Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ff6329bd
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ff6329bd
编写于
10月 29, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix some inappropriate expressions in api doc for grid_sampler. test=develop
上级
593e1b18
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
436 addition
and
409 deletion
+436
-409
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
+88
-84
paddle/fluid/operators/grid_sampler_op.cc
paddle/fluid/operators/grid_sampler_op.cc
+97
-91
paddle/fluid/operators/grid_sampler_op.h
paddle/fluid/operators/grid_sampler_op.h
+171
-164
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+5
-5
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+45
-45
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+18
-11
python/paddle/fluid/tests/unittests/test_grid_sampler_op.py
python/paddle/fluid/tests/unittests/test_grid_sampler_op.py
+10
-6
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+2
-3
未找到文件。
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
浏览文件 @
ff6329bd
...
...
@@ -22,107 +22,111 @@ using framework::Tensor;
using
ScopedTensorDescriptor
=
platform
::
ScopedTensorDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
ScopedSpatialTransformerDescriptor
=
platform
::
ScopedSpatialTransformerDescriptor
;
platform
::
ScopedSpatialTransformerDescriptor
;
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
>
class
CUDNNGridSampleOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
h
=
input
->
dims
()[
2
];
int
w
=
input
->
dims
()[
3
];
const
int
size
[
4
]
=
{
n
,
c
,
h
,
w
};
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
ScopedSpatialTransformerDescriptor
st_desc
;
cudnnSpatialTransformerDescriptor_t
cudnn_st_desc
=
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
h
=
input
->
dims
()[
2
];
int
w
=
input
->
dims
()[
3
];
const
int
size
[
4
]
=
{
n
,
c
,
h
,
w
};
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
ScopedSpatialTransformerDescriptor
st_desc
;
cudnnSpatialTransformerDescriptor_t
cudnn_st_desc
=
st_desc
.
descriptor
<
T
>
(
4
,
size
);
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
output_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
output
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerForward
(
handle
,
cudnn_st_desc
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
input_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_output_desc
,
output_data
));
}
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
output_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
output
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerForward
(
handle
,
cudnn_st_desc
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
input_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_output_desc
,
output_data
));
}
};
template
<
typename
T
>
class
CUDNNGridSampleGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grid_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Grid"
));
auto
output_grad_dims
=
output_grad
->
dims
();
const
int
n
=
output_grad_dims
[
0
];
const
int
c
=
output_grad_dims
[
1
];
const
int
h
=
output_grad_dims
[
2
];
const
int
w
=
output_grad_dims
[
3
];
const
int
size
[
4
]
=
{
n
,
c
,
h
,
w
};
ScopedSpatialTransformerDescriptor
st_dest
;
cudnnSpatialTransformerDescriptor_t
cudnn_st_dest
=
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grid_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Grid"
));
auto
output_grad_dims
=
output_grad
->
dims
();
const
int
n
=
output_grad_dims
[
0
];
const
int
c
=
output_grad_dims
[
1
];
const
int
h
=
output_grad_dims
[
2
];
const
int
w
=
output_grad_dims
[
3
];
const
int
size
[
4
]
=
{
n
,
c
,
h
,
w
};
ScopedSpatialTransformerDescriptor
st_dest
;
cudnnSpatialTransformerDescriptor_t
cudnn_st_dest
=
st_dest
.
descriptor
<
T
>
(
4
,
size
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
output_grad_dims
,
ctx
.
GetPlace
());
T
*
grid_grad_data
=
grid_grad
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
input_grad_desc
;
ScopedTensorDescriptor
output_grad_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_input_grad_desc
=
input_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input_grad
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_grad_desc
=
output_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
output_grad
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerBackward
(
handle
,
cudnn_st_dest
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
input_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_input_grad_desc
,
input_grad_data
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_output_grad_desc
,
output_grad_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
grid_grad_data
));
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
output_grad_dims
,
ctx
.
GetPlace
());
T
*
grid_grad_data
=
grid_grad
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
input_grad_desc
;
ScopedTensorDescriptor
output_grad_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_input_grad_desc
=
input_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
input_grad
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_grad_desc
=
output_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize2int
(
output_grad
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerBackward
(
handle
,
cudnn_st_dest
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
input_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_input_grad_desc
,
input_grad_data
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_output_grad_desc
,
output_grad_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
grid_grad_data
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_KERNEL
(
grid_sampler
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNGridSampleOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNGridSampleOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
grid_sampler
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNGridSampleOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNGridSampleOpKernel
<
double
>
);
REGISTER_OP_KERNEL
(
grid_sampler_grad
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNGridSampleGradOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNGridSampleGradOpKernel
<
double
>
);
paddle
::
operators
::
CUDNNGridSampleGradOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNGridSampleGradOpKernel
<
double
>
);
paddle/fluid/operators/grid_sampler_op.cc
浏览文件 @
ff6329bd
...
...
@@ -24,70 +24,76 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
class
GridSampleOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GridSampleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grid"
),
"Input(Grid) of GridSampleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
"Output(Output) of GridSampleOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
grid_dims
=
ctx
->
GetInputDim
(
"Grid"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
==
4
,
"Input(X) of GridSampleOp should be 4-D Tensor."
);
PADDLE_ENFORCE
(
grid_dims
.
size
()
==
4
,
"Input(Grid) of GridSampleOp should be 4-D Tensor."
);
PADDLE_ENFORCE
(
grid_dims
[
3
]
==
2
,
"Input(Grid) dims[3] should be 2."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
0
],
x_dims
[
0
],
"Input(X) and Input(Grid) dims[0] should be equal."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
1
],
x_dims
[
2
],
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
2
],
x_dims
[
3
],
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
);
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
"Output"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GridSampleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grid"
),
"Input(Grid) of GridSampleOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
"Output(Output) of GridSampleOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
grid_dims
=
ctx
->
GetInputDim
(
"Grid"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
==
4
,
"Input(X) of GridSampleOp should be 4-D Tensor."
);
PADDLE_ENFORCE
(
grid_dims
.
size
()
==
4
,
"Input(Grid) of GridSampleOp should be 4-D Tensor."
);
PADDLE_ENFORCE
(
grid_dims
[
3
]
==
2
,
"Input(Grid) dims[3] should be 2."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
0
],
x_dims
[
0
],
"Input(X) and Input(Grid) dims[0] should be equal."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
1
],
x_dims
[
2
],
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
2
],
x_dims
[
3
],
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
);
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
"Output"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
library_
);
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
library_
);
}
};
class
GridSampleOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input data of GridSampleOp, "
"This is a 4-D tensor with shape of [N, C, H, W]"
);
AddInput
(
"Grid"
,
"(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
"This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
"of x and y coordinates with shape [N, H, W] in last dimention"
);
AddOutput
(
"Output"
,
"(Tensor) Output tensor with shape [N, C, H, W]"
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default true) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
It sample input X by grid gennerate by AffineGridOp. The grid of shape
[N, H, W, 2] is the concatenation of (x, y) coordinates with shape
[N, H, W] each, with x indexing the 4th-D(W) of input feature map and y to
indexng the 3rd-D(H), finally results is the bilinear interpolation value
of 4 nearest corner points.
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input data of GridSampleOp, "
"This is a 4-D tensor with shape of [N, C, H, W]"
);
AddInput
(
"Grid"
,
"(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
"This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
"of x and y coordinates with shape [N, H, W] in last dimention"
);
AddOutput
(
"Output"
,
"(Tensor) Output tensor with shape [N, C, H, W]"
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default true) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
This operation samples input X by using bilinear interpolation based on
flow field grid, which is usually gennerated by affine_grid. The grid of
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
with shape [N, H, W] each, where grid_x is indexing the 4th dimension
(in width dimension) of input data x and grid_y is indexng the 3rd
dimention (in height dimension), finally results is the bilinear
interpolation value of 4 nearest corner points.
Step 1:
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
...
...
@@ -127,11 +133,11 @@ class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
output = wn * d_e * d_s + en * d_w * d_s
+ ws * d_e * d_n + es * d_w * d_n
)DOC"
);
}
}
};
class
GridSampleOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
...
...
@@ -144,43 +150,43 @@ class GridSampleOpGrad : public framework::OperatorWithKernel {
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
library_
);
if
(
platform
::
CanCUDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
library_
);
}
};
class
GridSampleGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"grid_sampler_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Grid"
,
Input
(
"Grid"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Output"
),
OutputGrad
(
"Output"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Grid"
),
InputGrad
(
"Grid"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"grid_sampler_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Grid"
,
Input
(
"Grid"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Output"
),
OutputGrad
(
"Output"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Grid"
),
InputGrad
(
"Grid"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace paddle
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
grid_sampler
,
ops
::
GridSampleOp
,
ops
::
GridSampleOpMaker
,
...
...
paddle/fluid/operators/grid_sampler_op.h
浏览文件 @
ff6329bd
...
...
@@ -19,19 +19,17 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
Array3
=
Eigen
::
DSizes
<
int64_t
,
3
>
;
using
Array4
=
Eigen
::
DSizes
<
int64_t
,
4
>
;
template
<
typename
T
>
static
inline
bool
isInBound
(
T
x
,
T
y
,
T
x_max
,
T
y_max
)
{
if
(
x
<
0
||
x
>
x_max
||
y
<
0
||
y
>
y_max
)
{
...
...
@@ -40,16 +38,17 @@ static inline bool isInBound(T x, T y, T x_max, T y_max) {
return
true
;
}
template
<
typename
DeviceContext
,
typename
T
>
static
void
CalcGridLocations
(
const
DeviceContext
&
ctx
,
const
Tensor
&
grid
,
Tensor
*
x_w
,
Tensor
*
x_e
,
Tensor
*
y_n
,
Tensor
*
y_s
,
Tensor
*
d_w
,
Tensor
*
d_e
,
Tensor
*
d_n
,
Tensor
*
d_s
)
{
template
<
typename
T
>
static
void
CalcGridLocations
(
const
platform
::
CPUDeviceContext
&
ctx
,
const
Tensor
&
grid
,
Tensor
*
x_w
,
Tensor
*
x_e
,
Tensor
*
y_n
,
Tensor
*
y_s
,
Tensor
*
d_w
,
Tensor
*
d_e
,
Tensor
*
d_n
,
Tensor
*
d_s
)
{
auto
&
place
=
*
ctx
.
eigen_device
();
const
int
n
=
grid
.
dims
()[
0
];
const
int
h
=
grid
.
dims
()[
1
];
const
int
w
=
grid
.
dims
()[
2
];
const
T
x_max
=
static_cast
<
T
>
(
w
-
1
);
const
T
y_max
=
static_cast
<
T
>
(
h
-
1
);
const
T
x_max
=
static_cast
<
T
>
(
w
-
1
);
const
T
y_max
=
static_cast
<
T
>
(
h
-
1
);
// split grid with shape (n, h, w, 2) into (x, y) by the 3rd Dim
Tensor
grid_x
,
grid_y
;
...
...
@@ -102,7 +101,7 @@ static void CalcGridLocations(const DeviceContext& ctx, const Tensor& grid,
template
<
typename
T
>
static
void
GetGridPointValue
(
const
Tensor
&
input
,
Tensor
*
output
,
const
Tensor
&
x
,
const
Tensor
&
y
)
{
const
Tensor
&
x
,
const
Tensor
&
y
)
{
const
int
n
=
input
.
dims
()[
0
];
const
int
c
=
input
.
dims
()[
1
];
const
int
h
=
input
.
dims
()[
2
];
...
...
@@ -117,7 +116,9 @@ static void GetGridPointValue(const Tensor& input, Tensor* output,
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
if
(
isInBound
(
x_t
(
i
,
k
,
l
),
y_t
(
i
,
k
,
l
),
(
T
)(
w
-
1
),
(
T
)(
h
-
1
)))
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
output_t
(
i
,
j
,
k
,
l
)
=
input_t
(
i
,
j
,
(
int
)
round
(
y_t
(
i
,
k
,
l
)),
(
int
)
round
(
x_t
(
i
,
k
,
l
)));
output_t
(
i
,
j
,
k
,
l
)
=
input_t
(
i
,
j
,
static_cast
<
int
>
(
round
(
y_t
(
i
,
k
,
l
))),
static_cast
<
int
>
(
round
(
x_t
(
i
,
k
,
l
))));
}
}
}
...
...
@@ -126,9 +127,10 @@ static void GetGridPointValue(const Tensor& input, Tensor* output,
}
template
<
typename
T
>
static
void
GatherOutputGradToInputGrad
(
const
Tensor
&
output_grad
,
Tensor
*
input_grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
d1
,
const
Tensor
&
d2
)
{
static
void
GatherOutputGradToInputGrad
(
const
Tensor
&
output_grad
,
Tensor
*
input_grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
d1
,
const
Tensor
&
d2
)
{
const
int
n
=
output_grad
.
dims
()[
0
];
const
int
c
=
output_grad
.
dims
()[
1
];
const
int
h
=
output_grad
.
dims
()[
2
];
...
...
@@ -143,10 +145,11 @@ static void GatherOutputGradToInputGrad(const Tensor& output_grad, Tensor* input
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
if
(
isInBound
(
x_t
(
i
,
k
,
l
),
y_t
(
i
,
k
,
l
),
(
T
)(
w
-
1
),
(
T
)(
h
-
1
)))
{
if
(
isInBound
(
x_t
(
i
,
k
,
l
),
y_t
(
i
,
k
,
l
),
(
T
)(
w
-
1
),
(
T
)(
h
-
1
)))
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
input_grad_t
(
i
,
j
,
(
int
)
y_t
(
i
,
k
,
l
),
(
int
)
x_t
(
i
,
k
,
l
))
+=
output_grad_t
(
i
,
j
,
k
,
l
)
*
d1_t
(
i
,
k
,
l
)
*
d2_t
(
i
,
k
,
l
);
input_grad_t
(
i
,
j
,
static_cast
<
int
>
(
round
(
y_t
(
i
,
k
,
l
))),
static_cast
<
int
>
(
round
(
x_t
(
i
,
k
,
l
))))
+=
output_grad_t
(
i
,
j
,
k
,
l
)
*
d1_t
(
i
,
k
,
l
)
*
d2_t
(
i
,
k
,
l
);
}
}
}
...
...
@@ -154,162 +157,166 @@ static void GatherOutputGradToInputGrad(const Tensor& output_grad, Tensor* input
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
GridSampleOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
// calc locations and distances of 4 corner points
Tensor
x_w
,
x_e
,
y_n
,
y_s
;
Tensor
d_w
,
d_e
,
d_n
,
d_s
;
CalcGridLocations
<
DeviceContext
,
T
>
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
grid
,
&
x_w
,
&
x_e
,
&
y_n
,
&
y_s
,
&
d_w
,
&
d_e
,
&
d_n
,
&
d_s
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
T
>
(
0
));
// calc 4 corner points value
Tensor
v_wn
,
v_en
,
v_ws
,
v_es
;
v_wn
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_en
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_ws
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_es
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
GetGridPointValue
<
T
>
(
*
input
,
&
v_wn
,
x_w
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_en
,
x_e
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_ws
,
x_w
,
y_s
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_es
,
x_e
,
y_s
);
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
d_s
);
auto
d_w_scaled_t
=
d_w_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_e_scaled_t
=
d_e_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_n_scaled_t
=
d_n_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_s_scaled_t
=
d_s_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
v_wn_t
=
EigenTensor
<
T
,
4
>::
From
(
v_wn
);
auto
v_en_t
=
EigenTensor
<
T
,
4
>::
From
(
v_en
);
auto
v_ws_t
=
EigenTensor
<
T
,
4
>::
From
(
v_ws
);
auto
v_es_t
=
EigenTensor
<
T
,
4
>::
From
(
v_es
);
auto
output_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output
);
//bilinear interpolaetion by 4 corner points
output_t
.
device
(
place
)
=
v_wn_t
*
d_e_scaled_t
*
d_s_scaled_t
+
v_en_t
*
d_w_scaled_t
*
d_s_scaled_t
+
v_ws_t
*
d_e_scaled_t
*
d_n_scaled_t
+
v_es_t
*
d_w_scaled_t
*
d_n_scaled_t
;
}
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
// calc locations and distances of 4 corner points
Tensor
x_w
,
x_e
,
y_n
,
y_s
;
Tensor
d_w
,
d_e
,
d_n
,
d_s
;
CalcGridLocations
<
T
>
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
*
grid
,
&
x_w
,
&
x_e
,
&
y_n
,
&
y_s
,
&
d_w
,
&
d_e
,
&
d_n
,
&
d_s
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
T
>
(
0
));
// calc 4 corner points value
Tensor
v_wn
,
v_en
,
v_ws
,
v_es
;
v_wn
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_en
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_ws
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_es
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
GetGridPointValue
<
T
>
(
*
input
,
&
v_wn
,
x_w
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_en
,
x_e
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_ws
,
x_w
,
y_s
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_es
,
x_e
,
y_s
);
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
d_s
);
auto
d_w_scaled_t
=
d_w_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_e_scaled_t
=
d_e_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_n_scaled_t
=
d_n_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
d_s_scaled_t
=
d_s_t
.
reshape
(
Array4
(
n
,
1
,
h
,
w
)).
broadcast
(
Array4
(
1
,
c
,
1
,
1
));
auto
v_wn_t
=
EigenTensor
<
T
,
4
>::
From
(
v_wn
);
auto
v_en_t
=
EigenTensor
<
T
,
4
>::
From
(
v_en
);
auto
v_ws_t
=
EigenTensor
<
T
,
4
>::
From
(
v_ws
);
auto
v_es_t
=
EigenTensor
<
T
,
4
>::
From
(
v_es
);
auto
output_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output
);
// bilinear interpolaetion by 4 corner points
output_t
.
device
(
place
)
=
v_wn_t
*
d_e_scaled_t
*
d_s_scaled_t
+
v_en_t
*
d_w_scaled_t
*
d_s_scaled_t
+
v_ws_t
*
d_e_scaled_t
*
d_n_scaled_t
+
v_es_t
*
d_w_scaled_t
*
d_n_scaled_t
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GridSampleGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
input_grad
,
static_cast
<
T
>
(
0
));
auto
*
grid_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Grid"
));
grid_grad
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
grid_grad
,
static_cast
<
T
>
(
0
));
Tensor
x_w
,
x_e
,
y_n
,
y_s
;
Tensor
d_w
,
d_e
,
d_n
,
d_s
;
CalcGridLocations
<
DeviceContext
,
T
>
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
grid
,
&
x_w
,
&
x_e
,
&
y_n
,
&
y_s
,
&
d_w
,
&
d_e
,
&
d_n
,
&
d_s
);
// gather output grad value to input grad by corner point coords and weight
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_w
,
y_n
,
d_e
,
d_s
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_w
,
y_s
,
d_e
,
d_n
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_e
,
y_n
,
d_w
,
d_s
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_e
,
y_s
,
d_w
,
d_n
);
// calc 4 corner points value
Tensor
v_wn
,
v_en
,
v_ws
,
v_es
;
v_wn
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_en
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_ws
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_es
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
GetGridPointValue
<
T
>
(
*
input
,
&
v_wn
,
x_w
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_en
,
x_e
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_ws
,
x_w
,
y_s
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_es
,
x_e
,
y_s
);
auto
v_wn_t
=
EigenTensor
<
T
,
4
>::
From
(
v_wn
);
auto
v_en_t
=
EigenTensor
<
T
,
4
>::
From
(
v_en
);
auto
v_ws_t
=
EigenTensor
<
T
,
4
>::
From
(
v_ws
);
auto
v_es_t
=
EigenTensor
<
T
,
4
>::
From
(
v_es
);
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
d_s
);
auto
output_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output_grad
);
Tensor
grid_grad_x
,
grid_grad_y
;
grid_grad_x
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
grid_grad_y
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
auto
grid_grad_x_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_grad_x
).
setConstant
(
0.0
);
auto
grid_grad_y_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_grad_y
).
setConstant
(
0.0
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grid_grad_x_t
(
i
,
k
,
l
)
+=
((
v_en_t
(
i
,
j
,
k
,
l
)
-
v_wn_t
(
i
,
j
,
k
,
l
))
*
d_s_t
(
i
,
k
,
l
)
+
(
v_es_t
(
i
,
j
,
k
,
l
)
-
v_ws_t
(
i
,
j
,
k
,
l
))
*
d_n_t
(
i
,
k
,
l
))
*
output_grad_t
(
i
,
j
,
k
,
l
);
grid_grad_y_t
(
i
,
k
,
l
)
+=
((
v_ws_t
(
i
,
j
,
k
,
l
)
-
v_wn_t
(
i
,
j
,
k
,
l
))
*
d_e_t
(
i
,
k
,
l
)
+
(
v_es_t
(
i
,
j
,
k
,
l
)
-
v_en_t
(
i
,
j
,
k
,
l
))
*
d_w_t
(
i
,
k
,
l
))
*
output_grad_t
(
i
,
j
,
k
,
l
);
}
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
input_grad
,
static_cast
<
T
>
(
0
));
auto
*
grid_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Grid"
));
grid_grad
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
grid_grad
,
static_cast
<
T
>
(
0
));
Tensor
x_w
,
x_e
,
y_n
,
y_s
;
Tensor
d_w
,
d_e
,
d_n
,
d_s
;
CalcGridLocations
<
T
>
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
*
grid
,
&
x_w
,
&
x_e
,
&
y_n
,
&
y_s
,
&
d_w
,
&
d_e
,
&
d_n
,
&
d_s
);
// gather output grad value to input grad by corner point coords and weight
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_w
,
y_n
,
d_e
,
d_s
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_w
,
y_s
,
d_e
,
d_n
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_e
,
y_n
,
d_w
,
d_s
);
GatherOutputGradToInputGrad
<
T
>
(
*
output_grad
,
input_grad
,
x_e
,
y_s
,
d_w
,
d_n
);
// calc 4 corner points value
Tensor
v_wn
,
v_en
,
v_ws
,
v_es
;
v_wn
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_en
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_ws
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
v_es
.
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
GetGridPointValue
<
T
>
(
*
input
,
&
v_wn
,
x_w
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_en
,
x_e
,
y_n
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_ws
,
x_w
,
y_s
);
GetGridPointValue
<
T
>
(
*
input
,
&
v_es
,
x_e
,
y_s
);
auto
v_wn_t
=
EigenTensor
<
T
,
4
>::
From
(
v_wn
);
auto
v_en_t
=
EigenTensor
<
T
,
4
>::
From
(
v_en
);
auto
v_ws_t
=
EigenTensor
<
T
,
4
>::
From
(
v_ws
);
auto
v_es_t
=
EigenTensor
<
T
,
4
>::
From
(
v_es
);
auto
d_w_t
=
EigenTensor
<
T
,
3
>::
From
(
d_w
);
auto
d_e_t
=
EigenTensor
<
T
,
3
>::
From
(
d_e
);
auto
d_n_t
=
EigenTensor
<
T
,
3
>::
From
(
d_n
);
auto
d_s_t
=
EigenTensor
<
T
,
3
>::
From
(
d_s
);
auto
output_grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
output_grad
);
Tensor
grid_grad_x
,
grid_grad_y
;
grid_grad_x
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
grid_grad_y
.
mutable_data
<
T
>
({
n
,
h
,
w
},
ctx
.
GetPlace
());
auto
grid_grad_x_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_grad_x
).
setConstant
(
0.0
);
auto
grid_grad_y_t
=
EigenTensor
<
T
,
3
>::
From
(
grid_grad_y
).
setConstant
(
0.0
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grid_grad_x_t
(
i
,
k
,
l
)
+=
((
v_en_t
(
i
,
j
,
k
,
l
)
-
v_wn_t
(
i
,
j
,
k
,
l
))
*
d_s_t
(
i
,
k
,
l
)
+
(
v_es_t
(
i
,
j
,
k
,
l
)
-
v_ws_t
(
i
,
j
,
k
,
l
))
*
d_n_t
(
i
,
k
,
l
))
*
output_grad_t
(
i
,
j
,
k
,
l
);
grid_grad_y_t
(
i
,
k
,
l
)
+=
((
v_ws_t
(
i
,
j
,
k
,
l
)
-
v_wn_t
(
i
,
j
,
k
,
l
))
*
d_e_t
(
i
,
k
,
l
)
+
(
v_es_t
(
i
,
j
,
k
,
l
)
-
v_en_t
(
i
,
j
,
k
,
l
))
*
d_w_t
(
i
,
k
,
l
))
*
output_grad_t
(
i
,
j
,
k
,
l
);
}
}
}
const
T
x_max
=
static_cast
<
T
>
(
w
-
1
);
const
T
y_max
=
static_cast
<
T
>
(
h
-
1
);
grid_grad_x_t
=
grid_grad_x_t
*
(
x_max
/
(
T
)
2
);
grid_grad_y_t
=
grid_grad_y_t
*
(
y_max
/
(
T
)
2
);
// gather grid_grad [x, y] in 3rd Dim
T
*
grid_grad_data
=
grid_grad
->
data
<
T
>
();
T
*
grid_grad_x_data
=
grid_grad_x
.
data
<
T
>
();
T
*
grid_grad_y_data
=
grid_grad_y
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
*
h
*
w
;
i
++
)
{
grid_grad_data
[
2
*
i
]
=
grid_grad_x_data
[
i
];
grid_grad_data
[
2
*
i
+
1
]
=
grid_grad_y_data
[
i
];
}
}
const
T
x_max
=
static_cast
<
T
>
(
w
-
1
);
const
T
y_max
=
static_cast
<
T
>
(
h
-
1
);
grid_grad_x_t
=
grid_grad_x_t
*
(
x_max
/
(
T
)
2
);
grid_grad_y_t
=
grid_grad_y_t
*
(
y_max
/
(
T
)
2
);
// gather grid_grad [x, y] in 3rd Dim
T
*
grid_grad_data
=
grid_grad
->
data
<
T
>
();
T
*
grid_grad_x_data
=
grid_grad_x
.
data
<
T
>
();
T
*
grid_grad_y_data
=
grid_grad_y
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
*
h
*
w
;
i
++
)
{
grid_grad_data
[
2
*
i
]
=
grid_grad_x_data
[
i
];
grid_grad_data
[
2
*
i
+
1
]
=
grid_grad_y_data
[
i
];
}
}
};
}
// namespace operators
}
// namespace paddle
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
ff6329bd
...
...
@@ -342,7 +342,7 @@ class ScopedPoolingDescriptor {
};
class
ScopedSpatialTransformerDescriptor
{
public:
public:
ScopedSpatialTransformerDescriptor
()
{
PADDLE_ENFORCE
(
dynload
::
cudnnCreateSpatialTransformerDescriptor
(
&
desc_
));
}
...
...
@@ -354,13 +354,13 @@ class ScopedSpatialTransformerDescriptor {
inline
cudnnSpatialTransformerDescriptor_t
descriptor
(
const
int
nbDims
,
const
int
dimA
[])
{
PADDLE_ENFORCE
(
dynload
::
cudnnSetSpatialTransformerNdDescriptor
(
desc_
,
CUDNN_SAMPLER_BILINEAR
,
CudnnDataType
<
T
>::
type
,
nbDims
,
dimA
));
desc_
,
CUDNN_SAMPLER_BILINEAR
,
CudnnDataType
<
T
>::
type
,
nbDims
,
dimA
));
return
desc_
;
}
private:
cudnnSpatialTransformerDescriptor_t
desc_
;
DISABLE_COPY_AND_ASSIGN
(
ScopedSpatialTransformerDescriptor
);
private:
cudnnSpatialTransformerDescriptor_t
desc_
;
DISABLE_COPY_AND_ASSIGN
(
ScopedSpatialTransformerDescriptor
);
};
inline
bool
CanCUDNNBeUsed
(
const
framework
::
ExecutionContext
&
ctx
)
{
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
ff6329bd
...
...
@@ -65,51 +65,51 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
* include all needed cudnn functions in HPPL
* different cudnn version has different interfaces
**/
#define CUDNN_DNN_ROUTINE_EACH(__macro) \
__macro(cudnnSetTensor4dDescriptor); \
__macro(cudnnSetTensor4dDescriptorEx); \
__macro(cudnnSetTensorNdDescriptor); \
__macro(cudnnGetTensorNdDescriptor); \
__macro(cudnnGetConvolutionNdForwardOutputDim); \
__macro(cudnnGetConvolutionForwardAlgorithm); \
__macro(cudnnCreateTensorDescriptor); \
__macro(cudnnDestroyTensorDescriptor); \
__macro(cudnnCreateFilterDescriptor); \
__macro(cudnnSetFilter4dDescriptor); \
__macro(cudnnSetFilterNdDescriptor); \
__macro(cudnnGetFilterNdDescriptor); \
__macro(cudnnSetPooling2dDescriptor); \
__macro(cudnnSetPoolingNdDescriptor); \
__macro(cudnnGetPoolingNdDescriptor); \
__macro(cudnnDestroyFilterDescriptor); \
__macro(cudnnCreateConvolutionDescriptor); \
__macro(cudnnCreatePoolingDescriptor); \
__macro(cudnnDestroyPoolingDescriptor); \
__macro(cudnnSetConvolution2dDescriptor); \
__macro(cudnnDestroyConvolutionDescriptor); \
__macro(cudnnSetConvolutionNdDescriptor); \
__macro(cudnnGetConvolutionNdDescriptor); \
__macro(cudnnDeriveBNTensorDescriptor); \
__macro(cudnnCreateSpatialTransformerDescriptor); \
__macro(cudnnSetSpatialTransformerNdDescriptor); \
__macro(cudnnDestroySpatialTransformerDescriptor);\
__macro(cudnnSpatialTfGridGeneratorForward); \
__macro(cudnnSpatialTfGridGeneratorBackward); \
__macro(cudnnSpatialTfSamplerForward); \
__macro(cudnnSpatialTfSamplerBackward); \
__macro(cudnnCreate); \
__macro(cudnnDestroy); \
__macro(cudnnSetStream); \
__macro(cudnnActivationForward); \
__macro(cudnnConvolutionForward); \
__macro(cudnnConvolutionBackwardBias); \
__macro(cudnnGetConvolutionForwardWorkspaceSize); \
__macro(cudnnTransformTensor); \
__macro(cudnnPoolingForward); \
__macro(cudnnPoolingBackward); \
__macro(cudnnSoftmaxBackward); \
__macro(cudnnSoftmaxForward); \
__macro(cudnnGetVersion); \
#define CUDNN_DNN_ROUTINE_EACH(__macro)
\
__macro(cudnnSetTensor4dDescriptor);
\
__macro(cudnnSetTensor4dDescriptorEx);
\
__macro(cudnnSetTensorNdDescriptor);
\
__macro(cudnnGetTensorNdDescriptor);
\
__macro(cudnnGetConvolutionNdForwardOutputDim);
\
__macro(cudnnGetConvolutionForwardAlgorithm);
\
__macro(cudnnCreateTensorDescriptor);
\
__macro(cudnnDestroyTensorDescriptor);
\
__macro(cudnnCreateFilterDescriptor);
\
__macro(cudnnSetFilter4dDescriptor);
\
__macro(cudnnSetFilterNdDescriptor);
\
__macro(cudnnGetFilterNdDescriptor);
\
__macro(cudnnSetPooling2dDescriptor);
\
__macro(cudnnSetPoolingNdDescriptor);
\
__macro(cudnnGetPoolingNdDescriptor);
\
__macro(cudnnDestroyFilterDescriptor);
\
__macro(cudnnCreateConvolutionDescriptor);
\
__macro(cudnnCreatePoolingDescriptor);
\
__macro(cudnnDestroyPoolingDescriptor);
\
__macro(cudnnSetConvolution2dDescriptor);
\
__macro(cudnnDestroyConvolutionDescriptor);
\
__macro(cudnnSetConvolutionNdDescriptor);
\
__macro(cudnnGetConvolutionNdDescriptor);
\
__macro(cudnnDeriveBNTensorDescriptor);
\
__macro(cudnnCreateSpatialTransformerDescriptor);
\
__macro(cudnnSetSpatialTransformerNdDescriptor);
\
__macro(cudnnDestroySpatialTransformerDescriptor);
\
__macro(cudnnSpatialTfGridGeneratorForward);
\
__macro(cudnnSpatialTfGridGeneratorBackward);
\
__macro(cudnnSpatialTfSamplerForward);
\
__macro(cudnnSpatialTfSamplerBackward);
\
__macro(cudnnCreate);
\
__macro(cudnnDestroy);
\
__macro(cudnnSetStream);
\
__macro(cudnnActivationForward);
\
__macro(cudnnConvolutionForward);
\
__macro(cudnnConvolutionBackwardBias);
\
__macro(cudnnGetConvolutionForwardWorkspaceSize);
\
__macro(cudnnTransformTensor);
\
__macro(cudnnPoolingForward);
\
__macro(cudnnPoolingBackward);
\
__macro(cudnnSoftmaxBackward);
\
__macro(cudnnSoftmaxForward);
\
__macro(cudnnGetVersion);
\
__macro(cudnnGetErrorString);
CUDNN_DNN_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
ff6329bd
...
...
@@ -7586,11 +7586,13 @@ def hash(input, hash_size, num_hash=1, name=None):
@
templatedoc
()
def
grid_sampler
(
x
,
grid
,
name
=
None
):
"""
It sample input X by grid gennerate by AffineGridOp. The grid of shape
[N, H, W, 2] is the concatenation of (x, y) coordinates with shape
[N, H, W] each, with x indexing the 4th-D(W) of input feature map and y to
indexng the 3rd-D(H), finally results is the bilinear interpolation value
of 4 nearest corner points.
This operation samples input X by using bilinear interpolation based on
flow field grid, which is usually gennerated by affine_grid. The grid of
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
with shape [N, H, W] each, where grid_x is indexing the 4th dimension
(in width dimension) of input data x and grid_y is indexng the 3rd
dimention (in height dimension), finally results is the bilinear
interpolation value of 4 nearest corner points.
Step 1:
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
...
...
@@ -7636,7 +7638,16 @@ def grid_sampler(x, grid, name=None):
name (str, default None): The name of this layer.
Returns:
out(Variable): Output data indices by grid from x of shape [N, C, H, W].
out(Variable): Output of shape [N, C, H, W] data samples input X
using bilnear interpolation based on input grid.
Exmples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
out = fluid.layers.grid_sampler(x=x, grid=grid)
"""
helper
=
LayerHelper
(
"grid_sampler"
,
**
locals
())
...
...
@@ -7649,10 +7660,6 @@ def grid_sampler(x, grid, name=None):
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
ipts
=
{
'X'
:
x
,
'Grid'
:
grid
}
helper
.
apppend_op
(
type
=
'grid_sampler'
,
inputs
=
ipts
,
outputs
=
{
'Output'
,
out
})
helper
.
apppend_op
(
type
=
'grid_sampler'
,
inputs
=
ipts
,
outputs
=
{
'Output'
,
out
})
return
out
python/paddle/fluid/tests/unittests/test_grid_sampler_op.py
浏览文件 @
ff6329bd
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
...
...
@@ -23,11 +22,11 @@ def AffineGrid(theta, size):
h
=
size
[
2
]
w
=
size
[
3
]
h_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
h
)[
np
.
newaxis
,
:],
w
,
axis
=
0
).
T
[:,
:,
np
.
newaxis
]
np
.
linspace
(
-
1
,
1
,
h
)[
np
.
newaxis
,
:],
w
,
axis
=
0
).
T
[:,
:,
np
.
newaxis
]
w_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
w
)[
np
.
newaxis
,
:],
h
,
axis
=
0
)[:,
:,
np
.
newaxis
]
np
.
linspace
(
-
1
,
1
,
w
)[
np
.
newaxis
,
:],
h
,
axis
=
0
)[:,
:,
np
.
newaxis
]
grid
=
np
.
concatenate
(
[
w_idx
,
h_idx
,
np
.
ones
([
h
,
w
,
1
])],
axis
=
2
)
# h * w * 3
[
w_idx
,
h_idx
,
np
.
ones
([
h
,
w
,
1
])],
axis
=
2
)
# h * w * 3
grid
=
np
.
repeat
(
grid
[
np
.
newaxis
,
:],
size
[
0
],
axis
=
0
)
# n * h * w *3
ret
=
np
.
zeros
([
n
,
h
*
w
,
2
])
...
...
@@ -37,6 +36,7 @@ def AffineGrid(theta, size):
return
ret
.
reshape
([
n
,
h
,
w
,
2
]).
astype
(
"float32"
)
def
getGridPointValue
(
data
,
x
,
y
):
data_shape
=
data
.
shape
N
=
data_shape
[
0
]
...
...
@@ -47,13 +47,15 @@ def getGridPointValue(data, x, y):
for
i
in
range
(
N
):
for
j
in
range
(
H
):
for
k
in
range
(
W
):
if
y
[
i
,
j
,
k
]
<
0
or
y
[
i
,
j
,
k
]
>
H
-
1
or
x
[
i
,
j
,
k
]
<
0
or
x
[
i
,
j
,
k
]
>
W
-
1
:
if
y
[
i
,
j
,
k
]
<
0
or
y
[
i
,
j
,
k
]
>
H
-
1
or
x
[
i
,
j
,
k
]
<
0
or
x
[
i
,
j
,
k
]
>
W
-
1
:
out
[
i
,
:,
j
,
k
]
=
0
else
:
out
[
i
,
:,
j
,
k
]
=
data
[
i
,
:,
y
[
i
,
j
,
k
],
x
[
i
,
j
,
k
]]
return
out
def
GridSampler
(
data
,
grid
):
dims
=
data
.
shape
N
=
dims
[
0
]
...
...
@@ -71,7 +73,7 @@ def GridSampler(data, grid):
x0
=
np
.
floor
(
x
).
astype
(
'int32'
)
x1
=
x0
+
1
y0
=
np
.
floor
(
y
).
astype
(
'int32'
)
y0
=
np
.
floor
(
y
).
astype
(
'int32'
)
y1
=
y0
+
1
wa
=
np
.
tile
(((
x1
-
x
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
H
,
W
)),
(
1
,
C
,
1
,
1
))
...
...
@@ -87,6 +89,7 @@ def GridSampler(data, grid):
out
=
(
wa
*
va
+
wb
*
vb
+
wc
*
vc
+
wd
*
vd
).
astype
(
'float32'
)
return
out
class
TestGridSamplerOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
...
...
@@ -115,5 +118,6 @@ class TestGridSamplerOp(OpTest):
self
.
grid_shape
=
(
2
,
7
,
3
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
ff6329bd
...
...
@@ -868,13 +868,12 @@ class TestBook(unittest.TestCase):
def
test_affine_grid_gen
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
,
5
,
7
,
3
],
dtype
=
'float32'
)
grid
=
layers
.
data
(
name
=
'grid'
,
shape
=
[
2
,
5
,
7
,
2
],
dtype
=
'float32'
)
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
,
5
,
7
,
3
],
dtype
=
'float32'
)
grid
=
layers
.
data
(
name
=
'grid'
,
shape
=
[
2
,
5
,
7
,
2
],
dtype
=
'float32'
)
out
=
layers
.
grid_sampler
(
x
,
grid
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录