 8848

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8849
    if name is None:
X
Xin Pan 已提交
8850
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8851 8852 8853
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8854 8855 8856 8857 8858 8859 8860 8861 8862 8863

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8864
    return helper.append_activation(out)
S
sneaxiy 已提交
8865 8866


X
Xin Pan 已提交
8867
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8868 8869 8870
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8871
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8872 8873 8874
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8875
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8876 8877 8878
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8879
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8880 8881 8882
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8883
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8884 8885 8886
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8887
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8888 8889 8890
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8891
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8903 8904
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8905
        ])
M
minqiyang 已提交
8906 8907


8908
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8909 8910
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8911 8912
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8913 8914 8915

    if out is None:
        if name is None:
X
Xin Pan 已提交
8916
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8932
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8944 8945 8946 8947 8948 8949 8950 8951 8952

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8953 8954 8955 8956 8957 8958 8959
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8960
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8972 8973 8974 8975 8976 8977 8978 8979 8980

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8981 8982 8983 8984 8985 8986 8987
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8988
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9000 9001 9002 9003 9004 9005 9006 9007 9008

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9009 9010 9011 9012 9013 9014 9015
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9016
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9027 9028 9029 9030 9031 9032 9033

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9034 9035 9036 9037
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9053 9054 9055 9056 9057 9058 9059

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9060 9061 9062 9063 9064
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9065 9066 9067 9068
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9092 9093 9094 9095 9096 9097 9098

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9099 9100 9101 9102 9103
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9104 9105 9106 9107
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9108 9109 9110 9111 9112 9113 9114 9115

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9134
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9135 9136 9137 9138 9139 9140 9141 9142 9143 9144
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9187
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9188 9189 9190 9191 9192 9193 9194 9195 9196
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9197 9198
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9199 9200 9201 9202 9203 9204
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9205 9206 9207
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9208 9209
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9210 9211 9212 9213 9214 9215
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9216
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9217
        name(basestring|None): Name of the output.
9218 9219
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9220 9221 9222

    Returns:
        out(${out_type}): ${out_comment}
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9237 9238 9239 9240 9241
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9242
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9243 9244 9245 9246 9247 9248 9249 9250
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9251 9252
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9273
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9274 9275 9276 9277 9278 9279 9280 9281 9282 9283
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9284 9285


J
JiabinYang 已提交
9286
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9287
    """
J
JiabinYang 已提交
9288
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9289 9290 9291

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9292
    The attr blocksize indicates the input block size.
9293 9294

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9295
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9296 9297

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9298
    (but keeping all data)
J
JiabinYang 已提交
9299

J
JiabinYang 已提交
9300
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9301
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9302 9303 9304 9305 9306
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9307
    Args:
J
JiabinYang 已提交
9308
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9309
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9310 9311

    Returns:
J
JiabinYang 已提交
9312
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9313 9314

    Raises:
J
JiabinYang 已提交
9315
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9316 9317 9318 9319 9320 9321

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9322
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9323
                x=data, blocksize=2)
J
JiabinYang 已提交
9324 9325
    """

J
JiabinYang 已提交
9326
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9327

J
JiabinYang 已提交
9328 9329
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9330 9331

    if name is None:
J
JiabinYang 已提交
9332 9333
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9334 9335 9336 9337 9338
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9339
        type="space_to_depth",
J
JiabinYang 已提交
9340
        inputs={"X": x},
J
JiabinYang 已提交
9341
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9342
        outputs={"Out": out})
J
JiabinYang 已提交
9343 9344
    return out

J
JiabinYang 已提交
9345

S
sneaxiy 已提交
9346 9347
@templatedoc()
def sequence_reverse(x, name=None):
9348
    """
S
sneaxiy 已提交
9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9360
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9361 9362 9363 9364 9365 9366 9367 9368 9369 9370
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9371 9372


9373 9374 9375 9376 9377 9378
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9379

9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9399
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9412 9413


B
barrierye 已提交
9414
def similarity_focus(input, axis, indexes, name=None):
9415
    """
B
barrierye 已提交
9416
    SimilarityFocus Operator
B
barrierye 已提交
9417 9418

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9419

9420 9421 9422
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9423
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9424 9425 9426 9427 9428 9429 9430
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9431
       each index.
B
barrierye 已提交
9432 9433 9434 9435
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9485
    Args:
9486
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9487
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9488
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9489
            1, 2 or 3.
B
barrierye 已提交
9490
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9491 9492

    Returns:
H
haowang101779990 已提交
9493 9494
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9495

B
barrierye 已提交
9496 9497
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9498

B
barrierye 已提交
9499
            data = fluid.layers.data(
B
barrierye 已提交
9500 9501
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9502

B
barrierye 已提交
9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9515 9516 9517 9518 9519
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9520 9521 9522 9523 9524 9525 9526
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9527 9528


M
minqiyang 已提交
9529 9530
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9531 9532
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9533 9534
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9573
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9574
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9575 9576 9577 9578 9579 9580

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9581

M
minqiyang 已提交
9582 9583 9584
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9585 9586
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9587 9588
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9589 9590 9591 9592 9593 9594 9595
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9596 9597


D
dengkaipeng 已提交
9598
@templatedoc()
9599 9600
def grid_sampler(x, grid, name=None):
    """
9601
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9602
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9603 9604 9605 9606
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9607
    interpolation value of 4 nearest corner points.
9608

H
haowang101779990 已提交
9609
    .. code-block:: text
9610

H
haowang101779990 已提交
9611 9612
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9613

H
haowang101779990 已提交
9614 9615
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9616

H
haowang101779990 已提交
9617 9618 9619
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9620

H
haowang101779990 已提交
9621 9622 9623 9624 9625 9626 9627 9628 9629
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9630

H
haowang101779990 已提交
9631 9632 9633 9634
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9635

H
haowang101779990 已提交
9636 9637 9638 9639
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9640

H
haowang101779990 已提交
9641 9642 9643 9644
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9645

H
haowang101779990 已提交
9646 9647
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9648 9649

    Args:
9650 9651 9652
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9653 9654

    Returns:
H
haowang101779990 已提交
9655
        Variable: Output of shape [N, C, H, W] data samples input X
9656 9657
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9658 9659 9660 9661 9662 9663 9664 9665
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9666

D
dengkaipeng 已提交
9667 9668 9669 9670 9671 9672 9673 9674 9675
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9676
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9677 9678
    ipts = {'X': x, 'Grid': grid}

9679
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9680 9681 9682
    return out


G
gmcather 已提交
9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9749
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9771 9772 9773 9774
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9775
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9776 9777
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9778
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9779 9780

    .. math::
H
haowang101779990 已提交
9781 9782 9783
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9784 9785

    Where:
H
haowang101779990 已提交
9786 9787
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9802

G
gmcather 已提交
9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9819 9820 9821 9822 9823 9824 9825 9826 9827 9828


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9829
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9830

Q
Qiao Longfei 已提交
9831
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9832 9833 9834
    For example:

    .. math::
H
haowang101779990 已提交
9835
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9836

Q
Qiao Longfei 已提交
9837
    In this formula:
9838 9839
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9840
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9841
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9842 9843 9844
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9845 9846
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9847 9848 9849
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9850
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9851
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9852
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9853 9854 9855 9856
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9857
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9858 9859 9860 9861

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9862
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9863 9864
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9865
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9866 9867 9868 9869

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9870
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9911 9912


S
shippingwang 已提交
9913
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
9914 9915
    """
    **Shuffle Channel Operator**
9916

S
shippingwang 已提交
9917 9918 9919 9920 9921 9922
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
9923
    
S
shippingwang 已提交
9924
    .. code-block:: text
9925

S
shippingwang 已提交
9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
9954
    Args: 
S
shippingwang 已提交
9955 9956
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
9957 9958

    Returns:
S
shippingwang 已提交
9959 9960
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
9961 9962

    Raises:
S
shippingwang 已提交
9963
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9964 9965 9966

    Examples:
        .. code-block:: python
9967 9968

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
9969
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
9970 9971 9972
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
9973
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
9974 9975 9976 9977 9978 9979 9980 9981 9982

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9983
    return out
S
Add  
shippingwang 已提交
9984 9985


S
sneaxiy 已提交
9986
class PyFuncRegistry(object):
S
sneaxiy 已提交
9987 9988 9989
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9990
        if func is None or not callable(func):
S
sneaxiy 已提交
9991 9992 9993
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9994
        # find named args using reflection
S
sneaxiy 已提交
9995 9996 9997 9998 9999 10000 10001
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10002 10003 10004
        '''
        Why record self here?

M
minqiyang 已提交
10005 10006
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10007
           to find the registered function corresponding
M
minqiyang 已提交
10008
           to :code:`idx`.
S
sneaxiy 已提交
10009

M
minqiyang 已提交
10010 10011
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10012
           whose reference count is 1 would cause
M
minqiyang 已提交
10013
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10014 10015
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10016
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10031 10032 10033 10034 10035 10036 10037 10038 10039
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10040

S
sneaxiy 已提交
10041 10042
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10043 10044

        ret = []
S
sneaxiy 已提交
10045 10046 10047
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10048 10049
                continue

S
sneaxiy 已提交
10050 10051
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10052

S
sneaxiy 已提交
10053 10054 10055
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10056

S
sneaxiy 已提交
10057
        return tuple(ret)
S
sneaxiy 已提交
10058 10059


S
sneaxiy 已提交
10060 10061 10062 10063
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10064

S
sneaxiy 已提交
10065 10066 10067 10068 10069 10070 10071 10072
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10073
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10074

S
sneaxiy 已提交
10075 10076
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10077 10078 10079 10080
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10081
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10082
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10083 10084
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10085 10086 10087 10088 10089
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10090
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10091
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10092
                                       None means no backward. Default None.
S
sneaxiy 已提交
10093
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10094
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10095 10096
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10097
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10098 10099 10100

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10101 10102

    Examples:
M
minqiyang 已提交
10103

S
sneaxiy 已提交
10104 10105 10106 10107 10108
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10109
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10110 10111
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10112
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10113 10114 10115
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10116
        >>>
S
sneaxiy 已提交
10117 10118 10119 10120 10121
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10122
        >>>     print(x)
S
sneaxiy 已提交
10123 10124 10125 10126 10127 10128
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10129
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10130 10131
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10132 10133
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10134 10135 10136 10137 10138 10139 10140 10141
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10142
    """
S
sneaxiy 已提交
10143
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10144 10145 10146
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10147
        x = [x]
S
sneaxiy 已提交
10148 10149
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10150

S
sneaxiy 已提交
10151 10152 10153
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10154
        out_list = [out]
S
sneaxiy 已提交
10155
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10156
        out_list = out
S
sneaxiy 已提交
10157 10158 10159
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10160

S
sneaxiy 已提交
10161 10162
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10163
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10164 10165

    for each_out in out_list:
S
sneaxiy 已提交
10166 10167
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10168 10169
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10170

S
sneaxiy 已提交
10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10186 10187 10188 10189

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10190 10191
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10192 10193 10194
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10195
        })
S
sneaxiy 已提交
10196
    return out
S
sneaxiy 已提交
10197 10198 10199


# For debug usage
S
sneaxiy 已提交
10200 10201 10202 10203
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10256

M
minqiyang 已提交
10257

M
minqiyang 已提交
10258
def huber_loss(input, label, delta):
10259
    """
M
minqiyang 已提交
10260 10261 10262
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10263 10264 10265 10266

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10267
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10268 10269 10270 10271

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10272
        huber\_loss = 0.5 * (label - input) * (label - input)
10273 10274 10275 10276 10277 10278 10279


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10280
        delta (float): The parameter of huber loss, which controls
10281 10282 10283
                       the range of outliers

    Returns:
M
minqiyang 已提交
10284
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10285 10286 10287 10288 10289

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10290
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10291
    """
M
minqiyang 已提交
10292
    helper = LayerHelper('huber_loss', **locals())
10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)