nn.py 285.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
157
    'space_to_depth',
W
whs 已提交
158
    'affine_grid',
S
sneaxiy 已提交
159
    'sequence_reverse',
160
    'affine_channel',
M
minqiyang 已提交
161
    'hash',
D
dengkaipeng 已提交
162
    'grid_sampler',
G
gmcather 已提交
163 164
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
165 166 167 168 169 170 171 172 173
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
174
       is_test=False,
175
       name=None):
Y
Yu Yang 已提交
176
    """
177
    **Fully Connected Layer**
Y
Yu Yang 已提交
178

179 180 181 182 183 184 185 186
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
187
    to the output as well.
C
caoying03 已提交
188

C
caoying03 已提交
189
    This process can be formulated as follows:
190 191 192

    .. math::

193
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
194 195 196

    In the above equation:

C
caoying03 已提交
197 198 199 200
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
201
    * :math:`Act`: The activation function.
C
caoying03 已提交
202
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
203 204

    Args:
R
ranqiu 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
220 221
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
222
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
223
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
224
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
225

226
    Returns:
F
fengjiayi 已提交
227
        Variable: The transformation result.
228 229

    Raises:
C
caoying03 已提交
230
        ValueError: If rank of the input tensor is less than 2.
231 232 233 234

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
235
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
236
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
237
    """
C
caoying03 已提交
238

C
caoying03 已提交
239
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
240 241 242 243

    dtype = helper.input_dtype()

    mul_results = []
244 245
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
246 247 248
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
249

Y
Yu Yang 已提交
250
        w = helper.create_parameter(
251
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
252
        tmp = helper.create_variable_for_type_inference(dtype)
253
        helper.append_op(
254 255 256
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
257
            outputs={"Out": tmp},
M
mozga-intel 已提交
258 259
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
260 261 262 263
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
264
    else:
X
Xin Pan 已提交
265
        pre_bias = helper.create_variable_for_type_inference(dtype)
266
        helper.append_op(
267 268 269
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
270
            attrs={"use_mkldnn": False})
271 272 273 274
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
275 276


277 278 279
def embedding(input,
              size,
              is_sparse=False,
280
              is_distributed=False,
281 282 283
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
284
    """
285 286
    **Embedding Layer**

287
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
288 289
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
290 291 292

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
293 294

    Args:
295 296 297 298 299
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
300
        is_distributed(bool): Whether to run lookup table from remote parameter server.
301 302
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
303
            with zeros whenever lookup encounters it in :attr:`input`. If
304
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
305 306
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
307
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
308

309 310 311
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
312

313 314
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
315

C
chengduoZH 已提交
316
          dict_size = len(dataset.ids)
317
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
318
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
319 320 321 322 323
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
    tmp = helper.create_variable_for_type_inference(dtype)
325 326
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
327 328 329 330 331
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
332 333 334 335 336
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
337 338 339
    return tmp


Y
yi.wu 已提交
340
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
341 342
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
343 344
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
345 346 347 348 349 350 351
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
352 353
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
354
    """
Y
yi.wu 已提交
355
    ${comment}
Y
Yibing Liu 已提交
356 357

    Args:
Y
yi.wu 已提交
358 359
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
360 361 362 363 364 365
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
366
        param_attr(ParamAttr|None): The parameter attribute for the learnable
367
                               hidden-hidden weights.
Y
Yibing Liu 已提交
368 369 370

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
371 372
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
373 374 375 376 377

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
378
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
379 380 381
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
382

383
                              1. `use_peepholes = False`
Y
yi.wu 已提交
384 385
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
386
                              2. `use_peepholes = True`
Y
yi.wu 已提交
387
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
388
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
389
                                 - The shape is (1 x 7D).
C
chengduo 已提交
390 391 392 393 394

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
395 396 397 398 399 400 401 402
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
403 404

    Returns:
Y
Yibing Liu 已提交
405 406
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
407

Y
Yibing Liu 已提交
408
    Examples:
Y
Yibing Liu 已提交
409 410
        .. code-block:: python

Y
Yibing Liu 已提交
411 412
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
413
                                           bias_attr=False)
Y
Yibing Liu 已提交
414 415
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
416
    """
C
chengduo 已提交
417
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
418
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
419
    size = size // 4
Y
Yu Yang 已提交
420 421 422 423 424 425 426 427
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
428 429 430 431
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
432 433 434 435 436 437 438 439 440 441
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
442 443 444

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
445
        inputs=inputs,
Y
Yu Yang 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
462 463 464 465 466 467 468 469 470 471 472
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
473 474
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
475 476 477
    """
    **Dynamic LSTMP Layer**

478 479 480 481 482 483
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
484 485 486 487 488

    The formula is as follows:

    .. math::

489
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
490

491
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
492

493
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
494

495
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
496

497
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
498

499
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
500

501
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
502

Y
Yibing Liu 已提交
503 504 505 506 507 508
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
509
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
510
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
511
          bias vector).
Y
Yibing Liu 已提交
512 513 514
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
515
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
516
    * :math:`h`: The hidden state.
517
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
518 519
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
520
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
521
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
522
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
523 524
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
525 526 527 528

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
529

Y
Yibing Liu 已提交
530 531 532 533 534 535 536 537 538 539 540 541
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
542
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
543 544
                               hidden-hidden weight and projection weight.

545 546
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
547 548
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
549 550
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
551
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
552 553 554 555 556

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
557
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
558 559 560 561 562 563
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
564
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
565 566 567
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
568
                                - The shape is (1 x 7D).
C
chengduo 已提交
569 570 571 572 573

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
574 575 576 577 578 579 580 581 582
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
583
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
584 585
                              default "tanh".
        proj_activation(str): The activation for projection output.
586
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
587 588
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
589 590
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
591 592

    Returns:
593 594 595 596
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
597 598

    Examples:
599

Y
Yibing Liu 已提交
600 601
        .. code-block:: python

602 603 604 605
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
606
            hidden_dim, proj_dim = 512, 256
607
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
608
                                     act=None, bias_attr=None)
609 610 611
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
612 613 614 615
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
616
    """
617

C
chengduo 已提交
618
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
619
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
620
    size = size // 4
Y
Yibing Liu 已提交
621 622 623 624 625 626 627 628 629 630
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
631 632 633 634 635 636
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
665 666 667 668 669 670 671 672 673
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
674
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
675

676
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
677
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
678

G
guosheng 已提交
679 680 681 682 683 684 685 686 687
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
688

G
guosheng 已提交
689
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
690

G
guosheng 已提交
691
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
692 693
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
694 695 696 697
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
698
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
699 700

    Args:
701 702
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
703
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
704
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
705 706
            is the hidden size.
        size(int): The dimension of the gru cell.
707
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
708 709
            hidden-hidden weight matrix. Note:

710
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
711
              :math:`D` is the hidden size.
712
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
713
              The first part are weights of the update gate and reset gate with
714
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
715
              candidate hidden state with shape :math:`(D \\times D)`.
716 717 718 719 720 721 722 723 724 725 726 727

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
728
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
729 730 731
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
732
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
733
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
734 735 736 737
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
738 739

    Returns:
G
guosheng 已提交
740
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
741
            and sequence length is the same with the input.
742

G
guosheng 已提交
743
    Examples:
744

G
guosheng 已提交
745 746
        .. code-block:: python

747 748 749 750
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
751
            hidden_dim = 512
752
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
753 754 755 756 757 758 759 760 761 762
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
763
    batch_size = input.shape[0]
G
guosheng 已提交
764
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
765
    if h_0:
G
guosheng 已提交
766
        assert h_0.shape == (
Y
Yancey 已提交
767 768 769
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
770

X
Xin Pan 已提交
771 772 773 774
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
793 794 795
def gru_unit(input,
             hidden,
             size,
796 797
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
798
             activation='tanh',
799
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
800
    """
801
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
802

803 804
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
805

806
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
807

808
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
809

810
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
811 812

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
813 814 815
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
816 817
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

818 819
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
820 821 822
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
823 824 825

    Args:
        input (Variable): The fc transformed input value of current step.
826
        hidden (Variable): The hidden value of gru unit from previous step.
827
        size (integer): The input dimension value.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
849 850 851 852
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
853

854 855 856 857 858 859
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
860

861
             # assuming we have x_t_data and prev_hidden of size=10
862
             x_t = fluid.layers.fc(input=x_t_data, size=30)
863 864
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
865 866 867 868 869 870 871 872 873 874 875 876

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
877
    size = size // 3
Y
Yu Yang 已提交
878 879

    # create weight
880 881
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
882

X
Xin Pan 已提交
883 884 885
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
886
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
887
    # create bias
888
    if helper.bias_attr:
Y
Yu Yang 已提交
889 890 891
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
892
        inputs['Bias'] = bias
Y
Yu Yang 已提交
893 894 895

    helper.append_op(
        type='gru_unit',
896
        inputs=inputs,
Y
Yu Yang 已提交
897 898 899 900 901 902
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
903 904
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
905 906 907 908 909
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
910
@templatedoc()
911
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
912 913 914 915 916 917 918
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
919
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
920 921 922 923
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
924 925 926
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
927 928

    """
Y
Yu Yang 已提交
929 930 931 932 933 934
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
935 936 937 938 939 940 941 942
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
958
@templatedoc()
959
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
960 961 962 963 964
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
965

Y
yuyang18 已提交
966
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
967

Y
yuyang18 已提交
968 969 970
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
971
        Variable: ${viterbi_path_comment}
972

Y
yi.wu 已提交
973 974 975 976 977
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
978
    """
Y
Yu Yang 已提交
979 980
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
981 982
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
983 984 985 986 987 988 989 990 991 992
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
993
@templatedoc()
F
fengjiayi 已提交
994
def cos_sim(X, Y):
Y
Yu Yang 已提交
995
    """
Y
yi.wu 已提交
996 997 998
    ${comment}

    Args:
999 1000
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1001

Y
yi.wu 已提交
1002
    Returns:
1003
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1004
    """
F
fengjiayi 已提交
1005
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1006 1007 1008
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1019 1020 1021 1022 1023
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1024
            dropout_implementation="downgrade_in_infer"):
1025 1026 1027 1028 1029
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1030
    training. The dropout operator randomly sets (according to the given dropout
1031 1032 1033 1034
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1035 1036
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1037 1038 1039 1040 1041 1042 1043
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1058

1059 1060

    Returns:
1061
        Variable: A tensor variable is the shape with `x`.
1062 1063

    Examples:
1064

1065 1066
        .. code-block:: python

1067 1068
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1069 1070
    """

F
fengjiayi 已提交
1071
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1072 1073 1074
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1075 1076 1077 1078

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1079 1080 1081 1082 1083
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1084 1085 1086 1087
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1088 1089
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1090
        })
1091 1092 1093
    return out


1094
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1095
    """
Y
Yibing Liu 已提交
1096 1097
    **Cross Entropy Layer**

1098 1099 1100
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1101 1102

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1103
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1104

Y
Yibing Liu 已提交
1105
        .. math::
Y
yangyaming 已提交
1106

Y
Yibing Liu 已提交
1107 1108 1109
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1110 1111
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1112 1113 1114 1115 1116

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1117
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1118 1119 1120
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1121 1122
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1123
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1124

Y
Yibing Liu 已提交
1125
    Args:
Y
yangyaming 已提交
1126
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1127 1128 1129 1130
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1131
        label (Variable|list): the ground truth which is a 2-D tensor. When
1132 1133 1134 1135
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1136
        soft_label (bool): a flag indicating whether to
1137
                                           interpretate the given labels as soft
1138
                                           labels. Default: `False`.
M
minqiyang 已提交
1139 1140
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1141
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1142 1143 1144 1145 1146

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1147 1148 1149 1150 1151
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1152 1153 1154 1155 1156 1157

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1158
    """
F
fengjiayi 已提交
1159
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1160
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1161 1162 1163 1164 1165
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1166 1167
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1168 1169 1170
    return out


F
fengjiayi 已提交
1171
def square_error_cost(input, label):
Y
Yu Yang 已提交
1172
    """
1173 1174
    **Square error cost layer**

1175 1176
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1191 1192
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1193 1194

    Returns:
G
guosheng 已提交
1195
        Variable: The tensor variable storing the element-wise squared error \
1196
                  difference of input and label.
1197 1198 1199 1200 1201 1202 1203 1204

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1205
    """
F
fengjiayi 已提交
1206
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1207
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1208 1209 1210 1211 1212 1213
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1214
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1215
    helper.append_op(
F
fengjiayi 已提交
1216 1217
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1218 1219 1220
    return square_out


Y
yi.wu 已提交
1221
@templatedoc()
Y
Yu Yang 已提交
1222 1223 1224 1225
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1226
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1227
    """
Y
yi.wu 已提交
1228
    **Chunk Evaluator**
Y
yi.wu 已提交
1229

Y
yangyaming 已提交
1230
    This function computes and outputs the precision, recall and
1231
    F1-score of chunk detection.
Y
yi.wu 已提交
1232

Y
yi.wu 已提交
1233 1234 1235 1236 1237 1238 1239 1240
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1241

Y
yi.wu 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1267

Y
yi.wu 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1292
    Args:
1293 1294 1295 1296 1297
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1298

Y
yi.wu 已提交
1299
    Returns:
Y
update  
yi.wu 已提交
1300 1301 1302
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1303

Y
yi.wu 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1316
    """
F
fengjiayi 已提交
1317
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1318 1319

    # prepare output
X
Xin Pan 已提交
1320 1321 1322 1323 1324 1325 1326
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1327 1328 1329 1330 1331 1332 1333 1334

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1335 1336 1337 1338
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1339 1340 1341
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1342 1343
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1344
        })
1345 1346
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1347 1348


1349
@templatedoc()
Y
Yu Yang 已提交
1350 1351 1352 1353 1354 1355 1356
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1357 1358
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1359 1360 1361 1362
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1363 1364 1365 1366 1367 1368 1369

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1383

1384 1385
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391 1392
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1393
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1404
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1405 1406 1407 1408 1409 1410
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1411
def sequence_softmax(input, use_cudnn=False, name=None):
1412 1413 1414
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1415
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1432 1433 1434
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1447 1448
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1449
    softmax_out = helper.create_variable_for_type_inference(dtype)
1450 1451 1452 1453 1454 1455 1456 1457
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1458
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1459
    """
1460
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1461
    has the same shape as the input.
Q
qiaolongfei 已提交
1462

1463 1464 1465 1466 1467 1468
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1469
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1470 1471 1472 1473 1474 1475 1476

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1477
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1478 1479 1480 1481 1482 1483 1484 1485

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1486 1487 1488
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1501 1502
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1503
    softmax_out = helper.create_variable_for_type_inference(dtype)
1504 1505 1506 1507 1508 1509 1510 1511
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1512 1513 1514
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1515 1516
           stride=1,
           padding=0,
1517
           dilation=1,
Y
Yu Yang 已提交
1518 1519 1520
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1521
           use_cudnn=True,
1522 1523
           act=None,
           name=None):
Y
Yu Yang 已提交
1524
    """
C
chengduoZH 已提交
1525
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1526 1527
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1528
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1529 1530 1531 1532 1533 1534 1535
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1536 1537 1538
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1539

1540
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1541

C
chengduoZH 已提交
1542 1543
    .. math::

C
refine  
chengduoZH 已提交
1544
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1545

T
tensor-tang 已提交
1546
    Where:
C
chengduoZH 已提交
1547

1548 1549 1550 1551 1552
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1553
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1554 1555 1556

    Example:

1557 1558
        - Input:

W
weixing02 已提交
1559
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1560

W
weixing02 已提交
1561
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1562

1563
        - Output:
T
tensor-tang 已提交
1564

W
weixing02 已提交
1565
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1566

C
chengduoZH 已提交
1567
        Where
1568 1569

        .. math::
C
chengduoZH 已提交
1570

W
weixing02 已提交
1571 1572
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1573 1574

    Args:
1575
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1576
        num_filters(int): The number of filter. It is as same as the output
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1605 1606
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1607 1608
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1609
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1610
            will be named automatically. Default: None
C
chengduoZH 已提交
1611 1612

    Returns:
G
guosheng 已提交
1613
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1614 1615
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1616
    Raises:
1617 1618
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1619

C
chengduoZH 已提交
1620 1621 1622
    Examples:
        .. code-block:: python

1623 1624
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1625 1626 1627
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1628
    assert param_attr is not False, "param_attr should not be False here."
1629
    l_type = 'conv2d'
X
xzl 已提交
1630 1631
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1632
        l_type = 'depthwise_conv2d'
1633 1634 1635 1636

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1637 1638 1639 1640 1641
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1642
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1643

C
chengduoZH 已提交
1644 1645 1646
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1647
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1648

C
chengduoZH 已提交
1649 1650
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1651 1652

    input_shape = input.shape
M
minqiyang 已提交
1653
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1654 1655

    def _get_default_param_initializer():
C
chengduo 已提交
1656 1657
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1658 1659 1660 1661 1662 1663 1664 1665
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1666
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1667 1668

    helper.append_op(
1669
        type=l_type,
Y
Yu Yang 已提交
1670 1671 1672 1673 1674
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1675 1676 1677
        attrs={
            'strides': stride,
            'paddings': padding,
1678
            'dilations': dilation,
C
chengduoZH 已提交
1679
            'groups': groups,
1680
            'use_cudnn': use_cudnn,
1681
            'use_mkldnn': False
C
chengduoZH 已提交
1682
        })
Y
Yu Yang 已提交
1683 1684 1685 1686 1687 1688

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1706 1707 1708 1709 1710 1711
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1721 1722
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1723 1724 1725
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1726
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1752
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1753 1754
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1755
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1756 1757
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1758
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1759 1760
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1761
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1762 1763 1764 1765 1766 1767
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1778 1779
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1780 1781
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1782
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1783
            will be named automatically. Default: None.
C
chengduoZH 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1796 1797
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1798 1799 1800
    """

    l_type = 'conv3d'
C
chengduo 已提交
1801
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1812
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1826 1827 1828
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1829 1830 1831 1832 1833 1834 1835 1836
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1837
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1852
            'use_mkldnn': False
C
chengduoZH 已提交
1853 1854
        })

1855
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1856 1857 1858 1859

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1860
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1861
    """
Y
yangyaming 已提交
1862 1863 1864
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1876
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1877 1878 1879 1880 1881
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1882
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1883 1884 1885 1886 1887 1888 1889

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1890 1891
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1892

L
Luo Tao 已提交
1893 1894
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1895
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1896
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1897
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1898 1899 1900 1901 1902 1903 1904

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1905

Y
yangyaming 已提交
1906
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1907 1908 1909 1910 1911
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1912 1913
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1914
    """
F
fengjiayi 已提交
1915
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1916
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1917 1918
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1919 1920 1921 1922 1923 1924

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1925 1926
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1927

Y
yangyaming 已提交
1928 1929 1930 1931 1932
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1933 1934 1935
    return pool_out


C
add doc  
chengduoZH 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1955
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1956 1957 1958 1959 1960
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1961
def sequence_first_step(input):
L
Luo Tao 已提交
1962
    """
L
Luo Tao 已提交
1963
    This function gets the first step of sequence.
L
Luo Tao 已提交
1964 1965 1966 1967

    .. code-block:: text

       x is a 1-level LoDTensor:
1968
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1969 1970 1971 1972 1973
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1974
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1975
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1976

L
Luo Tao 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1986

Y
yangyaming 已提交
1987
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1988 1989 1990
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1991 1992 1993
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1994
def sequence_last_step(input):
L
Luo Tao 已提交
1995
    """
L
Luo Tao 已提交
1996
    This function gets the last step of sequence.
L
Luo Tao 已提交
1997 1998 1999 2000

    .. code-block:: text

       x is a 1-level LoDTensor:
2001
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2002 2003 2004 2005 2006
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2007
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2008
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2009

L
Luo Tao 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2019

Y
yangyaming 已提交
2020
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2021 2022 2023
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2024 2025 2026
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2027 2028 2029 2030
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2031
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2032 2033 2034 2035 2036
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2037

Y
Yibing Liu 已提交
2038 2039
	- Case:

2040
            Given the input Variable **input**:
2041

2042 2043 2044
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2045

2046
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2047

2048
            the output Variable will be
2049

2050 2051 2052
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2053 2054

    NOTE: The first dimension size of **input**, **offset** and **length**
2055
          should be equal. The **offset** should start from 0.
2056

Y
Yibing Liu 已提交
2057
    Args:
2058
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2059
                         sequences.
Y
Yibing Liu 已提交
2060 2061 2062 2063 2064 2065
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2066
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2077
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2078 2079 2080 2081
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2082
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2097
@templatedoc()
Y
Yu Yang 已提交
2098
def pool2d(input,
C
chengduoZH 已提交
2099 2100
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2101 2102
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2103
           global_pooling=False,
C
chengduoZH 已提交
2104
           use_cudnn=True,
2105
           ceil_mode=False,
2106 2107
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2108
    """
F
fengjiayi 已提交
2109
    ${comment}
2110 2111

    Args:
2112 2113 2114
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2115
                          feature, and W is the width of the feature.
2116
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2117
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2118
        pool_type: ${pooling_type_comment}
2119 2120
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2121 2122 2123
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2124
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2125
                        layer will be named automatically.
2126 2127
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2128

2129
    Returns:
F
fengjiayi 已提交
2130
        Variable: The pooling result.
F
fengjiayi 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2144 2145 2146 2147
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2148
                            global_pooling=False)
Y
Yu Yang 已提交
2149 2150 2151 2152 2153
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2154

C
chengduoZH 已提交
2155 2156 2157 2158 2159
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2160 2161 2162 2163
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2164 2165
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2166

C
Add doc  
chengduoZH 已提交
2167
    l_type = 'pool2d'
2168 2169

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2170
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2171
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2172 2173

    helper.append_op(
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2185 2186
            "use_mkldnn": False,
            "exclusive": exclusive,
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2200 2201
           name=None,
           exclusive=True):
2202 2203
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2204
    pooling configurations mentioned in input parameters.
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2217 2218
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2219

2220
    Returns:
2221
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2222 2223 2224 2225 2226
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2227

C
chengduoZH 已提交
2228 2229 2230 2231 2232
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2233 2234 2235
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2236

C
chengduoZH 已提交
2237 2238
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2239

2240 2241
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2242
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2243
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2244 2245

    helper.append_op(
2246
        type=l_type,
Y
Yu Yang 已提交
2247 2248 2249 2250 2251 2252 2253
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2254
            "paddings": pool_padding,
2255
            "use_cudnn": use_cudnn,
2256
            "ceil_mode": ceil_mode,
2257 2258
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2271
               data_layout='NCHW',
Y
Yang Yang 已提交
2272
               in_place=False,
2273 2274
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2275
               moving_variance_name=None,
2276 2277
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2278
    """
Q
qiaolongfei 已提交
2279 2280 2281 2282
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2283

Q
qiaolongfei 已提交
2284
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2285

Q
qiaolongfei 已提交
2286 2287
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2288 2289 2290
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2303 2304

    Args:
Q
qiaolongfei 已提交
2305
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2306 2307 2308 2309
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2310 2311 2312 2313 2314 2315 2316 2317
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2318
        data_layout(string, default NCHW): NCHW|NHWC
2319
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2320 2321 2322 2323
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2324
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2325
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2326 2327

    Returns:
Q
qiaolongfei 已提交
2328
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2329 2330 2331 2332 2333 2334 2335

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2336
    """
C
chengduo 已提交
2337
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2360
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2361

2362 2363
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2364 2365 2366
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2367
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2368
        shape=param_shape,
2369 2370 2371 2372 2373 2374 2375
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2376
            trainable=False,
W
wanghaoshuang 已提交
2377
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2378
        shape=param_shape,
2379 2380
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2381 2382 2383 2384 2385 2386

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2387 2388 2389 2390
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2391

X
Xin Pan 已提交
2392 2393
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2411 2412 2413 2414
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2415
            "use_mkldnn": False,
2416
            "fuse_with_relu": fuse_with_relu
2417
        })
Y
Yu Yang 已提交
2418 2419 2420 2421

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2422
@templatedoc()
G
guosheng 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2433
    ${comment}
G
guosheng 已提交
2434 2435 2436

    The formula is as follows:

Y
yuyang18 已提交
2437
    ..  math::
G
guosheng 已提交
2438 2439 2440 2441 2442 2443 2444

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2445 2446 2447 2448 2449 2450 2451 2452
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2453

G
guosheng 已提交
2454 2455
    Args:
        input(Variable): The input tensor variable.
2456
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2457
            normalization. Default True.
2458
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2459 2460
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2461
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2462
            Default 1.
2463
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2464
            division by zero. Default 1e-05.
G
guosheng 已提交
2465
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2466 2467
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2468 2469
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2470
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2471 2472
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2473
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2474
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2475
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2476 2477 2478
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2479 2480

    Returns:
Y
yuyang18 已提交
2481
        ${y_comment}
G
guosheng 已提交
2482 2483 2484

    Examples:

Y
yuyang18 已提交
2485 2486 2487
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2503
    if shift:
G
guosheng 已提交
2504 2505 2506 2507 2508 2509
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2510 2511 2512 2513 2514
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2530 2531 2532 2533
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2534 2535 2536
                     padding=0,
                     stride=1,
                     dilation=1,
2537
                     groups=None,
C
caoying03 已提交
2538
                     param_attr=None,
2539
                     bias_attr=None,
C
chengduoZH 已提交
2540
                     use_cudnn=True,
2541
                     act=None,
C
caoying03 已提交
2542
                     name=None):
Y
Yu Yang 已提交
2543
    """
2544 2545 2546 2547 2548 2549 2550 2551
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2552 2553
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2554 2555 2556
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2557 2558 2559 2560 2561

    For each input :math:`X`, the equation is:

    .. math::

2562
        Out = \sigma (W \\ast X + b)
2563

2564
    Where:
2565 2566 2567

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2568 2569 2570 2571
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2572

2573 2574 2575 2576
    Example:

        - Input:

2577
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2578

2579
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2580 2581 2582

        - Output:

2583
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2584 2585

        Where
Y
Yu Yang 已提交
2586

2587 2588
        .. math::

2589 2590 2591 2592
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2593 2594

    Args:
2595 2596 2597 2598
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2599 2600 2601 2602
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2631
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2632 2633 2634
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2635
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2636
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2637 2638

    Returns:
2639
        Variable: The tensor variable storing the convolution transpose result.
2640 2641

    Raises:
2642 2643
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2644 2645 2646 2647

    Examples:
       .. code-block:: python

2648 2649
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2650
    """
C
chengduo 已提交
2651
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2652 2653 2654 2655 2656 2657 2658 2659
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2660 2661 2662
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2663 2664 2665
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2666

C
chengduoZH 已提交
2667 2668
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2669

Y
Yu Yang 已提交
2670 2671 2672 2673 2674
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2675

Y
Yu Yang 已提交
2676 2677
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2678

C
chengduoZH 已提交
2679
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2680
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2681
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2682
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2683
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2684 2685 2686
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2687

2688 2689 2690 2691 2692 2693 2694
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2695
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2696
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2697

Y
Yu Yang 已提交
2698 2699 2700
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2701
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2702
    helper.append_op(
2703
        type=op_type,
Y
Yu Yang 已提交
2704 2705
        inputs={'Input': [input],
                'Filter': [img_filter]},
2706
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2707
        attrs={
2708
            'output_size': output_size,
2709 2710 2711 2712 2713
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2714 2715
        })

2716 2717 2718
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2719 2720


2721
def conv3d_transpose(input,
Y
Yu Yang 已提交
2722 2723 2724
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2725 2726 2727
                     padding=0,
                     stride=1,
                     dilation=1,
2728
                     groups=None,
C
caoying03 已提交
2729
                     param_attr=None,
2730
                     bias_attr=None,
C
chengduoZH 已提交
2731
                     use_cudnn=True,
2732
                     act=None,
C
caoying03 已提交
2733
                     name=None):
Y
Yu Yang 已提交
2734
    """
2735
    **Convlution3D transpose layer**
2736

2737
    The convolution3D transpose layer calculates the output based on the input,
2738
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2739 2740 2741 2742 2743 2744
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2745 2746 2747
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2748 2749 2750 2751 2752

    For each input :math:`X`, the equation is:

    .. math::

2753
        Out = \sigma (W \\ast X + b)
2754 2755 2756

    In the above equation:

2757 2758
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2759 2760 2761 2762
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2763

2764 2765 2766 2767
    Example:

        - Input:

2768
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2769

2770
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2771 2772 2773

        - Output:

2774
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2775 2776

        Where
Y
Yu Yang 已提交
2777

2778 2779
        .. math::

2780 2781 2782
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2783 2784

    Args:
2785
        input(Variable): The input image with [N, C, D, H, W] format.
2786 2787 2788
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2789
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2790 2791
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2792
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2793 2794 2795
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2796 2797
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2798
        stride(int|tuple): The stride size. If stride is a tuple, it must
2799 2800
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2801
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2802 2803 2804
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2805 2806 2807 2808 2809
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2819 2820
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2821 2822
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2823 2824
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2825 2826

    Returns:
2827
        Variable: The tensor variable storing the convolution transpose result.
2828 2829

    Raises:
2830 2831
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2832 2833 2834 2835

    Examples:
       .. code-block:: python

2836 2837
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2838
    """
C
chengduo 已提交
2839
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2840 2841
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2842
    if not isinstance(input, Variable):
2843
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2844 2845
    input_channel = input.shape[1]

2846 2847 2848
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2849

C
chengduoZH 已提交
2850 2851 2852
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2853 2854 2855 2856 2857 2858
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2859 2860 2861
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2862

2863
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2864
                         padding[0] - 1) // dilation[0] + 1
2865
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2866
                         padding[1] - 1) // dilation[1] + 1
2867
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2868
                         padding[2] - 1) // dilation[2] + 1
2869
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2870
    else:
2871 2872
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2873

2874
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2875
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2876 2877 2878
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2879
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2880
    helper.append_op(
2881
        type=l_type,
Y
Yu Yang 已提交
2882 2883
        inputs={'Input': [input],
                'Filter': [img_filter]},
2884
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2885 2886 2887 2888
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2889
            'groups': groups,
C
chengduoZH 已提交
2890 2891
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2892

2893 2894
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2895
    return out
Y
yangyaming 已提交
2896 2897


Y
yangyaming 已提交
2898
def sequence_expand(x, y, ref_level=-1, name=None):
2899
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2900 2901 2902 2903
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2904 2905 2906 2907 2908

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2909
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2910
                x.data = [[a], [b], [c], [d]]
2911 2912 2913
                x.dims = [4, 1]

            y is a LoDTensor:
2914 2915
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2916

Y
yangyaming 已提交
2917
            ref_level: 0
2918

Y
yangyaming 已提交
2919
            then output is a 1-level LoDTensor:
2920
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2921
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2922 2923 2924 2925
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2926
                x.data = [[a], [b], [c]]
2927 2928 2929
                x.dims = [3, 1]

            y is a LoDTensor:
2930
                y.lod = [[2, 0, 3]]
2931

Y
yangyaming 已提交
2932
            ref_level: -1
2933

Y
yangyaming 已提交
2934 2935 2936
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2937 2938 2939
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2940 2941
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2942
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2943
                        will be named automatically.
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2954
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2955
    """
Y
yangyaming 已提交
2956
    helper = LayerHelper('sequence_expand', input=x, **locals())
2957
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2958
    tmp = helper.create_variable_for_type_inference(dtype)
2959
    helper.append_op(
Y
yangyaming 已提交
2960 2961 2962 2963 2964
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2965
    return tmp
2966 2967


C
chengduo 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3024
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3025 3026 3027 3028 3029 3030 3031 3032
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3033
@templatedoc()
3034
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3035 3036 3037 3038 3039
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3040 3041 3042
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3043
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3044 3045 3046 3047
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3048 3049 3050
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3051

F
fengjiayi 已提交
3052
    Returns:
M
minqiyang 已提交
3053
        Variable: The padded sequence batch and the original lengths before
3054
                  padding. All sequences has the same length.
M
minqiyang 已提交
3055

F
fengjiayi 已提交
3056 3057 3058 3059 3060 3061 3062
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3063
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3064
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3065 3066 3067 3068 3069
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3070 3071
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3072 3073 3074 3075

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3076 3077 3078 3079 3080 3081
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3082 3083
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3084
        attrs={'padded_length': maxlen})
3085
    return out, length
F
fengjiayi 已提交
3086 3087


3088
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3089
    """
3090
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3091

3092 3093
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3103 3104 3105
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3106
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3107 3108 3109 3110 3111 3112

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3113
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3114 3115 3116 3117 3118 3119

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3120 3121
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3136
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3148 3149 3150 3151 3152 3153 3154 3155 3156
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3157 3158
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3159 3160 3161

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3162 3163

    This layer does the search in beams for one time step. Specifically, it
3164 3165 3166 3167 3168 3169
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3170

3171 3172 3173 3174 3175 3176 3177 3178
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3179

3180
    Args:
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3206

3207
    Returns:
3208 3209
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3210 3211 3212 3213

    Examples:
        .. code-block:: python

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3231 3232 3233 3234
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3235 3236 3237
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3238 3239 3240 3241 3242

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3243
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3261 3262 3263 3264 3265 3266 3267
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3278

3279 3280 3281 3282 3283 3284
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3285

3286 3287 3288 3289 3290 3291 3292 3293
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3294 3295
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3311 3312 3313 3314
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3315
              param_attr=None,
C
caoying03 已提交
3316 3317
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3318 3319 3320 3321
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3322
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3323

3324
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3325

3326
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3327

3328
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3329 3330 3331

            h_t & = o_t tanh(c_t)

3332 3333 3334 3335 3336 3337
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3338 3339 3340

        .. math::

3341
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3342 3343 3344 3345 3346 3347 3348 3349

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3350
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3351 3352

    Args:
Y
yangyaming 已提交
3353 3354 3355 3356 3357 3358
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3359
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3372 3373
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3374 3375

    Returns:
Y
yangyaming 已提交
3376
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3377 3378

    Raises:
3379 3380 3381 3382
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3383 3384 3385 3386 3387 3388

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3389
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3390
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3391
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3408
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3409 3410 3411 3412
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3413 3414
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3415 3416 3417
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3418
    size = cell_t_prev.shape[1]
3419
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3420 3421
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3422
                param_attr=param_attr,
3423
                bias_attr=bias_attr)
Y
yangyaming 已提交
3424
    dtype = x_t.dtype
X
Xin Pan 已提交
3425 3426
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3436
    return h, c
G
guosheng 已提交
3437 3438


C
caoying03 已提交
3439
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3440
    """
Y
yangyaming 已提交
3441
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3442 3443 3444

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3445
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3446 3447
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3448 3449
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3450
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3451
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3452
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3453 3454
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3455 3456 3457

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3458

G
guosheng 已提交
3459 3460 3461 3462 3463 3464
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3465
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3466 3467 3468 3469
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3470 3471 3472 3473

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3474
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3475 3476 3477
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3478 3479
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3480
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3481 3482
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3483 3484 3485 3486 3487
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3488
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3489 3490 3491 3492
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3493 3494


C
caoying03 已提交
3495
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3496
    """
Y
Yibing Liu 已提交
3497
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3498 3499 3500

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3501 3502 3503
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3504
            must be in the range :math:`[-rank(input), rank(input))`. If
3505
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3506
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3507 3508
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3509
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3510
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3511
                       will be named automatically.
G
guosheng 已提交
3512 3513

    Returns:
Y
Yibing Liu 已提交
3514
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3515

G
guosheng 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3526 3527
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3528 3529 3530 3531 3532 3533 3534

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3535 3536
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3537
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3538 3539
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3540 3541 3542 3543 3544
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3545
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3546 3547 3548 3549
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3550 3551


C
caoying03 已提交
3552
def reduce_max(input, dim=None, keep_dim=False, name=None):
3553
    """
Y
yangyaming 已提交
3554
    Computes the maximum of tensor elements over the given dimension.
3555 3556 3557

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3558
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3559 3560 3561
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3562
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3563 3564
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3565
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3566 3567
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3568 3569 3570

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3583 3584 3585 3586 3587 3588 3589

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3590 3591
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3592
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3593 3594
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3595 3596 3597 3598 3599
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3600
            'dim': dim if dim != None else [0],
3601 3602 3603 3604 3605 3606
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3607
def reduce_min(input, dim=None, keep_dim=False, name=None):
3608
    """
Y
yangyaming 已提交
3609
    Computes the minimum of tensor elements over the given dimension.
3610 3611 3612

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3613
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3614 3615 3616
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3617
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3618 3619
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3620
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3621 3622
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3623 3624 3625

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3626

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3638 3639 3640 3641 3642 3643 3644

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3645 3646
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3647
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3648 3649
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3650 3651 3652 3653 3654
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3655
            'dim': dim if dim != None else [0],
3656 3657 3658 3659
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3660 3661


3662 3663 3664 3665 3666 3667
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3668
        dim (list|int|None): The dimensions along which the product is performed. If
3669 3670
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3671 3672
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3673 3674 3675
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3676
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3677
            layer will be named automatically.
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3692
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3693
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3694 3695 3696 3697 3698 3699 3700

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3701 3702
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3703
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3704 3705
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3706 3707 3708 3709 3710
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3711
            'dim': dim if dim != None else [0],
3712 3713 3714 3715 3716 3717
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3718
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3719
    """
C
caoying03 已提交
3720
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3721 3722 3723

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3724 3725 3726 3727 3728
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3729
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3730
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3731
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3732 3733
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3734 3735

    Returns:
D
dzhwinter 已提交
3736
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3746 3747
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3763
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3786
    .. math::
3787 3788

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3789 3790 3791 3792 3793

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3794
        x(Variable|list): The input tensor to l2_normalize layer.
3795
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3796 3797
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3798
        epsilon(float): The epsilon value is used to avoid division by zero, \
3799
            the defalut value is 1e-10.
3800
        name(str|None): A name for this layer(optional). If set None, the layer \
3801
            will be named automatically.
C
caoying03 已提交
3802 3803

    Returns:
3804
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3805 3806

    Examples:
3807

C
caoying03 已提交
3808 3809
        .. code-block:: python

3810 3811 3812 3813
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3814 3815
    """

F
fengjiayi 已提交
3816 3817
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3818 3819
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3820 3821
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3822
    helper.append_op(
3823 3824 3825 3826
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3827
        attrs={
3828 3829
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3830 3831
        })
    return out
3832 3833


S
sneaxiy 已提交
3834
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3835
    """
Y
ying 已提交
3836 3837 3838 3839
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3840

C
chengduoZH 已提交
3841
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3842
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3843

3844 3845 3846 3847 3848
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3849
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3850

C
chengduoZH 已提交
3851
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3852
      performs in the following way.
G
guosheng 已提交
3853

3854
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3855
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3856
        last two dimensions and a batched matrix multiply supporting broadcast
3857
        applies on the two tensors.
G
guosheng 已提交
3858

Y
ying 已提交
3859 3860
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3861
    removed after matrix multiplication.
G
guosheng 已提交
3862 3863 3864

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3865 3866 3867
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3868
        alpha (float): The scale of output. Default 1.0.
3869
        name(str|None): A name for this layer(optional). If set None, the layer
3870
            will be named automatically.
G
guosheng 已提交
3871 3872

    Returns:
3873
        Variable: The product Tensor variable.
G
guosheng 已提交
3874

G
guosheng 已提交
3875 3876 3877
    Examples:
        .. code-block:: python

3878
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3879 3880
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3881

3882 3883
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3884

3885 3886
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3887

3888 3889
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3890 3891 3892 3893

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3894 3895
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3896

Y
ying 已提交
3897
            # x: [M], y: [N]
3898
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3899
    """
Y
ying 已提交
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3912
            y_shape = y_shape + [1]
Y
ying 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3929
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3930
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3931
    helper.append_op(
3932 3933 3934 3935
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3936 3937 3938
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3939
            'alpha': float(alpha),
S
sneaxiy 已提交
3940
        })
3941
    return out
3942 3943


3944
def topk(input, k, name=None):
Q
qingqing01 已提交
3945 3946 3947 3948
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3949
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3950 3951 3952 3953 3954 3955
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3977 3978 3979
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3980
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3981
                 of input.
3982
        name(str|None): A name for this layer(optional). If set None, the layer
3983
                       will be named automatically.
F
fengjiayi 已提交
3984
                       Default: None
Q
qingqing01 已提交
3985 3986

    Returns:
3987 3988 3989
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3990
        within the last dimension of input.
Q
qingqing01 已提交
3991

F
fengjiayi 已提交
3992 3993
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3994 3995 3996 3997 3998 3999 4000

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4001 4002
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4014
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4015
    """
Y
ying 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4025

Y
ying 已提交
4026
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4027

4028
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4029 4030
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4031
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4032

4033
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4034 4035
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4036

4037 4038 4039
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4040
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4041
                          the length of reference string.
4042
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4043
                                     calculating edit distance.
4044
        name (str): The name of this layer. It is optional.
4045

W
wanghaoshuang 已提交
4046
    Returns:
W
wanghaoshuang 已提交
4047
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4048 4049 4050 4051 4052

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4053
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4054
            cost = fluid.layers.edit_distance(input=x,label=y)
4055
    """
4056
    helper = LayerHelper("edit_distance", **locals())
4057

4058
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4059
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4060 4061
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4062 4063 4064 4065 4066

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4067
            attrs={"tokens": ignored_tokens})
4068 4069 4070 4071 4072
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4073
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4074
            attrs={"tokens": ignored_tokens})
4075 4076
        label = erased_label

4077
    # edit distance op
X
Xin Pan 已提交
4078 4079
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4080 4081 4082 4083
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4084 4085
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4086 4087
        attrs={"normalized": normalized})

4088
    return edit_distance_out, sequence_num
4089 4090 4091 4092 4093


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4094

Y
ying 已提交
4095 4096 4097 4098
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4116
        input.lod = [[4, 4]]
4117 4118 4119 4120 4121 4122 4123

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4124
        output.lod = [[2, 1]]
4125 4126 4127

    Args:

Y
ying 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4137
        name (str): The name of this layer. It is optional.
4138 4139

    Returns:
4140
        Variable: CTC greedy decode result. If all the sequences in result were
4141
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4142 4143 4144 4145 4146

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4147

4148
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4149
    """
4150
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4151
    _, topk_indices = topk(input, k=1)
4152 4153

    # ctc align op
X
Xin Pan 已提交
4154
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4155 4156 4157
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4158
        outputs={"Output": [ctc_out]},
4159 4160
        attrs={"merge_repeated": True,
               "blank": blank})
4161
    return ctc_out
4162 4163


F
fengjiayi 已提交
4164
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4165
    """
4166 4167
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4168
    to compute Connectionist Temporal Classification (CTC) loss.
4169 4170
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4171 4172 4173
    input tensor.

    Args:
4174
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4175 4176 4177 4178
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4179
       label (Variable): The ground truth of variable-length sequence,
4180 4181 4182
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4183 4184
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4185 4186 4187
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4188
         follewed by a mean_op.
W
wanghaoshuang 已提交
4189 4190

    Returns:
4191 4192
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4193 4194

    Examples:
4195

W
wanghaoshuang 已提交
4196
        .. code-block:: python
4197

4198 4199 4200
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4201 4202

    """
F
fengjiayi 已提交
4203
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4204 4205
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4230 4231 4232
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4233 4234 4235 4236 4237
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4238

4239
            out.lod  = [[0, 1, 3]]
4240 4241 4242 4243

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4244 4245 4246 4247 4248 4249 4250
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4251 4252 4253

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4254 4255

    Returns:
4256

4257 4258 4259 4260 4261
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4262
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4263
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4264 4265
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4266
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4267 4268 4269 4270 4271 4272
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4273 4274


4275 4276 4277 4278
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4279 4280 4281 4282 4283 4284
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4285 4286
        num_neg_samples=None,
        name=None):
4287 4288 4289 4290 4291 4292 4293
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4294 4295
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4296
            sample is 1.0.
C
chengduo 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4306
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4307 4308
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4309

4310
    Returns:
Y
Yibing Liu 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4338
    """
Y
Yang Yu 已提交
4339 4340 4341
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4342 4343

    dim = input.shape[1]
Y
Yang Yu 已提交
4344 4345 4346 4347 4348 4349
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4363 4364 4365
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4366

Y
Yang Yu 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4376 4377 4378

    helper.append_op(
        type='nce',
C
chengduo 已提交
4379
        inputs=inputs,
Y
Yang Yu 已提交
4380 4381 4382 4383 4384 4385
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4386
    return cost / (num_neg_samples + 1)
4387 4388


C
chengduo 已提交
4389 4390 4391 4392 4393 4394
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4395 4396
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4397
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4407

W
weixing02 已提交
4408
    Args:
M
minqiyang 已提交
4409
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4410 4411 4412 4413 4414
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4426 4427 4428 4429 4430 4431 4432 4433

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4434 4435 4436
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4437 4438 4439 4440
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4441 4442
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4443 4444
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4445
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4446 4447 4448 4449 4450
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4451 4452 4453 4454 4455 4456 4457 4458
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4459 4460
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4461
        inputs=inputs,
W
weixing02 已提交
4462 4463 4464 4465 4466 4467
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4468
def transpose(x, perm, name=None):
Y
ying 已提交
4469 4470 4471 4472 4473 4474 4475
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4476 4477 4478
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4479 4480 4481 4482 4483 4484 4485

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4486 4487 4488 4489
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4490
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4491 4492
    """

Y
fix ci.  
ying 已提交
4493
    if len(perm) != len(x.shape):
Y
ying 已提交
4494 4495 4496
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4497 4498 4499 4500 4501 4502
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4503 4504

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4505 4506
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4507
    helper.append_op(
4508
        type='transpose2',
Y
fix ci.  
ying 已提交
4509
        inputs={'X': [x]},
4510 4511
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4512 4513
        attrs={'axis': perm})
    return out
4514 4515


4516 4517 4518 4519 4520 4521 4522
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4523
    """
4524 4525 4526 4527 4528 4529 4530
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4559 4560 4561 4562 4563 4564 4565 4566 4567
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4568 4569 4570
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4571 4572 4573 4574 4575
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4603 4604 4605
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4618
            output.dims = {8, 8}
4619

4620
            output.lod = [[4, 4]]
4621

D
dzhwinter 已提交
4622
     Examples:
4623 4624 4625

        .. code-block:: python

4626 4627
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4628 4629

    """
W
wanghaoshuang 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4640 4641 4642 4643 4644 4645 4646
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4647
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4648
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4649
    helper.append_op(
4650
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4651
    return out
4652 4653


Y
yuyang18 已提交
4654
@templatedoc()
4655
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4656 4657
    """
    ${comment}
4658 4659

    Args:
Y
yuyang18 已提交
4660
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4661 4662
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4663 4664 4665 4666 4667
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4668
        ${out_comment}.
4669 4670

    Examples:
Y
yuyang18 已提交
4671 4672 4673 4674
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4675 4676 4677 4678 4679 4680
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4681
    out = helper.create_variable_for_type_inference(dtype)
4682 4683 4684 4685 4686
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4687
    return helper.append_activation(out)
4688 4689


Y
yuyang18 已提交
4690
@templatedoc()
4691 4692
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4693 4694 4695 4696 4697 4698 4699
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4700 4701

    Args:
Y
yuyang18 已提交
4702 4703
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4704 4705

    Returns:
Y
yuyang18 已提交
4706
        ${out_comment}.
4707 4708
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4709 4710 4711 4712 4713

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4714
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4715 4716 4717 4718 4719 4720
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4721 4722


4723 4724 4725
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4726 4727
                               ignore_index=-100,
                               numeric_stable_mode=False):
4728 4729
    """
    **Softmax With Cross Entropy Operator.**
4730

4731 4732 4733 4734
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4735

4736 4737 4738
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4739

4740 4741 4742
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4743

4744
    The equation is as follows:
4745

4746
    1) Hard label (one-hot label, so every sample has exactly one class)
4747

4748 4749 4750 4751
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4752

4753 4754 4755
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4756

4757 4758 4759 4760
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4773 4774 4775 4776 4777 4778 4779 4780
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4781 4782
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4783
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4784 4785 4786 4787 4788 4789 4790
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4791

4792 4793 4794 4795 4796 4797 4798 4799 4800
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4801 4802
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4803 4804
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4805 4806
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4807 4808 4809 4810 4811 4812
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4813 4814 4815 4816 4817
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4818 4819 4820 4821 4822
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4823 4824
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4825
    For each instance, it computes the smooth L1 loss element by element first
4826
    and then sums all the losses. So the shape of ouput Variable is
4827
    [batch_size, 1].
4828

4829 4830
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4831
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4832
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4833
            L1 loss op with same shape as :attr:`x`.
4834
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4835 4836
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4837
            by this tensor element by element.
4838
        outside_weight (Variable|None): A tensor with rank at least 2. This
4839 4840
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4841
            element by element.
4842
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4843 4844
           scalar with default value 1.0.

4845
    Returns:
4846
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4847 4848 4849 4850 4851

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4852 4853
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4854
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4855
            out = fluid.layers.smooth_l1(x=fc, y=label)
4856
    """
4857

4858
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4859 4860
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4873 4874 4875 4876


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4877
    This layer creates the one-hot representations for input indices.
4878 4879

    Args:
Y
Yibing Liu 已提交
4880 4881
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4882 4883

    Returns:
Y
Yibing Liu 已提交
4884
        Variable: The one-hot representations of input.
4885 4886

    Examples:
C
caoying03 已提交
4887
        .. code-block:: python
4888

Y
Yibing Liu 已提交
4889 4890
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4891 4892
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4893
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4894 4895 4896 4897 4898 4899
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4900 4901


Y
Yu Yang 已提交
4902
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4903
    """
Y
yi.wu 已提交
4904 4905 4906
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4907 4908 4909 4910 4911 4912

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4913 4914
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4915 4916 4917 4918 4919 4920

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4921 4922
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4923 4924
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4925 4926 4927 4928 4929
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4930
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4931
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4932 4933
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4934 4935
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4936 4937 4938
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4939 4940


4941
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4942
    """
C
caoying03 已提交
4943 4944
    Gives a new shape to the input Tensor without changing its data.

4945 4946 4947 4948 4949
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4950

4951
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4952

4953 4954 4955 4956
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4957
    2. 0 means the actual dimension value is going to be copied from the
4958 4959 4960 4961
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4962 4963

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4964
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4965
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4966

4967
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4968 4969
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4970 4971
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4972
    dimensions.
C
caoying03 已提交
4973

4974
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4975 4976 4977 4978
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4979 4980

    Args:
4981
        x(variable): The input tensor.
C
caoying03 已提交
4982 4983
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4984 4985 4986 4987 4988
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4989 4990
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4991 4992 4993 4994 4995 4996 4997
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4998
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4999

5000
    Returns:
G
guosheng 已提交
5001 5002 5003 5004
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5005

X
Xin Pan 已提交
5006 5007 5008
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5009 5010
    Examples:
        .. code-block:: python
G
guosheng 已提交
5011

5012
            data = fluid.layers.data(
5013
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5014
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5015
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5016 5017 5018
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5019
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5020 5021 5022 5023 5024
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5025

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5041
    helper = LayerHelper("reshape2", **locals())
5042 5043
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5044
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5045
    helper.append_op(
5046
        type="reshape2",
X
Xin Pan 已提交
5047
        inputs=inputs,
D
dzhwinter 已提交
5048
        attrs={"shape": shape},
5049 5050
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5051

D
dzhwinter 已提交
5052
    return helper.append_activation(out)
5053

5054

5055
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5056
    """
M
minqiyang 已提交
5057 5058 5059
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5060
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5061

Y
Yibing Liu 已提交
5062 5063
    Examples:
    Case 1:
M
minqiyang 已提交
5064
      Given
Y
Yibing Liu 已提交
5065 5066 5067 5068 5069 5070 5071 5072
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5073
        and
Y
Yibing Liu 已提交
5074 5075 5076
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5077

Y
Yibing Liu 已提交
5078
    Args:
5079
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5080
        axes (list): List of integers, indicating the dimensions to be squeezed.
5081
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5082 5083 5084 5085 5086 5087 5088 5089

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5090
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5091 5092
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5093 5094
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5095
    helper.append_op(
5096
        type="squeeze2",
5097
        inputs={"X": input},
Y
Yibing Liu 已提交
5098
        attrs={"axes": axes},
5099 5100
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5101

5102 5103 5104
    return out


5105
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5106
    """
M
minqiyang 已提交
5107 5108 5109
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5110

M
minqiyang 已提交
5111 5112
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5113
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5114

Y
Yibing Liu 已提交
5115
    Args:
5116
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5117
        axes (list): List of integers, indicating the dimensions to be inserted.
5118
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5119 5120 5121 5122 5123 5124 5125 5126

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5127
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5128 5129
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5130 5131
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5132
    helper.append_op(
5133
        type="unsqueeze2",
5134
        inputs={"X": input},
Y
Yibing Liu 已提交
5135
        attrs={"axes": axes},
5136 5137
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5138

5139 5140
    return out

5141

Y
yangyaming 已提交
5142
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5143
    """
Y
Yibing Liu 已提交
5144
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5145 5146 5147 5148
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5149
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5150 5151 5152 5153 5154 5155

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5156
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5157 5158 5159
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5160
            target_lod: [4, 2]
Y
yangyaming 已提交
5161 5162

            then we get a 1-level LoDTensor:
5163
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5164 5165 5166 5167 5168 5169
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5170
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5171 5172 5173 5174
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5175
                y.data = [[2, 4]]
Y
yangyaming 已提交
5176 5177 5178
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5179
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5180 5181 5182 5183 5184 5185
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5186
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5187 5188 5189 5190
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5191
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5192 5193 5194 5195
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5196
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5197 5198 5199 5200 5201
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5202
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5203
                           from :attr:`y`.
Y
yangyaming 已提交
5204
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5205
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5206 5207

    Returns:
Y
Yibing Liu 已提交
5208
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5209 5210

    Raises:
Y
Yibing Liu 已提交
5211
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5221
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5247
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5276 5277
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5290 5291 5292
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5306 5307 5308 5309


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5310
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5311
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5312

G
guosheng 已提交
5313 5314 5315 5316
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5339
                         The length of :attr:paddings must be
G
guosheng 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5350

G
guosheng 已提交
5351 5352 5353 5354 5355 5356
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5357
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5358 5359 5360 5361 5362 5363 5364
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5365 5366


C
chengduo 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5437
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5447 5448 5449 5450 5451 5452 5453
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5454 5455
    called label-smoothing regularization (LSR).

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5479
                              be :math:`(1, class\_num)`.
5480 5481
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5482
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5502
    smooth_label = helper.create_variable_for_type_inference(dtype)
5503 5504 5505 5506 5507 5508 5509
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5510 5511


Y
yi.wu 已提交
5512
@templatedoc()
5513 5514
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5515
    ${comment}
5516 5517

    Args:
Y
yi.wu 已提交
5518 5519
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5520 5521 5522
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5523 5524

    Returns:
Y
update  
yi.wu 已提交
5525
        Variable: ${out_comment}.
5526 5527

    Examples:
5528 5529
        .. code-block:: python

5530
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5531 5532 5533
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5534 5535
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5548 5549


J
jerrywgz 已提交
5550 5551 5552 5553 5554 5555
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5556 5557
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5574 5575 5576
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5577 5578 5579 5580 5581 5582
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5583
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5624 5625
        .. code-block:: python

W
whs 已提交
5626 5627 5628 5629
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5630
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5631 5632 5633 5634 5635 5636
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5637 5638


5639 5640 5641 5642 5643
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5644
    """
Q
qiaolongfei 已提交
5645
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5646

5647
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5648 5649 5650
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5651

5652
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5653

5654
    Args:
5655
        input (Variable): The input tensor of image resize layer,
5656 5657
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5658
        out_shape(list|tuple|Variable|None): Output shape of image resize
5659 5660
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5661
        scale(float|None): The multiplier for the input height or width.
5662 5663 5664
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5665 5666
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5667 5668
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5669 5670

    Returns:
Q
update  
qiaolongfei 已提交
5671 5672
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5673

5674 5675 5676
    Examples:
        .. code-block:: python

5677
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5678
    """
5679 5680 5681 5682
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5683 5684
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5685 5686
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5687 5688 5689 5690

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5691 5692 5693
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5694
    if out_shape is not None:
B
baiyf 已提交
5695 5696 5697
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5698 5699 5700 5701 5702 5703
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5704 5705 5706 5707
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5708
    out = helper.create_variable_for_type_inference(dtype)
5709
    helper.append_op(
5710
        type=resample_methods[resample],
5711
        inputs=inputs,
5712 5713 5714 5715
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5716 5717


Y
yuyang18 已提交
5718
@templatedoc(op_type="bilinear_interp")
5719 5720
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5721 5722 5723 5724 5725 5726
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5727

Y
yuyang18 已提交
5728 5729 5730 5731 5732 5733 5734 5735
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5736 5737 5738 5739 5740 5741 5742
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5743 5744 5745
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5746 5747 5748 5749 5750 5751 5752
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5753
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5754

5755
    Returns:
Q
update  
qiaolongfei 已提交
5756
        Variable: The output is a 4-D tensor of the shape
5757
        (num_batches, channls, out_h, out_w).
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5768 5769 5770
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5771 5772 5773
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5774 5775
def gather(input, index):
    """
Q
qiaolongfei 已提交
5776 5777
    **Gather Layer**

5778
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5779 5780 5781 5782
    of X indexed by `index` and concatenate them together.

    .. math::

5783
        Out = X[Index]
W
whs 已提交
5784 5785 5786 5787 5788 5789 5790


    .. code-block:: text


                Given:

5791 5792
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5803
        input (Variable): The source input with rank>=1.
W
whs 已提交
5804 5805 5806 5807 5808 5809
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5810

W
whs 已提交
5811 5812 5813 5814 5815 5816
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5817
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5818 5819 5820 5821 5822 5823 5824 5825
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5857
    out = helper.create_variable_for_type_inference(dtype)
5858 5859 5860 5861 5862 5863 5864 5865 5866
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5917
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5940

5941 5942 5943
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5944
    """
F
stash  
fengjiayi 已提交
5945
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5946
    dtype = x.dtype
X
Xin Pan 已提交
5947
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5948
    if seed is None:
5949
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5950
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5951
    if isinstance(seed, int):
F
fengjiayi 已提交
5952 5953 5954 5955 5956
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5957 5958 5959 5960
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5961
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5962 5963
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5964 5965
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5966
    return out
W
whs 已提交
5967 5968


5969
def log(x, name=None):
W
wanghaoshuang 已提交
5970 5971 5972 5973 5974
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5975
        Out = \\ln(x)
W
wanghaoshuang 已提交
5976 5977

    Args:
5978
        x (Variable): Input tensor.
5979 5980
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5981 5982 5983 5984 5985 5986 5987 5988

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5989
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5990 5991
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5992
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5993
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5994
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5995 5996 5997
    return out


5998
def relu(x, name=None):
W
wanghaoshuang 已提交
5999 6000
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6001
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6002 6003 6004 6005
    the tensor elementwise.

    .. math::

6006
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6007 6008

    Args:
6009
        x (Variable): The input tensor.
6010 6011
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6012 6013 6014 6015 6016 6017 6018 6019

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6020
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6021 6022
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6023
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6024
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6025
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6026
    return out
6027 6028


W
whs 已提交
6029 6030 6031
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6032 6033 6034 6035
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6036
    .. math::
6037 6038

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6039

6040
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6041 6042 6043 6044 6045
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6046
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6047
                           Its shape should be the same as input.
6048
        num_classes (int): The possible number of labels.
W
whs 已提交
6049 6050 6051 6052

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6053
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6054 6055 6056 6057

    Examples:

        .. code-block:: python
6058

W
whs 已提交
6059 6060 6061 6062
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6063 6064 6065
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6066 6067
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6068 6069
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6070
        outputs={
W
whs 已提交
6071 6072 6073
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6074 6075 6076
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6151
                    isinstance(shape, Variable)):
6152 6153 6154 6155 6156
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6157
    out = helper.create_variable_for_type_inference(x.dtype)
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6175 6176


W
whs 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6295 6296 6297 6298 6299 6300 6301 6302
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6303

6304 6305
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6306

6307 6308 6309 6310
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6311

6312 6313 6314 6315 6316
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6317 6318 6319

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6355
    out = helper.create_variable_for_type_inference("float32")
6356 6357 6358 6359 6360 6361 6362 6363

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6364 6365


M
minqiyang 已提交
6366 6367
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6368
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6369
    which compares left score and right score passed in.
M
minqiyang 已提交
6370
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6371 6372 6373 6374 6375 6376

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6377
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6378 6379
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6380
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6381 6382 6383
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6384
       Variable: The ranking loss.
M
minqiyang 已提交
6385
    Raises:
M
minqiyang 已提交
6386
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6387 6388 6389 6390 6391 6392 6393
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6394
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6395 6396 6397 6398 6399 6400
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6401 6402
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6428

W
whs 已提交
6429 6430
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6431

W
whs 已提交
6432
      Case 0:
M
minqiyang 已提交
6433

W
whs 已提交
6434 6435 6436
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6437

W
whs 已提交
6438 6439 6440
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6441

W
whs 已提交
6442
      Case 1:
M
minqiyang 已提交
6443

W
whs 已提交
6444 6445
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6446

W
whs 已提交
6447 6448 6449
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6450

W
whs 已提交
6451
      Case 2:
M
minqiyang 已提交
6452

W
whs 已提交
6453 6454
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6455

W
whs 已提交
6456 6457 6458
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6459 6460


W
whs 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6487
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6516
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6539
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6562
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6586
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6611
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6635
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6636 6637 6638 6639 6640 6641 6642 6643
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6658
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6659
                        will be named automatically.
J
jerrywgz 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6687
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6688 6689 6690 6691 6692 6693 6694 6695 6696
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6711
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6734
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6757 6758 6759 6760 6761 6762 6763 6764
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6778

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6789 6790
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6806
        ValueError: If axis is not in range [0, rank(x)].
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6823 6824
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6825
    helper.append_op(
6826
        type='flatten2',
6827
        inputs={"X": x},
6828 6829
        outputs={'Out': out,
                 'XShape': x_shape},
6830 6831
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6832 6833


C
chenweihang 已提交
6834
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6835
    """
C
chenweihang 已提交
6836
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6837
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6838 6839
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6840

C
chenweihang 已提交
6841 6842 6843 6844
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6845
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6846 6847 6848 6849 6850 6851
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6852
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6853 6854 6855
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6856 6857 6858
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6870 6871
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6872 6873 6874 6875 6876 6877
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6878
    return out
6879

6880

S
sneaxiy 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6890

S
sneaxiy 已提交
6891
    .. math::
6892

S
sneaxiy 已提交
6893 6894 6895
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6896
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6897 6898 6899 6900
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6901 6902 6903
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6904 6905
    Returns:
        Variable: The output sequence mask.
6906

S
sneaxiy 已提交
6907 6908
    """

Q
qingqing01 已提交
6909
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6910
    if name is None:
X
Xin Pan 已提交
6911
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6912
    else:
X
Xin Pan 已提交
6913
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6914

Q
qingqing01 已提交
6915 6916 6917
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6918 6919
        outputs={'Y': out},
        attrs={
6920
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6921 6922 6923
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6924 6925


X
Xin Pan 已提交
6926
def stack(x, axis=0):
S
sneaxiy 已提交
6927 6928 6929 6930
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6931 6932 6933 6934 6935 6936 6937

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6938
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6939
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6940 6941

    Args:
6942
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6943
        axis (int|None): The axis along which all inputs are stacked.
6944

S
sneaxiy 已提交
6945 6946
    Returns:
        Variable: The stacked variable.
6947

S
sneaxiy 已提交
6948 6949
    """

X
Xin Pan 已提交
6950 6951 6952 6953 6954 6955
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6956
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6957
    helper.append_op(
S
sneaxiy 已提交
6958 6959
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6960

X
Xin Pan 已提交
6961
    return out
D
dzhwinter 已提交
6962 6963 6964 6965 6966 6967 6968


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6969

D
dzhwinter 已提交
6970 6971 6972
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6973
    raised.
D
dzhwinter 已提交
6974 6975

    Args:
M
minqiyang 已提交
6976
        x (Variable): Input variable.
D
dzhwinter 已提交
6977 6978
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6979

D
dzhwinter 已提交
6980 6981
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6982

D
dzhwinter 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6994
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6995 6996 6997 6998 6999 7000 7001 7002

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7015

W
whs 已提交
7016 7017 7018 7019
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7020

W
whs 已提交
7021
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7022

W
whs 已提交
7023
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7024

W
whs 已提交
7025 7026 7027 7028
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7029

W
whs 已提交
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7046
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7047 7048 7049 7050 7051 7052
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7053 7054


G
fix  
gongweibao 已提交
7055 7056 7057
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7058
@templatedoc()
G
fix  
gongweibao 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7068
    ${comment}
G
fix  
gongweibao 已提交
7069 7070

    Args:
G
gongweibao 已提交
7071 7072 7073
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7074
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7075 7076 7077
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7078 7079
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7080
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7081 7082 7083 7084

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7085
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7102 7103


G
gongweibao 已提交
7104
@templatedoc()
X
Xin Pan 已提交
7105
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7106
    """
G
gongweibao 已提交
7107
    ${comment}
G
fix  
gongweibao 已提交
7108 7109

    Args:
G
gongweibao 已提交
7110 7111 7112 7113
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7114 7115 7116
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7117
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7118 7119 7120 7121

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7122
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7133
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7134 7135 7136 7137 7138
        })

    return out


G
gongweibao 已提交
7139
@templatedoc()
G
fix  
gongweibao 已提交
7140
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7141
    """
G
gongweibao 已提交
7142
    ${comment}
G
fix  
gongweibao 已提交
7143 7144

    Args:
G
gongweibao 已提交
7145 7146 7147 7148
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7149
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7150 7151

    Returns:
G
gongweibao 已提交
7152
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7153 7154 7155 7156

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7157
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7169
@templatedoc()
G
fix  
gongweibao 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7179
    ${comment}
G
fix  
gongweibao 已提交
7180 7181

    Args:
G
gongweibao 已提交
7182 7183
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7184
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7185 7186 7187 7188
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7189
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7190 7191

    Returns:
G
gongweibao 已提交
7192
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7193 7194 7195
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7196
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7215
@templatedoc()
X
Xin Pan 已提交
7216
def sum(x):
G
fix  
gongweibao 已提交
7217
    """
G
gongweibao 已提交
7218
    ${comment}
G
fix  
gongweibao 已提交
7219 7220

    Args:
G
gongweibao 已提交
7221
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7222 7223

    Returns:
G
gongweibao 已提交
7224
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7225 7226 7227
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7228 7229
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7230 7231 7232 7233
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7234
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7235 7236 7237 7238

    return out


G
gongweibao 已提交
7239
@templatedoc()
G
fix  
gongweibao 已提交
7240 7241
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7242
    ${comment}
G
fix  
gongweibao 已提交
7243 7244

    Args:
G
gongweibao 已提交
7245 7246 7247 7248
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7249 7250

    Returns:
G
gongweibao 已提交
7251
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7252 7253 7254 7255

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7256 7257
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7269
@templatedoc()
G
fix  
gongweibao 已提交
7270 7271
def shape(input):
    """
G
gongweibao 已提交
7272
    ${comment}
G
fix  
gongweibao 已提交
7273 7274

    Args:
G
gongweibao 已提交
7275
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7276 7277

    Returns:
G
gongweibao 已提交
7278
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7279 7280 7281 7282

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7283 7284
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7285
    helper.append_op(
G
fix  
gongweibao 已提交
7286
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7287 7288

    return out
G
merge  
gongweibao 已提交
7289 7290


S
sneaxiy 已提交
7291 7292 7293 7294 7295 7296 7297 7298
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7299 7300
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7301
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7302 7303 7304
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7305

S
sneaxiy 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7317
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7318 7319 7320 7321 7322 7323 7324 7325
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7326
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7327
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7328 7329 7330 7331 7332 7333

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7334
    if name is None:
X
Xin Pan 已提交
7335
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7336 7337 7338
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7349
    return helper.append_activation(out)
S
sneaxiy 已提交
7350 7351


X
Xin Pan 已提交
7352
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7353 7354 7355
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7356
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7357 7358 7359
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7360
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7361 7362 7363
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7364
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7365 7366 7367
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7368
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7369 7370 7371
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7372
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7373 7374 7375
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7376
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7388 7389
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7390
        ])
M
minqiyang 已提交
7391 7392


7393
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7394 7395
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7396 7397
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7398 7399 7400

    if out is None:
        if name is None:
X
Xin Pan 已提交
7401
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7417
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7436
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7455
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7474
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7509 7510 7511 7512
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7541 7542 7543 7544
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7545 7546 7547 7548 7549 7550 7551 7552

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7571
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7601
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7602 7603 7604 7605 7606 7607 7608 7609 7610
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7611 7612
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7635
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7665
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7676 7677


J
JiabinYang 已提交
7678
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7679
    """
J
JiabinYang 已提交
7680
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7681
    
J
JiabinYang 已提交
7682
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7683
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7684
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7685 7686
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7687
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7688 7689 7690
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7691

J
JiabinYang 已提交
7692 7693 7694 7695 7696 7697 7698
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7699
    Args:
J
JiabinYang 已提交
7700
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7701
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7702 7703

    Returns:
J
JiabinYang 已提交
7704
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7705 7706

    Raises:
J
JiabinYang 已提交
7707
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7708 7709 7710 7711 7712 7713

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7714
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7715
                x=data, blocksize=2)
J
JiabinYang 已提交
7716 7717
    """

J
JiabinYang 已提交
7718
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7719

J
JiabinYang 已提交
7720 7721
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7722 7723

    if name is None:
J
JiabinYang 已提交
7724 7725
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7726 7727 7728 7729 7730
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7731
        type="space_to_depth",
J
JiabinYang 已提交
7732
        inputs={"X": x},
J
JiabinYang 已提交
7733
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7734
        outputs={"Out": out})
J
JiabinYang 已提交
7735 7736
    return out

J
JiabinYang 已提交
7737

S
sneaxiy 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7752
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7763 7764


7765 7766 7767 7768 7769 7770
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7771

7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7791
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7804 7805


M
minqiyang 已提交
7806 7807
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
7808 7809
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
7810 7811
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
7850
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7851
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7852 7853 7854 7855 7856 7857 7858 7859 7860

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
7861 7862
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7863 7864
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7865 7866 7867 7868 7869 7870 7871
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
7872 7873


D
dengkaipeng 已提交
7874
@templatedoc()
7875 7876
def grid_sampler(x, grid, name=None):
    """
7877 7878 7879 7880 7881 7882 7883
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
7922 7923

    Args:
7924 7925 7926
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
7927 7928

    Returns:
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
7939 7940 7941 7942 7943 7944 7945 7946 7947
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

7948
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
7949 7950
    ipts = {'X': x, 'Grid': grid}

7951
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
7952 7953 7954
    return out


G
gmcather 已提交
7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out