nn.py 524.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
L
lvmengsi 已提交
64
    'instance_norm',
H
heqiaozhi 已提交
65
    'data_norm',
X
Xin Pan 已提交
66 67 68 69 70 71
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
72
    'sequence_unpad',
X
Xin Pan 已提交
73 74 75 76 77 78
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
79 80
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
81 82
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
83
    'sequence_slice',
X
Xin Pan 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
96
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
97 98 99 100 101
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
102
    'group_norm',
D
dengkaipeng 已提交
103
    'spectral_norm',
X
Xin Pan 已提交
104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
112
    'lod_append',
X
Xin Pan 已提交
113 114 115 116 117
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
118
    'roi_align',
X
Xin Pan 已提交
119 120 121 122
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
123
    'resize_trilinear',
124
    'resize_nearest',
X
Xin Pan 已提交
125
    'gather',
126
    'gather_nd',
X
Xin Pan 已提交
127
    'scatter',
128 129
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
130 131 132 133
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
134
    'selu',
X
Xin Pan 已提交
135 136
    'log',
    'crop',
137
    'crop_tensor',
X
Xin Pan 已提交
138
    'rank_loss',
M
minqiyang 已提交
139
    'margin_rank_loss',
X
Xin Pan 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
156
    'unique',
157
    'unique_with_counts',
X
Xin Pan 已提交
158 159 160 161 162 163 164 165 166 167
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
168 169
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
170 171 172 173 174 175
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
176
    'strided_slice',
X
Xin Pan 已提交
177
    'shape',
Z
zhoukunsheng 已提交
178
    'rank',
Z
zhoukunsheng 已提交
179
    'size',
X
Xin Pan 已提交
180 181 182 183 184 185 186 187 188 189
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
190
    'space_to_depth',
W
whs 已提交
191
    'affine_grid',
S
sneaxiy 已提交
192
    'sequence_reverse',
193
    'affine_channel',
B
barrierye 已提交
194
    'similarity_focus',
M
minqiyang 已提交
195
    'hash',
D
dengkaipeng 已提交
196
    'grid_sampler',
G
gmcather 已提交
197 198
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
199
    'bilinear_tensor_product',
C
chengduo 已提交
200 201
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
202
    'lstm',
S
shippingwang 已提交
203
    'shuffle_channel',
204
    'temporal_shift',
S
sneaxiy 已提交
205
    'py_func',
206
    'psroi_pool',
207
    'prroi_pool',
H
heqiaozhi 已提交
208
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
209
    'huber_loss',
D
dengkaipeng 已提交
210
    'kldiv_loss',
C
ceci3 已提交
211
    'npair_loss',
R
ruri 已提交
212
    'pixel_shuffle',
213
    'fsp_matrix',
H
heqiaozhi 已提交
214
    'continuous_value_model',
Z
zhoukunsheng 已提交
215
    'where',
Z
zhoukunsheng 已提交
216
    'sign',
217
    'deformable_conv',
218
    'unfold',
C
cjt222 已提交
219
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
220
    'filter_by_instag',
221
    'shard_index',
H
huangjun12 已提交
222
    'hard_swish',
R
ruri 已提交
223
    'mse_loss',
Y
Yu Yang 已提交
224 225
]

J
jerrywgz 已提交
226 227
kIgnoreIndex = -100

Y
Yu Yang 已提交
228 229 230 231 232 233 234

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
235
       name=None):
Y
Yu Yang 已提交
236
    """
237
    **Fully Connected Layer**
Y
Yu Yang 已提交
238

239
    This function creates a fully connected layer in the network. It can take
240
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
241
    Args in detail). It creates a variable called weights for each input tensor,
242 243 244 245
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
246
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
247 248
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
249

250
    When the input is single tensor:
C
caoying03 已提交
251

252 253 254 255 256
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
257 258 259

    .. math::

260
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
261 262 263

    In the above equation:

264 265 266
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
267
    * :math:`b`: The bias parameter created by this layer (if needed).
268
    * :math:`Act`: The activation function.
C
caoying03 已提交
269
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
289
    Args:
R
ranqiu 已提交
290 291 292 293 294 295 296 297 298 299
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
300
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
301 302 303 304
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
305 306
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
307 308
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
309

310
    Returns:
F
fengjiayi 已提交
311
        Variable: The transformation result.
312 313

    Raises:
C
caoying03 已提交
314
        ValueError: If rank of the input tensor is less than 2.
315 316 317 318

    Examples:
        .. code-block:: python

319
          import paddle.fluid as fluid
320
          # when input is single tensor
F
fengjiayi 已提交
321
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
322
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
323 324 325 326 327

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
328
    """
C
caoying03 已提交
329
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
330 331 332 333

    dtype = helper.input_dtype()

    mul_results = []
334 335
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
336 337 338
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
339

Y
Yu Yang 已提交
340
        w = helper.create_parameter(
341
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
342
        tmp = helper.create_variable_for_type_inference(dtype)
343
        helper.append_op(
344 345 346
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
347
            outputs={"Out": tmp},
M
mozga-intel 已提交
348 349
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
350 351 352 353
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
354
    else:
X
Xin Pan 已提交
355
        pre_bias = helper.create_variable_for_type_inference(dtype)
356
        helper.append_op(
357 358 359
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
360
            attrs={"use_mkldnn": False})
361 362 363 364
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
365 366


H
HaoRen 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


453 454 455
def embedding(input,
              size,
              is_sparse=False,
456
              is_distributed=False,
457 458 459
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
460
    """
461 462
    **Embedding Layer**

463
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
464 465
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
466 467 468

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
469 470

    Args:
471
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
472
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
473 474 475 476
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
477
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
478 479 480 481 482 483 484 485
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
486

487 488 489
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
490

491 492
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
493

B
bdzhuxiaoning 已提交
494 495 496
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
497 498 499
    """

    helper = LayerHelper('embedding', **locals())
500
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
501 502
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
503 504
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
505
    tmp = helper.create_variable_for_type_inference(dtype)
506 507
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
508 509 510 511 512
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
513 514 515
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
516
            'remote_prefetch': remote_prefetch,
517 518
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
519 520 521
    return tmp


H
hutuxian 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


W
wopeizl 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
586

W
wopeizl 已提交
587 588 589 590 591 592 593 594 595 596 597
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
598

W
wopeizl 已提交
599 600 601 602
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
603

W
wopeizl 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
640
            
641
            import paddle.fluid as fluid
642 643
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
644
            hidden_dim = 512
645 646 647 648 649 650
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
651
                                           bias_attr=False)
652

W
wopeizl 已提交
653 654 655
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
656
    assert in_dygraph_mode(
657
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
701 702


P
phlrain 已提交
703 704 705 706 707 708
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
709
         dropout_prob=0.0,
P
phlrain 已提交
710 711 712 713 714
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
715
    """
P
phlrain 已提交
716
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
717 718

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
719
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
720 721
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
722
    .. math::
M
minqiyang 已提交
723 724 725 726 727 728 729

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
730
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
731 732 733 734

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
735 736

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
737 738 739 740 741 742
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
743 744 745
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
746
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
747

M
minqiyang 已提交
748
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
749 750 751 752 753
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
754
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
755 756 757 758 759
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
760
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
761 762
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
763 764
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
765 766 767 768 769 770
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
771
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
772

L
liuhongyu 已提交
773 774

    Returns:
M
minqiyang 已提交
775 776
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
777
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
778

H
haowang101779990 已提交
779 780 781 782
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
783
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
784 785
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
786
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
787 788 789 790


    Examples:
        .. code-block:: python
791
            
792 793 794
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

795 796 797 798 799
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
800 801 802 803 804 805
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
806 807 808 809 810
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
811 812 813 814
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
815 816 817
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
877 878 879 880 881 882 883 884 885 886
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
887
                  proj_activation='tanh',
888
                  dtype='float32',
X
xuezhong 已提交
889 890 891 892 893
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
894 895 896
    """
    **Dynamic LSTMP Layer**

897 898 899 900 901 902
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
903 904 905 906 907

    The formula is as follows:

    .. math::

908
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
909

910
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
911

912
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
913

914
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
915

916
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
917

918
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
919

920
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
921

Y
Yibing Liu 已提交
922 923 924 925 926 927
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
928
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
929
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
930
          bias vector).
Y
Yibing Liu 已提交
931 932 933
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
934
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
935
    * :math:`h`: The hidden state.
936
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
937 938
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
939
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
940
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
941
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
942 943
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
944 945 946 947

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
948

Y
Yibing Liu 已提交
949 950 951 952 953 954 955 956 957 958 959 960
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
961
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
962 963
                               hidden-hidden weight and projection weight.

964 965
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
966 967
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
968 969
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
970
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
971 972 973 974 975

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
976
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
977 978 979 980 981 982
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
983
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
984 985 986
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
987
                                - The shape is (1 x 7D).
C
chengduo 已提交
988 989 990 991 992

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
993 994 995 996 997 998 999 1000 1001
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
1002
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
1003 1004
                              default "tanh".
        proj_activation(str): The activation for projection output.
1005
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
1006
                              default "tanh".
Y
Yibing Liu 已提交
1007
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
1008 1009
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
1021 1022

    Returns:
1023 1024 1025 1026
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
1027 1028

    Examples:
1029

Y
Yibing Liu 已提交
1030 1031
        .. code-block:: python

1032
            import paddle.fluid as fluid
1033 1034 1035 1036
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
1037
            hidden_dim, proj_dim = 512, 256
1038
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
1039
                                     act=None, bias_attr=None)
1040 1041 1042
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
1043 1044 1045 1046
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
1047
    """
1048

L
lujun 已提交
1049
    assert in_dygraph_mode(
1050 1051
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1052
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1053
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1054
    size = size // 4
Y
Yibing Liu 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1065 1066 1067 1068 1069 1070
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1086

X
xuezhong 已提交
1087 1088 1089 1090 1091
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1092 1093
    helper.append_op(
        type='lstmp',
1094
        inputs=inputs,
Y
Yibing Liu 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1104 1105
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1115 1116 1117 1118 1119 1120 1121
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1122 1123
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1124
    """
1125
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1126

1127 1128 1129
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1130

G
guosheng 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1140

G
guosheng 已提交
1141
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1142

Q
Qiao Longfei 已提交
1143 1144 1145

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1158
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1159 1160
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1161 1162 1163 1164
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1165
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1166 1167

    Args:
1168 1169
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1170
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1171
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1172 1173
            is the hidden size.
        size(int): The dimension of the gru cell.
1174
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1175 1176
            hidden-hidden weight matrix. Note:

1177
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1178
              :math:`D` is the hidden size.
1179
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1180
              The first part are weights of the update gate and reset gate with
1181
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1182
              candidate hidden state with shape :math:`(D \\times D)`.
1183 1184 1185 1186 1187

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1188
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1189
            the bias in the update gate, reset gate and candidate calculations.
1190 1191 1192
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1193 1194
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1195
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1196 1197 1198
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1199
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1200
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1201 1202 1203 1204
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1205 1206

    Returns:
G
guosheng 已提交
1207
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1208
            and sequence length is the same with the input.
1209

G
guosheng 已提交
1210
    Examples:
1211

G
guosheng 已提交
1212 1213
        .. code-block:: python

1214 1215
            import paddle.fluid as fluid

1216 1217 1218 1219
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1220
            hidden_dim = 512
1221
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1222
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1223 1224
    """

L
lujun 已提交
1225
    assert in_dygraph_mode(
1226 1227
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1228 1229 1230 1231 1232 1233 1234
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1235
    batch_size = input.shape[0]
G
guosheng 已提交
1236
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1237
    if h_0:
G
guosheng 已提交
1238
        assert h_0.shape == (
Y
Yancey 已提交
1239 1240 1241
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1242

X
Xin Pan 已提交
1243 1244 1245 1246
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1260 1261
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1262 1263 1264 1265
        })
    return hidden


Y
Yu Yang 已提交
1266 1267 1268
def gru_unit(input,
             hidden,
             size,
1269 1270
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1271
             activation='tanh',
Q
Qiao Longfei 已提交
1272 1273
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1274
    """
1275 1276 1277
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1278
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1279
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1280

1281 1282
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1283

1284
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1285

1286
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1303 1304

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1305 1306 1307
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1308 1309
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1310 1311
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1312 1313 1314
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1315 1316 1317

    Args:
        input (Variable): The fc transformed input value of current step.
1318
        hidden (Variable): The hidden value of gru unit from previous step.
1319
        size (integer): The input dimension value.
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1334
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1335
            the bias in the update gate, reset gate and candidate calculations.
1336 1337 1338
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1339 1340
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1341 1342 1343 1344
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1345

1346 1347 1348 1349 1350 1351
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1376
    size = size // 3
Y
Yu Yang 已提交
1377 1378

    # create weight
1379 1380
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1381

X
Xin Pan 已提交
1382 1383 1384
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1385
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1386
    # create bias
1387
    if helper.bias_attr:
Y
Yu Yang 已提交
1388 1389 1390
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1391
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1392 1393 1394

    helper.append_op(
        type='gru_unit',
1395
        inputs=inputs,
Y
Yu Yang 已提交
1396 1397 1398 1399 1400 1401
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1402 1403
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1404 1405 1406 1407 1408
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1409
@templatedoc()
1410
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
1411 1412 1413 1414 1415 1416 1417 1418
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
1419
        Length(${length_type}): ${length_comment}
1420
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
1421 1422

    Returns:
D
dzhwinter 已提交
1423 1424 1425
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1426

J
JesseyXujin 已提交
1427 1428 1429
    Examples:
        .. code-block:: python

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
                label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
                label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
                label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
1470
                     name='crfw',
1471 1472 1473 1474 1475 1476
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
1477

1478 1479 1480 1481 1482 1483 1484 1485
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
            ll=np.array([[3,3,4,2]])
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}

            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
1486 1487 1488 1489
            
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
Y
yuyang18 已提交
1490
    """
Y
Yu Yang 已提交
1491 1492 1493 1494 1495 1496
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1497 1498 1499 1500 1501 1502 1503 1504
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1505 1506 1507 1508 1509 1510 1511
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
        this_inputs['length'] = [length]
Y
Yu Yang 已提交
1512 1513
    helper.append_op(
        type='linear_chain_crf',
1514
        inputs=this_inputs,
Y
Yu Yang 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1525 1526 1527 1528
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1529

W
wopeizl 已提交
1530 1531
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1532

W
wopeizl 已提交
1533
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1534

W
wopeizl 已提交
1535
        label(${label_type}): ${label_comment}
1536

W
wopeizl 已提交
1537 1538
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1539

W
wopeizl 已提交
1540 1541
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1542

1543
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1544 1545 1546 1547 1548 1549 1550
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1551 1552 1553 1554 1555 1556 1557 1558
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1559
                "Transition": transition,
W
wopeizl 已提交
1560 1561
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1562

W
wopeizl 已提交
1563
    return viterbi_path
Y
Yu Yang 已提交
1564 1565


Y
yi.wu 已提交
1566
@templatedoc()
F
fengjiayi 已提交
1567
def cos_sim(X, Y):
Y
Yu Yang 已提交
1568
    """
Y
yi.wu 已提交
1569 1570 1571
    ${comment}

    Args:
1572 1573
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1574

Y
yi.wu 已提交
1575
    Returns:
1576
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1577 1578 1579 1580

    Examples:
        .. code-block:: python

1581
            import paddle.fluid as fluid
L
lvmengsi 已提交
1582 1583 1584
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1585
    """
F
fengjiayi 已提交
1586
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1587 1588 1589
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1600 1601 1602 1603 1604
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1605
            dropout_implementation="downgrade_in_infer"):
1606 1607 1608 1609 1610
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1611
    training. The dropout operator randomly sets (according to the given dropout
1612 1613 1614
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1615 1616
    dropout op can be removed from the program to make the program more efficient.

1617
    Args:
1618 1619
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1620 1621 1622 1623 1624 1625 1626
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1627 1628
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1629
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1630 1631

                                           - train: out = input * mask
C
ceci3 已提交
1632
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1633 1634 1635

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1636
                                        2. upscale_in_train, upscale the outcome at training time
1637

H
haowang101779990 已提交
1638 1639
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1640

H
haowang101779990 已提交
1641 1642
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1643

M
minqiyang 已提交
1644

1645
    Returns:
1646
        Variable: A tensor variable is the shape with `x`.
1647 1648

    Examples:
1649

1650 1651
        .. code-block:: python

1652
            import paddle.fluid as fluid
1653 1654
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1655 1656
    """

F
fengjiayi 已提交
1657
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1658 1659
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1660
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1661 1662 1663 1664

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1665 1666 1667 1668 1669
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1670 1671 1672 1673
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1674
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1675
            'dropout_implementation': dropout_implementation,
1676
        })
1677 1678 1679
    return out


J
jerrywgz 已提交
1680
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1681
    """
Y
Yibing Liu 已提交
1682 1683
    **Cross Entropy Layer**

1684 1685 1686
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1687 1688

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1689
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1690

Y
Yibing Liu 已提交
1691
        .. math::
Y
yangyaming 已提交
1692

Y
Yibing Liu 已提交
1693 1694 1695
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1696 1697
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1698 1699 1700 1701 1702

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1703
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1704 1705 1706
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1707 1708
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1709
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1710

Y
Yibing Liu 已提交
1711
    Args:
Y
yangyaming 已提交
1712
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1713 1714 1715 1716
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1717
        label (Variable|list): the ground truth which is a 2-D tensor. When
1718 1719 1720 1721
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1722
        soft_label (bool): a flag indicating whether to
1723
                                           interpretate the given labels as soft
1724
                                           labels. Default: `False`.
M
minqiyang 已提交
1725 1726
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1727
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1728 1729 1730 1731 1732

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1733 1734 1735
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1736

H
haowang101779990 已提交
1737 1738
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1739

H
haowang101779990 已提交
1740 1741
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1742 1743 1744 1745

    Examples:
        .. code-block:: python

1746
          import paddle.fluid as fluid
L
lvmengsi 已提交
1747 1748 1749 1750
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1751
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1752
    """
S
sneaxiy 已提交
1753 1754
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1755
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1756
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1757 1758 1759 1760 1761
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1762 1763
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1764 1765 1766
    return out


S
sneaxiy 已提交
1767 1768 1769 1770
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1771
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1772 1773 1774 1775 1776
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1777
                 'MatchX': [match_x],
S
sneaxiy 已提交
1778 1779 1780 1781 1782
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1783
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1784
    """
1785
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1786

1787
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1788
    The loss at a given point in one session is defined as:
1789 1790 1791

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1792 1793

    Learn more details by reading paper <session-based recommendations with recurrent
1794
    neural networks>.
F
frankwhzhang 已提交
1795

1796 1797 1798 1799 1800 1801
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1802 1803
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1804 1805 1806
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1807 1808 1809
    Examples:
        .. code-block:: python

1810 1811 1812 1813 1814 1815 1816
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1817
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1818
    """
1819 1820 1821 1822 1823
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1824
                'Label': [label]},
1825 1826 1827 1828
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1829
def square_error_cost(input, label):
Y
Yu Yang 已提交
1830
    """
1831 1832
    **Square error cost layer**

1833 1834
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1849 1850
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1851 1852

    Returns:
G
guosheng 已提交
1853
        Variable: The tensor variable storing the element-wise squared error \
1854
                  difference of input and label.
1855 1856 1857 1858

    Examples:
        .. code-block:: python

1859
          import paddle.fluid as fluid
R
ruri 已提交
1860 1861 1862
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1863

Y
Yu Yang 已提交
1864
    """
F
fengjiayi 已提交
1865
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1866
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1873
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1874
    helper.append_op(
F
fengjiayi 已提交
1875 1876
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1877 1878 1879
    return square_out


Y
yi.wu 已提交
1880
@templatedoc()
Y
Yu Yang 已提交
1881 1882 1883 1884
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1885 1886
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1887
    """
Y
yi.wu 已提交
1888
    **Chunk Evaluator**
Y
yi.wu 已提交
1889

Y
yangyaming 已提交
1890
    This function computes and outputs the precision, recall and
1891
    F1-score of chunk detection.
Y
yi.wu 已提交
1892

M
minqiyang 已提交
1893
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1894
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1895 1896 1897 1898 1899 1900

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1901

Y
yi.wu 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1927

Y
yi.wu 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1952
    Args:
1953 1954 1955 1956 1957
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1958
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1959

Y
yi.wu 已提交
1960
    Returns:
Y
update  
yi.wu 已提交
1961 1962 1963
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1964

Y
yi.wu 已提交
1965 1966 1967
    Examples:
        .. code-block:: python

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1979
            crf = fluid.layers.linear_chain_crf(
1980
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1981
            crf_decode = fluid.layers.crf_decoding(
1982
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1983 1984 1985 1986 1987
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1988
    """
F
fengjiayi 已提交
1989
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1990 1991

    # prepare output
X
Xin Pan 已提交
1992 1993 1994 1995 1996 1997 1998
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1999

2000 2001 2002 2003 2004
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
2005 2006
    helper.append_op(
        type="chunk_eval",
2007
        inputs=this_input,
Y
Yu Yang 已提交
2008 2009 2010
        outputs={
            "Precision": [precision],
            "Recall": [recall],
2011 2012 2013 2014
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
2015 2016 2017
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
2018 2019
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
2020
        })
2021 2022
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
2023 2024


2025
@templatedoc()
Y
Yu Yang 已提交
2026 2027 2028 2029
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
2030 2031
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
2032 2033
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
2034 2035
                  act=None,
                  name=None):
Y
Yu Yang 已提交
2036
    """
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
2073 2074 2075

    Args:
        input (Variable): ${x_comment}
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2107

2108 2109
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2110 2111

    Examples:
2112

B
bdzhuxiaoning 已提交
2113 2114 2115
        .. code-block:: python

             import paddle.fluid as fluid
2116

B
bdzhuxiaoning 已提交
2117
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2118
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2119 2120
    """

L
lujun 已提交
2121
    assert not in_dygraph_mode(), (
2122
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2123 2124 2125 2126 2127
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2128
    pre_bias = helper.create_variable_for_type_inference(dtype)
2129 2130
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2141 2142
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2143 2144 2145 2146 2147
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2148
def sequence_softmax(input, use_cudnn=False, name=None):
2149 2150 2151
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2152
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2169 2170 2171
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2172

2173 2174 2175 2176 2177 2178 2179
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2180
             import paddle.fluid as fluid
2181 2182 2183 2184
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2185
    assert not in_dygraph_mode(), (
2186
        "sequence layer is not supported in dygraph mode yet.")
2187 2188
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2189
    softmax_out = helper.create_variable_for_type_inference(dtype)
2190 2191 2192 2193 2194 2195 2196 2197
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2198
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2199
    """
2200
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2201
    has the same shape as the input.
Q
qiaolongfei 已提交
2202

D
dengkaipeng 已提交
2203
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2204
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2205
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2206 2207 2208
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2209
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2210
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2211 2212 2213 2214 2215 2216 2217

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2218
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2219 2220 2221 2222 2223 2224 2225 2226

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2227 2228
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2229 2230
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2231 2232 2233
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2234 2235 2236 2237 2238 2239 2240 2241

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2242 2243
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2244
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2245
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2246
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2247 2248
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2249 2250

    """
2251 2252
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2253
    softmax_out = helper.create_variable_for_type_inference(dtype)
2254 2255 2256 2257
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2258 2259
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2260 2261 2262
    return softmax_out


Y
Yu Yang 已提交
2263 2264 2265
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2266 2267
           stride=1,
           padding=0,
2268
           dilation=1,
Y
Yu Yang 已提交
2269 2270 2271
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2272
           use_cudnn=True,
2273 2274
           act=None,
           name=None):
Y
Yu Yang 已提交
2275
    """
C
chengduoZH 已提交
2276
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2277 2278
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2279
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2280 2281 2282 2283 2284 2285
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2286
    for more details.
2287 2288 2289
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2290

2291
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2292

C
chengduoZH 已提交
2293 2294
    .. math::

C
refine  
chengduoZH 已提交
2295
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2296

T
tensor-tang 已提交
2297
    Where:
C
chengduoZH 已提交
2298

2299 2300 2301 2302 2303
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2304
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2305 2306 2307

    Example:

2308 2309
        - Input:

W
weixing02 已提交
2310
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2311

W
weixing02 已提交
2312
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2313

2314
        - Output:
T
tensor-tang 已提交
2315

W
weixing02 已提交
2316
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2317

C
chengduoZH 已提交
2318
        Where
2319 2320

        .. math::
C
chengduoZH 已提交
2321

W
weixing02 已提交
2322 2323
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2324 2325

    Args:
2326
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2327
        num_filters(int): The number of filter. It is as same as the output
2328
            image channel.
2329
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2345 2346 2347 2348 2349
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2350
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2351 2352 2353 2354 2355
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2356 2357
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2358 2359
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2360
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2361
            will be named automatically. Default: None
C
chengduoZH 已提交
2362 2363

    Returns:
G
guosheng 已提交
2364
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2365 2366
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2367
    Raises:
2368 2369
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2370

C
chengduoZH 已提交
2371 2372 2373
    Examples:
        .. code-block:: python

2374
          import paddle.fluid as fluid
2375 2376
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2377 2378 2379
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2380
    assert param_attr is not False, "param_attr should not be False here."
2381
    l_type = 'conv2d'
X
xzl 已提交
2382 2383
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2384
        l_type = 'depthwise_conv2d'
2385 2386 2387 2388

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2389 2390 2391 2392 2393
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2394
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2395

C
chengduoZH 已提交
2396 2397 2398
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2399
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2400

C
chengduoZH 已提交
2401 2402
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2403 2404

    input_shape = input.shape
M
minqiyang 已提交
2405
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2406 2407

    def _get_default_param_initializer():
C
chengduo 已提交
2408 2409
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2410 2411 2412 2413 2414 2415 2416 2417
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2418
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2419 2420

    helper.append_op(
2421
        type=l_type,
Y
Yu Yang 已提交
2422 2423 2424 2425 2426
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2427 2428 2429
        attrs={
            'strides': stride,
            'paddings': padding,
2430
            'dilations': dilation,
C
chengduoZH 已提交
2431
            'groups': groups,
2432
            'use_cudnn': use_cudnn,
2433
            'use_mkldnn': False,
2434
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2435
        })
Y
Yu Yang 已提交
2436 2437 2438 2439 2440 2441

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2459 2460 2461 2462 2463 2464
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2474 2475
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2476 2477 2478
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2479
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2502
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2503 2504
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2505
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2506 2507
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2508
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2509 2510
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2511
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2512 2513
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2514
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2515 2516 2517 2518 2519 2520
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2531 2532
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2533 2534
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2535
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2536
            will be named automatically. Default: None.
C
chengduoZH 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2549
          import paddle.fluid as fluid
2550 2551
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2552 2553 2554
    """

    l_type = 'conv3d'
C
chengduo 已提交
2555
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2566
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2580 2581 2582
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2583 2584 2585 2586 2587 2588 2589 2590
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2591
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2606
            'use_mkldnn': False
C
chengduoZH 已提交
2607 2608
        })

2609
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2610 2611 2612 2613

    return helper.append_activation(pre_act)


2614
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2615
    """
Y
yangyaming 已提交
2616 2617 2618
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2629 2630
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2631 2632 2633 2634
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2635
         out.dim = [4, 1]
2636
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2637 2638

       for different pool_type:
2639 2640 2641
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2642
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2643 2644 2645 2646 2647
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2648

L
Luo Tao 已提交
2649
    Args:
2650
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2651
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2652
            It supports average, sum, sqrt and max.
2653 2654
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2655 2656 2657 2658 2659 2660 2661

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2662

2663 2664
             import paddle.fluid as fluid

Y
yangyaming 已提交
2665
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2666 2667 2668 2669 2670
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2671 2672
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2673
    """
L
lujun 已提交
2674
    assert not in_dygraph_mode(), (
2675
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2676
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2677
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2678 2679
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2680 2681 2682 2683 2684 2685

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2686 2687 2688 2689 2690
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2691

Y
yangyaming 已提交
2692 2693 2694 2695 2696
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2697 2698 2699
    return pool_out


C
add doc  
chengduoZH 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2716 2717 2718 2719
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2720
    """
L
lujun 已提交
2721
    assert not in_dygraph_mode(), (
2722
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2723
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2724
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2725 2726 2727 2728 2729
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2730
def sequence_first_step(input):
L
Luo Tao 已提交
2731
    """
L
Luo Tao 已提交
2732
    This function gets the first step of sequence.
L
Luo Tao 已提交
2733 2734 2735 2736

    .. code-block:: text

       x is a 1-level LoDTensor:
2737
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2738 2739 2740 2741 2742
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2743
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2744
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2745

L
Luo Tao 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2755

2756
             import paddle.fluid as fluid
Y
yangyaming 已提交
2757
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2758 2759 2760
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2761 2762 2763
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2764
def sequence_last_step(input):
L
Luo Tao 已提交
2765
    """
L
Luo Tao 已提交
2766
    This function gets the last step of sequence.
L
Luo Tao 已提交
2767 2768 2769 2770

    .. code-block:: text

       x is a 1-level LoDTensor:
2771
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2772 2773 2774 2775 2776
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2777
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2778
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2779

L
Luo Tao 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2789

2790
             import paddle.fluid as fluid
Y
yangyaming 已提交
2791
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2792 2793 2794
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2795 2796 2797
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2798 2799 2800 2801
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2802
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2803 2804 2805 2806 2807
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2808

H
haowang101779990 已提交
2809
              - Case:
Y
Yibing Liu 已提交
2810

2811
            Given the input Variable **input**:
2812

2813 2814 2815
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2816

2817
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2818

2819
            the output Variable will be
2820

2821 2822 2823
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2824

M
minqiyang 已提交
2825
    Note:
H
haowang101779990 已提交
2826
          The first dimension size of **input**, **offset** and **length**
2827
          should be equal. The **offset** should start from 0.
2828

Y
Yibing Liu 已提交
2829
    Args:
2830
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2831
                         sequences.
Y
Yibing Liu 已提交
2832 2833 2834 2835 2836 2837
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2838
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2839 2840 2841 2842 2843

    Examples:

        .. code-block:: python

2844
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2845 2846 2847 2848 2849
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2850
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2851 2852
                                                   length=length)
    """
L
lujun 已提交
2853
    assert not in_dygraph_mode(), (
2854
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2855 2856
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2857
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2872
@templatedoc()
Y
Yu Yang 已提交
2873
def pool2d(input,
C
chengduoZH 已提交
2874 2875
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2876 2877
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2878
           global_pooling=False,
C
chengduoZH 已提交
2879
           use_cudnn=True,
2880
           ceil_mode=False,
2881 2882
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2883
    """
F
fengjiayi 已提交
2884
    ${comment}
2885 2886

    Args:
2887 2888 2889
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2890
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2891
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2892 2893
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2894
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2895 2896 2897 2898 2899 2900
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2901 2902 2903
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2904
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2905
                        layer will be named automatically.
2906
        exclusive (bool): Whether to exclude padding points in average pooling
2907
                          mode, default is true
F
fengjiayi 已提交
2908

2909
    Returns:
F
fengjiayi 已提交
2910
        Variable: The pooling result.
F
fengjiayi 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2921
          import paddle.fluid as fluid
F
fengjiayi 已提交
2922 2923
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2924
          pool2d = fluid.layers.pool2d(
2925 2926 2927 2928
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2929
                            global_pooling=False)
Y
Yu Yang 已提交
2930 2931 2932 2933 2934
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2935

C
chengduoZH 已提交
2936 2937 2938 2939 2940
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2941 2942 2943 2944
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2945 2946
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2947

C
Add doc  
chengduoZH 已提交
2948
    l_type = 'pool2d'
2949 2950

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2951
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2952
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2953 2954

    helper.append_op(
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2966 2967
            "use_mkldnn": False,
            "exclusive": exclusive,
2968 2969 2970 2971 2972
        })

    return pool_out


D
dengkaipeng 已提交
2973
@templatedoc()
2974 2975 2976 2977 2978 2979 2980 2981
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2982 2983
           name=None,
           exclusive=True):
2984
    """
2985
    ${comment}
2986 2987

    Args:
D
dengkaipeng 已提交
2988 2989 2990 2991 2992
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2993 2994 2995 2996 2997
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2998 2999 3000 3001 3002 3003 3004
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
3005
        exclusive (bool): Whether to exclude padding points in average pooling
3006
                          mode, default is true
3007

3008
    Returns:
3009
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
3010 3011 3012 3013 3014

    Examples:

        .. code-block:: python

3015
          import paddle.fluid as fluid
D
dengkaipeng 已提交
3016 3017 3018 3019 3020 3021 3022 3023
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
3024 3025 3026 3027 3028
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
3029

C
chengduoZH 已提交
3030 3031 3032 3033 3034
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

3035 3036 3037
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
3038

C
chengduoZH 已提交
3039 3040
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
3041

3042 3043
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3044
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3045
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3046 3047

    helper.append_op(
3048
        type=l_type,
Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054 3055
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
3056
            "paddings": pool_padding,
3057
            "use_cudnn": use_cudnn,
3058
            "ceil_mode": ceil_mode,
3059 3060
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
3061 3062 3063 3064 3065
        })

    return pool_out


3066 3067 3068 3069 3070 3071 3072
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3073 3074 3075 3076 3077 3078 3079
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3094 3095 3096 3097 3098 3099 3100 3101 3102

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3103 3104
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3119
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3120
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3121
          # of input data into m * n grids averagely and performs poolings in each
3122 3123
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3124
          #
3125 3126 3127 3128 3129 3130 3131 3132
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3133
          import paddle.fluid as fluid
3134 3135
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3136
          pool_out = fluid.layers.adaptive_pool2d(
3137 3138
                            input=data,
                            pool_size=[3, 3],
3139
                            pool_type='avg')
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3150
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3176
    return (pool_out, mask) if require_index else pool_out
3177 3178 3179 3180 3181 3182 3183 3184 3185


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3186 3187 3188 3189 3190 3191 3192
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3211 3212 3213

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3214 3215 3216
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3217
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3218
            it must contain three integers, (Depth, Height, Width).
3219
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3220 3221
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3236 3237
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3238
          # of input data into l * m * n grids averagely and performs poolings in each
3239 3240
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3241
          #
3242 3243 3244 3245 3246 3247 3248 3249 3250
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3251
          #                 output[:, :, i, j, k] =
3252 3253
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3254 3255 3256

          import paddle.fluid as fluid

3257
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3258 3259
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3260
                            input=data,
D
dengkaipeng 已提交
3261
                            pool_size=[3, 3, 3],
3262
                            pool_type='avg')
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3273
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3299
    return (pool_out, mask) if require_index else pool_out
3300 3301


Y
Yu Yang 已提交
3302 3303 3304 3305 3306 3307 3308
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3309
               data_layout='NCHW',
Y
Yang Yang 已提交
3310
               in_place=False,
3311 3312
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3313
               moving_variance_name=None,
3314
               do_model_average_for_mean_and_var=False,
3315 3316
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3317
    """
Q
qiaolongfei 已提交
3318 3319 3320 3321
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3322

Q
qiaolongfei 已提交
3323
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3324

Q
qiaolongfei 已提交
3325 3326
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3327 3328 3329
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3356 3357 3358 3359
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3360
    Args:
Q
qingqing01 已提交
3361
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3362
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3372 3373
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3374 3375 3376
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3377 3378
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3379 3380 3381
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3382
        data_layout(string, default NCHW): NCHW|NHWC
3383
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3384 3385
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3386 3387 3388
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3389
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3390 3391
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3392
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3393
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3394 3395 3396 3397 3398
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3399 3400

    Returns:
Q
qiaolongfei 已提交
3401
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3402 3403 3404 3405 3406

    Examples:

        .. code-block:: python

3407
            import paddle.fluid as fluid
L
lvmengsi 已提交
3408
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3409 3410
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3411
    """
C
chengduo 已提交
3412
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3413 3414 3415
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3416 3417 3418 3419
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3438
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3439

3440 3441
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3442 3443 3444
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3445
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3446
        shape=param_shape,
W
Wu Yi 已提交
3447
        dtype=dtype)
3448 3449 3450 3451 3452 3453
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3454
            trainable=False,
W
wanghaoshuang 已提交
3455
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3456
        shape=param_shape,
W
Wu Yi 已提交
3457
        dtype=dtype)
3458
    variance.stop_gradient = True
Y
Yu Yang 已提交
3459 3460 3461 3462 3463 3464

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3465 3466 3467 3468
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3469

X
Xin Pan 已提交
3470 3471
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3489 3490 3491 3492
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3493
            "data_layout": data_layout,
X
Xin Pan 已提交
3494
            "use_mkldnn": False,
3495 3496
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3497
        })
Y
Yu Yang 已提交
3498 3499 3500 3501

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean of one  feature map in mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance of one feature map in mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift


    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

    Args:
        input(variable): The rank of input variable can be 2, 3, 4, 5.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: A tensor variable which is the result after applying instance normalization on the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3675 3676
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3677

3678 3679
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3745
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3746 3747 3748 3749

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3750
@templatedoc()
G
guosheng 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3761
    ${comment}
G
guosheng 已提交
3762 3763 3764

    The formula is as follows:

Y
yuyang18 已提交
3765
    ..  math::
G
guosheng 已提交
3766 3767 3768 3769 3770 3771 3772

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3773 3774 3775 3776 3777 3778 3779 3780
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3781

G
guosheng 已提交
3782 3783
    Args:
        input(Variable): The input tensor variable.
3784
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3785
            normalization. Default True.
3786
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3787 3788
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3789
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3790
            Default 1.
3791
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3792
            division by zero. Default 1e-05.
G
guosheng 已提交
3793
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3794 3795
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3796 3797
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3798
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3799 3800
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3801
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3802
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3803
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3804 3805 3806
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3807 3808

    Returns:
Y
yuyang18 已提交
3809
        ${y_comment}
G
guosheng 已提交
3810 3811 3812

    Examples:

3813
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3814 3815 3816
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3817
    """
L
lujun 已提交
3818
    assert in_dygraph_mode(
L
lujun 已提交
3819
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3834
    if shift:
G
guosheng 已提交
3835 3836 3837 3838 3839 3840
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3841 3842 3843 3844 3845
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3873
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
3887
        data_layout(string, default NCHW): NCHW(num_batch, channels, h, w) or NHWC(num_batch, h, w, channels).
D
Dun 已提交
3888 3889 3890 3891 3892 3893 3894
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3895
        >>> import paddle.fluid as fluid
D
Dun 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3906 3907 3908 3909 3910 3911
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3925 3926
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3937 3938 3939 3940 3941
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3942 3943 3944 3945 3946

    return helper.append_activation(group_norm_out)


@templatedoc()
3947
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3948 3949 3950
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3951
    This layer calculates the spectral normalization value of weight parameters of
3952
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3953
    Parameters. Calculations are showed as follows.
3954

D
dengkaipeng 已提交
3955 3956 3957
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3958
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3971
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3972 3973 3974 3975

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3976

D
dengkaipeng 已提交
3977
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3978 3979
                

D
dengkaipeng 已提交
3980 3981 3982 3983
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3984 3985 3986
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3987 3988 3989
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3990
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3991 3992

    Examples:
K
Kaipeng Deng 已提交
3993
       .. code-block:: python
D
dengkaipeng 已提交
3994

K
Kaipeng Deng 已提交
3995 3996 3997 3998 3999
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
4000 4001
    """
    helper = LayerHelper('spectral_norm', **locals())
4002
    dtype = weight.dtype
D
dengkaipeng 已提交
4003 4004 4005

    # create intput and parameters
    inputs = {'Weight': weight}
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
4024 4025

    # create output
4026
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
4027 4028

    helper.append_op(
4029
        type="spectral_norm",
D
Dun 已提交
4030
        inputs=inputs,
4031 4032 4033 4034 4035 4036
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
4037

4038
    return out
D
Dun 已提交
4039 4040


Y
Yu Yang 已提交
4041 4042 4043 4044
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4045 4046 4047
                     padding=0,
                     stride=1,
                     dilation=1,
4048
                     groups=None,
C
caoying03 已提交
4049
                     param_attr=None,
4050
                     bias_attr=None,
C
chengduoZH 已提交
4051
                     use_cudnn=True,
4052
                     act=None,
C
caoying03 已提交
4053
                     name=None):
Y
Yu Yang 已提交
4054
    """
4055 4056 4057 4058 4059 4060 4061 4062
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
4063
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
4064
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4065 4066 4067
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4068 4069 4070 4071 4072

    For each input :math:`X`, the equation is:

    .. math::

4073
        Out = \sigma (W \\ast X + b)
4074

4075
    Where:
4076 4077 4078

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
4079 4080 4081 4082
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4083

4084 4085 4086 4087
    Example:

        - Input:

4088
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
4089

4090
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
4091 4092 4093

        - Output:

4094
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
4095 4096

        Where
Y
Yu Yang 已提交
4097

4098 4099
        .. math::

4100 4101
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
4111 4112

    Args:
4113 4114 4115 4116
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4117 4118 4119 4120
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4149
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
4150 4151 4152
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4153
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
4154
            will be named automatically. Default: True.
Y
Yu Yang 已提交
4155 4156

    Returns:
4157
        Variable: The tensor variable storing the convolution transpose result.
4158 4159

    Raises:
4160 4161
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4162 4163 4164 4165

    Examples:
       .. code-block:: python

4166
          import paddle.fluid as fluid
4167 4168
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4169
    """
C
chengduo 已提交
4170
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
4171 4172 4173 4174 4175 4176 4177 4178
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
4179 4180 4181
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
4182 4183 4184
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
4185

C
chengduoZH 已提交
4186 4187
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
4188

Y
Yu Yang 已提交
4189 4190 4191 4192 4193
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
4194

Y
Yu Yang 已提交
4195 4196
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
4197

C
chengduoZH 已提交
4198
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4199
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
4200
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4201
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
4202
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
4203 4204 4205
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
4206

4207 4208 4209 4210 4211 4212 4213
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
4214
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4215
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
4216

Y
Yu Yang 已提交
4217 4218 4219
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4220
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4221
    helper.append_op(
4222
        type=op_type,
Y
Yu Yang 已提交
4223 4224
        inputs={'Input': [input],
                'Filter': [img_filter]},
4225
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4226
        attrs={
4227
            'output_size': output_size,
4228 4229 4230 4231 4232
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4233 4234
        })

4235 4236 4237
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4238 4239


4240
def conv3d_transpose(input,
Y
Yu Yang 已提交
4241 4242 4243
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4244 4245 4246
                     padding=0,
                     stride=1,
                     dilation=1,
4247
                     groups=None,
C
caoying03 已提交
4248
                     param_attr=None,
4249
                     bias_attr=None,
C
chengduoZH 已提交
4250
                     use_cudnn=True,
4251
                     act=None,
C
caoying03 已提交
4252
                     name=None):
Y
Yu Yang 已提交
4253
    """
4254
    **Convlution3D transpose layer**
4255

4256
    The convolution3D transpose layer calculates the output based on the input,
4257
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4258 4259 4260 4261 4262
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4263
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4264 4265 4266
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4267 4268 4269 4270 4271

    For each input :math:`X`, the equation is:

    .. math::

4272
        Out = \sigma (W \\ast X + b)
4273 4274 4275

    In the above equation:

4276 4277
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4278 4279 4280 4281
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4282

4283 4284 4285 4286
    Example:

        - Input:

4287
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4288

4289
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4290 4291 4292

        - Output:

4293
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4294 4295

        Where
Y
Yu Yang 已提交
4296

4297 4298
        .. math::

4299 4300 4301
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4302 4303

    Args:
4304
        input(Variable): The input image with [N, C, D, H, W] format.
4305 4306 4307
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4308
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4309 4310
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4311
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4312 4313 4314
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4315 4316
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4317
        stride(int|tuple): The stride size. If stride is a tuple, it must
4318 4319
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4320
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4321 4322 4323
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4324 4325 4326 4327 4328
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4338 4339
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4340 4341
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4342 4343
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4344 4345

    Returns:
4346
        Variable: The tensor variable storing the convolution transpose result.
4347 4348

    Raises:
4349 4350
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4351 4352 4353 4354

    Examples:
       .. code-block:: python

4355
          import paddle.fluid as fluid
4356 4357
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4358
    """
C
chengduo 已提交
4359
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4360 4361
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4362
    if not isinstance(input, Variable):
4363
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4364 4365
    input_channel = input.shape[1]

4366 4367 4368
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4369

C
chengduoZH 已提交
4370 4371 4372
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4373 4374 4375 4376 4377 4378
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4379 4380 4381
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4382

4383
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4384
                         padding[0] - 1) // dilation[0] + 1
4385
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4386
                         padding[1] - 1) // dilation[1] + 1
4387
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4388
                         padding[2] - 1) // dilation[2] + 1
4389
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4390
    else:
4391 4392
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4393

4394
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4395
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4396 4397 4398
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4399
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4400
    helper.append_op(
4401
        type=l_type,
Y
Yu Yang 已提交
4402 4403
        inputs={'Input': [input],
                'Filter': [img_filter]},
4404
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4405 4406 4407 4408
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4409
            'groups': groups,
C
chengduoZH 已提交
4410 4411
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4412

4413 4414
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4415
    return out
Y
yangyaming 已提交
4416 4417


Y
yangyaming 已提交
4418
def sequence_expand(x, y, ref_level=-1, name=None):
4419
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4420 4421 4422 4423
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4424 4425 4426 4427 4428

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4429
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4430
                x.data = [[a], [b], [c], [d]]
4431 4432 4433
                x.dims = [4, 1]

            y is a LoDTensor:
4434 4435
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4436

Y
yangyaming 已提交
4437
            ref_level: 0
4438

Y
yangyaming 已提交
4439
            then output is a 1-level LoDTensor:
4440
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4441
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4442 4443 4444 4445
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4446
                x.data = [[a], [b], [c]]
4447 4448 4449
                x.dims = [3, 1]

            y is a LoDTensor:
4450
                y.lod = [[2, 0, 3]]
4451

Y
yangyaming 已提交
4452
            ref_level: -1
4453

Y
yangyaming 已提交
4454 4455 4456
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4457 4458 4459
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4460 4461
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4462
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4463
                        will be named automatically.
4464 4465 4466 4467 4468 4469

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4470
	
4471
            import paddle.fluid as fluid
4472
            import paddle.fluid.layers as layers
4473 4474 4475
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4476
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4477
    """
L
lujun 已提交
4478
    assert not in_dygraph_mode(), (
4479
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4480
    helper = LayerHelper('sequence_expand', input=x, **locals())
4481
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4482
    tmp = helper.create_variable_for_type_inference(dtype)
4483
    helper.append_op(
Y
yangyaming 已提交
4484 4485 4486 4487 4488
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4489
    return tmp
4490 4491


C
chengduo 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4540 4541
            
            import paddle.fluid as fluid
4542
            import paddle.fluid.layers as layers
C
chengduo 已提交
4543 4544 4545 4546 4547 4548

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4549
    assert not in_dygraph_mode(), (
4550
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4551 4552
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4553
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4554 4555 4556 4557 4558 4559 4560 4561
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4562
@templatedoc()
4563
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4564 4565 4566 4567 4568
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4569 4570 4571
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4572
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4573 4574 4575 4576
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4577 4578 4579
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4580

F
fengjiayi 已提交
4581
    Returns:
M
minqiyang 已提交
4582
        Variable: The padded sequence batch and the original lengths before
4583
                  padding. All sequences has the same length.
M
minqiyang 已提交
4584

F
fengjiayi 已提交
4585 4586 4587
    Examples:
        .. code-block:: python

4588
            import paddle.fluid as fluid
F
fengjiayi 已提交
4589 4590 4591 4592
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4593
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4594
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4595 4596 4597
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4598
    assert not in_dygraph_mode(), (
4599
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4600 4601
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4602 4603
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4604 4605 4606 4607

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4608 4609 4610 4611 4612 4613
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4614 4615
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4616
        attrs={'padded_length': maxlen})
4617
    return out, length
F
fengjiayi 已提交
4618 4619


4620
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4621
    """
4622
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4623

4624 4625
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4635 4636 4637
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4638
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4639 4640 4641 4642 4643 4644

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4645
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4646 4647 4648 4649 4650 4651

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4652 4653
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4654 4655 4656 4657 4658 4659 4660

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4661
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4662 4663 4664 4665 4666
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4667
    assert not in_dygraph_mode(), (
4668
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4669 4670
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4671
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4683 4684 4685 4686 4687 4688 4689
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4690
                is_accumulated=True,
4691 4692
                name=None,
                return_parent_idx=False):
4693
    """
4694 4695
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4696 4697 4698

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4699 4700

    This layer does the search in beams for one time step. Specifically, it
4701 4702 4703
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4715 4716 4717 4718

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4719

4720
    Args:
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4744 4745
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4746 4747
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4748 4749 4750 4751
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4752

4753
    Returns:
4754 4755 4756 4757
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4758 4759 4760 4761

    Examples:
        .. code-block:: python

4762 4763
            import paddle.fluid as fluid

4764 4765 4766
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4779
                axis=0)
4780
            selected_ids, selected_scores = fluid.layers.beam_search(
4781 4782 4783 4784 4785 4786 4787
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4788
    helper = LayerHelper('beam_search', **locals())
4789 4790 4791 4792 4793 4794
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4795

X
Xin Pan 已提交
4796 4797 4798
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4799 4800 4801 4802 4803
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4804 4805 4806

    helper.append_op(
        type='beam_search',
4807
        inputs=inputs,
Q
Qiao Longfei 已提交
4808 4809 4810
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4811
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4812 4813 4814 4815 4816 4817
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4818
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4819
        })
4820 4821 4822 4823
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4824 4825


4826 4827 4828 4829 4830 4831 4832
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4833

4834 4835 4836 4837 4838 4839 4840 4841 4842
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4843

4844 4845 4846 4847 4848 4849
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4850

4851 4852
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4853

4854 4855
            import paddle.fluid as fluid

4856 4857
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4858 4859 4860
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4861 4862 4863
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4864 4865
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4881 4882 4883 4884
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4885
              param_attr=None,
C
caoying03 已提交
4886 4887
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4888 4889 4890 4891
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4892
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4893

4894
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4895

4896
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4897

4898
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4899 4900 4901

            h_t & = o_t tanh(c_t)

4902 4903 4904 4905 4906 4907
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4908 4909 4910

        .. math::

4911
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4912 4913 4914 4915 4916 4917 4918 4919

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4920
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4921 4922

    Args:
Y
yangyaming 已提交
4923 4924 4925 4926 4927 4928
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4929
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4942 4943
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4944 4945

    Returns:
Y
yangyaming 已提交
4946
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4947 4948

    Raises:
4949 4950 4951 4952
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4953 4954 4955 4956 4957

    Examples:

        .. code-block:: python

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4985
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4986 4987 4988 4989
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4990 4991
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4992 4993 4994
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4995
    size = cell_t_prev.shape[1]
4996
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4997 4998
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4999
                param_attr=param_attr,
5000
                bias_attr=bias_attr)
Y
yangyaming 已提交
5001
    dtype = x_t.dtype
X
Xin Pan 已提交
5002 5003
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
5013
    return h, c
G
guosheng 已提交
5014 5015


C
caoying03 已提交
5016
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5017
    """
Y
yangyaming 已提交
5018
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
5019 5020 5021

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5022
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
5023 5024
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5025 5026
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5027
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
5028
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5029
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5030 5031
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5032 5033 5034

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
5035

G
guosheng 已提交
5036 5037 5038
    Examples:
        .. code-block:: python

5039
            import paddle.fluid as fluid
G
guosheng 已提交
5040 5041 5042
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
5043
            # Each example is followed by the corresponding output tensor.
5044
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5045 5046 5047 5048
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
5049

5050
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5051 5052
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
5053
            # Each example is followed by the corresponding output tensor.
5054 5055 5056
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
5057

G
guosheng 已提交
5058 5059
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
5060
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5061 5062
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5063 5064 5065 5066 5067
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5068
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5069 5070 5071 5072
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5073 5074


C
caoying03 已提交
5075
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5076
    """
Y
Yibing Liu 已提交
5077
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
5078 5079 5080

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
5081 5082 5083
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
5084
            must be in the range :math:`[-rank(input), rank(input))`. If
5085
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
5086
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
5087 5088
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5089
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
5090
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
5091
                       will be named automatically.
G
guosheng 已提交
5092 5093

    Returns:
Y
Yibing Liu 已提交
5094
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
5095

G
guosheng 已提交
5096 5097 5098
    Examples:
        .. code-block:: python

5099
            import paddle.fluid as fluid
G
guosheng 已提交
5100 5101 5102 5103
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5104
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5105 5106 5107
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
5108
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
5109

5110
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5111 5112 5113
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5114 5115 5116
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
5117 5118
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
5119
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5120 5121
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5122 5123 5124 5125 5126
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5127
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5128 5129 5130 5131
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
5132 5133


C
caoying03 已提交
5134
def reduce_max(input, dim=None, keep_dim=False, name=None):
5135
    """
Y
yangyaming 已提交
5136
    Computes the maximum of tensor elements over the given dimension.
5137 5138 5139

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5140
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
5141 5142 5143
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5144
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5145 5146
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5147
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5148 5149
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5150 5151 5152

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5153

5154 5155 5156
    Examples:
        .. code-block:: python

5157
            import paddle.fluid as fluid
5158 5159 5160 5161
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5162
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5163 5164 5165 5166
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
5167

5168
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5169 5170 5171
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5172 5173 5174
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
5175 5176
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
5177
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5178 5179
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5180 5181 5182 5183 5184
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5185
            'dim': dim if dim != None else [0],
5186 5187 5188 5189 5190 5191
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5192
def reduce_min(input, dim=None, keep_dim=False, name=None):
5193
    """
Y
yangyaming 已提交
5194
    Computes the minimum of tensor elements over the given dimension.
5195 5196 5197

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5198
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
5199 5200 5201
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5202
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5203 5204
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5205
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5206 5207
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5208 5209 5210

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5211

5212 5213 5214
    Examples:
        .. code-block:: python

5215
            import paddle.fluid as fluid
5216 5217 5218 5219
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5220
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5221 5222 5223 5224
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5225

5226
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5227 5228 5229
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5230 5231 5232
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5233 5234
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5235
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5236 5237
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5238 5239 5240 5241 5242
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5243
            'dim': dim if dim != None else [0],
5244 5245 5246 5247
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5248 5249


5250 5251 5252 5253 5254 5255
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5256
        dim (list|int|None): The dimensions along which the product is performed. If
5257 5258
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5259 5260
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5261 5262 5263
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5264
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5265
            layer will be named automatically.
5266 5267 5268 5269 5270 5271 5272

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5273
            import paddle.fluid as fluid
5274 5275 5276 5277
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5278
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5279 5280 5281
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5282
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5283
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5284

5285
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5286 5287 5288
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5289 5290 5291
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5292 5293
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5294
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5295 5296
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5297 5298 5299 5300 5301
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5302
            'dim': dim if dim != None else [0],
5303 5304 5305 5306 5307 5308
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5309 5310
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5311
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5331
        
5332
            import paddle.fluid as fluid
5333 5334 5335
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5336 5337 5338
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5339 5340 5341 5342 5343 5344 5345
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5366
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5386

5387
            import paddle.fluid as fluid
5388 5389 5390
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5391 5392 5393
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5394 5395 5396 5397 5398 5399 5400
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5415 5416 5417 5418 5419
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5420
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5421
    """
C
caoying03 已提交
5422
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5423 5424 5425

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5426 5427 5428 5429 5430
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5431
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5432
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5433
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5434 5435
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5436 5437

    Returns:
D
dzhwinter 已提交
5438
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5439 5440 5441 5442

    Examples:
        .. code-block:: python

5443 5444 5445 5446 5447 5448
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5449
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5450 5451 5452 5453 5454 5455 5456 5457
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5458 5459 5460 5461 5462 5463 5464 5465
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5466
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5467 5468 5469
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5470
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5484 5485 5486 5487 5488 5489 5490 5491 5492


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5493
    .. math::
5494 5495

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5496 5497 5498 5499 5500

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5501
        x(Variable|list): The input tensor to l2_normalize layer.
5502
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5503 5504
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5505
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5506
            the default value is 1e-12.
5507
        name(str|None): A name for this layer(optional). If set None, the layer \
5508
            will be named automatically.
C
caoying03 已提交
5509 5510

    Returns:
5511
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5512 5513

    Examples:
5514

C
caoying03 已提交
5515 5516
        .. code-block:: python

5517
            import paddle.fluid as fluid
5518 5519 5520 5521
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5522 5523
    """

F
fengjiayi 已提交
5524 5525
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5526 5527
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5528 5529
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5530
    helper.append_op(
5531 5532 5533 5534
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5535
        attrs={
5536 5537
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5538 5539
        })
    return out
5540 5541


S
sneaxiy 已提交
5542
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5543
    """
Y
ying 已提交
5544 5545 5546 5547
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5548

C
chengduoZH 已提交
5549
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5550
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5551

5552 5553 5554 5555 5556
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5557
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5558

C
chengduoZH 已提交
5559
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5560
      performs in the following way.
G
guosheng 已提交
5561

5562
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5563
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5564
        last two dimensions and a batched matrix multiply supporting broadcast
5565
        applies on the two tensors.
G
guosheng 已提交
5566

Y
ying 已提交
5567 5568
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5569
    removed after matrix multiplication.
G
guosheng 已提交
5570 5571 5572

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5573 5574 5575
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5576
        alpha (float): The scale of output. Default 1.0.
5577
        name(str|None): A name for this layer(optional). If set None, the layer
5578
            will be named automatically.
G
guosheng 已提交
5579 5580

    Returns:
石晓伟 已提交
5581
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5582

G
guosheng 已提交
5583 5584 5585
    Examples:
        .. code-block:: python

5586
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5587
            # x: [B, ..., M, K], y: [B, ..., K, N]
5588
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5589

5590
            # x: [B, M, K], y: [B, K, N]
5591
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5592

5593
            # x: [B, M, K], y: [K, N]
5594
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5595

5596
            # x: [M, K], y: [K, N]
5597
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5598 5599

            # x: [B, M, K], y: [K]
5600
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5601

5602
            # x: [K], y: [K]
5603
            # fluid.layers.matmul(x, y)  # out: [1]
5604

Y
ying 已提交
5605
            # x: [M], y: [N]
5606 5607
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5608
            import paddle.fluid as fluid
5609 5610 5611
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5612
    """
Y
ying 已提交
5613 5614 5615 5616 5617 5618 5619

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5620
            y_shape = y_shape + [1]
Y
ying 已提交
5621 5622 5623 5624 5625 5626 5627

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5628 5629
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5630

C
chengduo 已提交
5631
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5632
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5633 5634 5635
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5636
                if dim_x != y_shape[i]:
C
chengduo 已提交
5637 5638
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5639 5640 5641

    __check_input(x, y)

5642
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5643
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5644
    helper.append_op(
5645 5646 5647 5648
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5649 5650 5651
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5652
            'alpha': float(alpha),
S
sneaxiy 已提交
5653
        })
5654
    return out
5655 5656


5657
def topk(input, k, name=None):
Q
qingqing01 已提交
5658 5659 5660 5661
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5662
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5663 5664 5665 5666 5667 5668
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5690 5691 5692
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5693
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5694
                 of input.
5695
        name(str|None): A name for this layer(optional). If set None, the layer
5696
                       will be named automatically.
F
fengjiayi 已提交
5697
                       Default: None
Q
qingqing01 已提交
5698 5699

    Returns:
5700 5701 5702
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5703
        within the last dimension of input.
Q
qingqing01 已提交
5704

F
fengjiayi 已提交
5705 5706
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5707 5708 5709 5710

    Examples:
        .. code-block:: python

5711
            import paddle.fluid as fluid
5712 5713
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5714 5715 5716
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5717 5718
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5719 5720 5721 5722 5723 5724
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5725 5726
    helper.append_op(
        type="top_k",
W
whs 已提交
5727
        inputs=inputs,
Q
qingqing01 已提交
5728 5729
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5730
        attrs=attrs)
Q
qingqing01 已提交
5731 5732 5733 5734 5735
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5736 5737 5738 5739 5740 5741
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5742
    """
R
ruri 已提交
5743
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5744 5745 5746 5747 5748 5749 5750 5751
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5752

Y
ying 已提交
5753
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5754

5755
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5756
    the total number denoted by `batch_size`, and the separation is specified
5757 5758
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5759

5760
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5761 5762
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5763

5764
    Args:
5765 5766
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5767
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5768
                          the length of reference string.
5769
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5770
                                     calculating edit distance.
5771 5772
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5773

W
wanghaoshuang 已提交
5774
    Returns:
5775 5776 5777
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5778 5779 5780

    Examples:
        .. code-block:: python
5781
            
R
ruri 已提交
5782 5783
            import paddle.fluid as fluid

5784 5785 5786 5787
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5788

5789 5790 5791 5792 5793 5794 5795 5796
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5797

5798
    """
5799
    helper = LayerHelper("edit_distance", **locals())
5800

5801
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5802
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5803 5804
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5805 5806 5807 5808 5809

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5810
            attrs={"tokens": ignored_tokens})
5811 5812 5813 5814 5815
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5816
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5817
            attrs={"tokens": ignored_tokens})
5818 5819
        label = erased_label

5820 5821 5822 5823 5824
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5825
    # edit distance op
X
Xin Pan 已提交
5826 5827
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5828 5829
    helper.append_op(
        type="edit_distance",
5830
        inputs=this_inputs,
5831 5832
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5833 5834
        attrs={"normalized": normalized})

5835
    return edit_distance_out, sequence_num
5836 5837 5838 5839 5840


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5841

Y
ying 已提交
5842 5843 5844 5845
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5863
        input.lod = [[4, 4]]
M
minqiyang 已提交
5864

W
whs 已提交
5865
        Computation:
5866

W
whs 已提交
5867 5868 5869 5870 5871 5872
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5873 5874 5875 5876 5877

        output.data = [[2],
                       [1],
                       [3]]

5878
        output.lod = [[2, 1]]
5879

W
whs 已提交
5880

5881 5882
    Args:

Y
ying 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5892
        name (str): The name of this layer. It is optional.
5893 5894

    Returns:
H
haowang101779990 已提交
5895 5896 5897
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5898
                  LoD [[]] and dims [1, 1].
5899 5900 5901 5902

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5903
            import paddle.fluid as fluid
5904 5905
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5906
    """
5907
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5908
    _, topk_indices = topk(input, k=1)
5909 5910

    # ctc align op
X
Xin Pan 已提交
5911
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5912 5913 5914
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5915
        outputs={"Output": [ctc_out]},
5916 5917
        attrs={"merge_repeated": True,
               "blank": blank})
5918
    return ctc_out
5919 5920


5921 5922 5923 5924 5925 5926
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5927
    """
5928 5929
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5930
    to compute Connectionist Temporal Classification (CTC) loss.
5931 5932
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5933 5934 5935
    input tensor.

    Args:
5936
       input (Variable): The unscaled probabilities of variable-length sequences,
5937 5938 5939
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5940
         sequences' length and num_classes is the true number of classes.
5941 5942 5943 5944
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5945
       label (Variable): The ground truth of variable-length sequence,
5946 5947 5948
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5949
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5950 5951
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5952 5953 5954
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5955
         follewed by a mean_op.
5956 5957 5958 5959
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5960 5961

    Returns:
5962 5963
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5964 5965 5966

    Examples:
        .. code-block:: python
5967

5968
            # using LoDTensor
B
Bai Yifan 已提交
5969
            import paddle.fluid as fluid
5970 5971 5972
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5973
                                      dtype='float32', lod_level=1)
5974 5975 5976
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5977
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5978

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5997
    """
F
fengjiayi 已提交
5998
    helper = LayerHelper('warpctc', **locals())
5999 6000 6001 6002 6003
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
6004 6005
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
6006

W
wanghaoshuang 已提交
6007 6008
    helper.append_op(
        type='warpctc',
6009
        inputs=this_inputs,
W
wanghaoshuang 已提交
6010 6011
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
6012 6013 6014 6015
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        })
W
wanghaoshuang 已提交
6016
    return loss_out
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
6032 6033 6034
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
6035 6036 6037 6038 6039
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
6040

6041
            out.lod  = [[0, 1, 3]]
6042 6043 6044 6045

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
6046 6047 6048 6049 6050 6051 6052
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
6053 6054 6055

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
6056 6057

    Returns:
6058

6059 6060 6061 6062 6063
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
6064 6065 6066
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
6067
    """
L
lujun 已提交
6068
    assert not in_dygraph_mode(), (
6069
        "sequence layer is not supported in dygraph mode yet.")
6070
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
6071
    out = helper.create_variable_for_type_inference(helper.input_dtype())
6072 6073 6074 6075 6076 6077
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
6078 6079


6080 6081 6082 6083
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
6084 6085 6086 6087 6088 6089
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
6090
        num_neg_samples=None,
6091 6092 6093
        name=None,
        sampler="uniform",
        custom_dist=None,
6094 6095
        seed=0,
        is_sparse=False):
6096 6097 6098 6099 6100 6101 6102
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
6103 6104
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
6105
            sample is 1.0.
C
chengduo 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
6115
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
6116 6117
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
6118 6119 6120
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
6121
        custom_dist (float[]): A float[] with size=num_total_classes.
6122 6123 6124 6125
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
6126
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
6127

6128
    Returns:
Y
Yibing Liu 已提交
6129 6130 6131 6132 6133 6134
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
6169
    """
Y
Yang Yu 已提交
6170 6171 6172
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
6173 6174

    dim = input.shape[1]
Y
Yang Yu 已提交
6175 6176 6177 6178 6179 6180
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
6181
    inputs = {}
C
chengduo 已提交
6182 6183 6184 6185 6186 6187 6188
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
6189 6190 6191
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
6192

6193 6194 6195 6196
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
6197 6198 6199 6200 6201 6202 6203

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
6204 6205
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
6206
        custom_dist_len = num_total_classes
6207 6208 6209 6210 6211 6212
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
6213
            if normal_prob - 1.0 > 0:
6214
                bigs.append((i, normal_prob))
6215
            elif 1.0 - normal_prob > 0:
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6231
            if big_left - 1.0 > 0:
6232
                bigs.append((big_idx, big_left))
6233
            elif 1.0 - big_left > 0:
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6263 6264 6265 6266
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6267 6268 6269 6270 6271
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6272 6273 6274 6275
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6276

Y
Yang Yu 已提交
6277 6278
    attrs = {
        'num_total_classes': int(num_total_classes),
6279 6280
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6281
        'sampler': sampler,
6282 6283
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6284
    }
Y
Yang Yu 已提交
6285 6286 6287

    helper.append_op(
        type='nce',
C
chengduo 已提交
6288
        inputs=inputs,
Y
Yang Yu 已提交
6289 6290 6291 6292 6293 6294
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6295
    return cost / (num_neg_samples + 1)
6296 6297


C
chengduo 已提交
6298 6299
def hsigmoid(input,
             label,
6300
             num_classes,
C
chengduo 已提交
6301 6302
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6303
             name=None,
6304 6305 6306
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6307
             is_sparse=False):
W
weixing02 已提交
6308 6309
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6310
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6311
    complete binary tree, or you can use is_custom to pass your own tree to
6312
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6313 6314 6315 6316 6317 6318
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6319
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6320
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6321

6322 6323
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6324 6325 6326 6327
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6328
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6329
       related to the same batch of inputs.
6330

W
weixing02 已提交
6331
    Args:
M
minqiyang 已提交
6332
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6333 6334 6335 6336
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6337 6338
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6339
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6351
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6352
            it should be in leaf -> root order
M
minqiyang 已提交
6353 6354 6355
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6356
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6357
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6358
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6359
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6360
             of W and input will be sparse.
W
weixing02 已提交
6361 6362

    Returns:
J
JiabinYang 已提交
6363
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6364 6365 6366 6367 6368

    Examples:

        .. code-block:: python

6369
            import paddle.fluid as fluid
G
guosheng 已提交
6370 6371 6372
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6373 6374 6375 6376
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6377 6378
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6379
    dim = input.shape[1]
6380
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6381 6382 6383
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6384 6385 6386 6387 6388 6389 6390 6391 6392
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6393
    if (is_custom) and (path_code is None):
6394
        raise ValueError("path_code should not be None with custom tree")
6395
    elif (is_custom) and (path_table is None):
6396
        raise ValueError("path_table should not be None with custom tree")
6397
    elif (is_custom) and (num_classes is None):
6398
        raise ValueError("num_classes should not be None with custom tree")
6399 6400 6401
    else:
        pass

J
JiabinYang 已提交
6402
    weights = None
6403 6404 6405 6406
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6407
    if not is_custom:
J
JiabinYang 已提交
6408 6409 6410 6411 6412 6413 6414 6415
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6416
            shape=[num_classes, dim],
J
JiabinYang 已提交
6417 6418
            is_bias=False,
            dtype=input.dtype)
6419 6420 6421
    inputs = {
        "X": input,
        "W": weights,
6422
        "PathTable": path_table,
6423
        "PathCode": path_code,
6424 6425
        "Label": label
    }
W
weixing02 已提交
6426
    if helper.bias_attr:
6427
        if not is_custom:
J
JiabinYang 已提交
6428 6429
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6430
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6431 6432 6433 6434 6435 6436
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6437
                shape=[num_classes, 1],
J
JiabinYang 已提交
6438 6439 6440
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6441 6442
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6443
        inputs=inputs,
W
weixing02 已提交
6444
        outputs={"Out": out,
6445 6446 6447 6448 6449 6450 6451
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6452 6453 6454
    return out


Y
fix ci.  
ying 已提交
6455
def transpose(x, perm, name=None):
Y
ying 已提交
6456 6457 6458 6459 6460 6461 6462
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6463 6464 6465
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6466 6467 6468 6469 6470 6471 6472

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6473
            # use append_batch_size=False to avoid prepending extra
6474
            # batch size in shape
6475
            import paddle.fluid as fluid
6476
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6477
                            dtype='float32', append_batch_size=False)
6478
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6479 6480
    """

Y
fix ci.  
ying 已提交
6481
    if len(perm) != len(x.shape):
Y
ying 已提交
6482 6483
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6484
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6485 6486 6487 6488 6489 6490
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6491 6492

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6493 6494
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6495
    helper.append_op(
6496
        type='transpose2',
Y
fix ci.  
ying 已提交
6497
        inputs={'X': [x]},
6498 6499
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6500 6501
        attrs={'axis': perm})
    return out
6502 6503


6504 6505 6506 6507 6508 6509 6510
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6511
    """
6512 6513 6514 6515 6516 6517 6518
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6547 6548 6549 6550 6551 6552 6553 6554 6555
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6556 6557 6558
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6559 6560 6561 6562 6563
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6591 6592 6593
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6606
            output.dims = {8, 8}
6607

6608
            output.lod = [[4, 4]]
6609

T
Tink_Y 已提交
6610
    Examples:
6611 6612 6613

        .. code-block:: python

B
Bai Yifan 已提交
6614 6615 6616
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6617
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6618 6619
                input=data, stride=[1, 1], filter_size=[2, 2])

6620 6621

    """
L
lujun 已提交
6622
    assert not in_dygraph_mode(), (
6623
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6634
    inputs = {"X": input}
6635
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6636 6637 6638 6639 6640
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6641
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6642
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6643
    helper.append_op(
6644
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6645
    return out
6646 6647


Y
yuyang18 已提交
6648
@templatedoc()
6649
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6650 6651
    """
    ${comment}
6652 6653

    Args:
Y
yuyang18 已提交
6654
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6655 6656
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6657 6658 6659 6660 6661
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6662
        ${out_comment}.
6663 6664

    Examples:
Y
yuyang18 已提交
6665 6666 6667 6668
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6669 6670 6671 6672 6673 6674
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6675
    out = helper.create_variable_for_type_inference(dtype)
6676 6677 6678 6679 6680
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6681
    return helper.append_activation(out)
6682 6683


Y
yuyang18 已提交
6684
@templatedoc()
6685 6686
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6687 6688
    ${comment}

L
lujun 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6732 6733

    Args:
Y
yuyang18 已提交
6734 6735
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6736 6737

    Returns:
Y
yuyang18 已提交
6738
        ${out_comment}.
6739 6740
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6741 6742 6743 6744 6745

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6746
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6747 6748 6749 6750 6751 6752
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6753 6754


6755 6756 6757
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6758
                               ignore_index=kIgnoreIndex,
6759
                               numeric_stable_mode=True,
6760 6761
                               return_softmax=False,
                               axis=-1):
6762 6763
    """
    **Softmax With Cross Entropy Operator.**
6764

6765
    Cross entropy loss with softmax is used as the output layer extensively. This
6766 6767 6768
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6769

6770 6771 6772
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6773

6774 6775 6776 6777
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6778

6779
    The equation is as follows:
6780

6781
    1) Hard label (one-hot label, so every sample has exactly one class)
6782

6783 6784 6785 6786
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6787

6788 6789 6790
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6791

6792 6793 6794 6795
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6796 6797
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6798 6799

    .. math::
6800

H
haowang101779990 已提交
6801
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6802

H
haowang101779990 已提交
6803
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6804

H
haowang101779990 已提交
6805
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6806 6807 6808

    and then cross entropy loss is calculated by softmax and label.

6809
    Args:
6810 6811 6812 6813 6814 6815
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6816
        soft_label (bool): A flag to indicate whether to interpretate the given
6817
            labels as soft labels. Default False.
M
minqiyang 已提交
6818 6819
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6820 6821
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6822 6823
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6824 6825 6826 6827
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6828
                                    Note that the speed may be slower when use
6829
                                    stable algorithm. Default: True
6830
        return_softmax (bool): A flag indicating whether to return the softmax
6831
                               along with the cross entropy loss. Default: False
6832 6833 6834
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6835

6836
    Returns:
H
haowang101779990 已提交
6837 6838
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6839 6840 6841 6842
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6843 6844 6845 6846

    Examples:
        .. code-block:: python

6847 6848
            import paddle.fluid as fluid

6849 6850 6851
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6852 6853
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6854 6855
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6856 6857
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6858 6859 6860 6861 6862 6863
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6864 6865 6866
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6867 6868
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6869
        })
6870 6871 6872 6873

    if return_softmax:
        return loss, softmax

6874 6875 6876
    return loss


6877 6878 6879
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6880
                                       num_true=1,
6881
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6882 6883 6884
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6885
                                       seed=0):
X
xuezhong 已提交
6886 6887 6888 6889 6890
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6891
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6892 6893 6894 6895 6896 6897 6898 6899
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6900
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6901 6902 6903 6904 6905 6906 6907 6908
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6909
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6921
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6922 6923 6924 6925 6926
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6927
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6928
            logits.
X
xuezhong 已提交
6929 6930 6931 6932 6933
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6934 6935 6936
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6937 6938 6939 6940 6941 6942 6943
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6944 6945 6946
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6947
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6948
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6949
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6950
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6951 6952 6953 6954 6955 6956 6957 6958
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6959 6960
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6961 6962
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6963 6964 6965 6966 6967

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6968
            'Labels': label,
X
xuezhong 已提交
6969 6970
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6971 6972 6973 6974
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6975
            'SampledLabels': sampled_label,
6976 6977 6978
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6979 6980
        },
        attrs={
X
xuezhong 已提交
6981
            'use_customized_samples': use_customized_samples,
6982
            'uniq': True,
X
xuezhong 已提交
6983 6984 6985 6986
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6987 6988
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6989 6990 6991 6992 6993 6994
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6995 6996
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6997
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6998
                'Label': sampled_softlabel},
X
xuezhong 已提交
6999 7000 7001
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
7002
            'soft_label': True,
X
xuezhong 已提交
7003 7004 7005
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
7006
    return loss / num_true
X
xuezhong 已提交
7007 7008


7009 7010
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
7011 7012
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
7013
    For each instance, it computes the smooth L1 loss element by element first
7014
    and then sums all the losses. So the shape of ouput Variable is
7015
    [batch_size, 1].
7016

7017 7018
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
7019
            L1 loss op with shape [batch_size, dim1, ..., dimN].
7020
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
7021
            L1 loss op with same shape as :attr:`x`.
7022
        inside_weight (Variable|None):  A tensor with rank at least 2. This
7023 7024
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
7025
            by this tensor element by element.
7026
        outside_weight (Variable|None): A tensor with rank at least 2. This
7027 7028
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
7029
            element by element.
7030
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
7031 7032
           scalar with default value 1.0.

7033
    Returns:
7034
        Variable: The output smooth L1 loss with shape [batch_size, 1].
7035 7036 7037 7038

    Examples:
        .. code-block:: python

7039
            import paddle.fluid as fluid
7040
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
7041 7042
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
7043
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
7044
            out = fluid.layers.smooth_l1(x=fc, y=label)
7045
    """
7046

7047
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
7048 7049
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
7060
        attrs={'sigma': sigma if sigma is not None else 1.0})
7061
    return loss
7062 7063


7064
def one_hot(input, depth, allow_out_of_range=False):
7065
    """
Y
Yibing Liu 已提交
7066
    This layer creates the one-hot representations for input indices.
7067 7068

    Args:
Y
Yibing Liu 已提交
7069 7070
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
7071 7072 7073 7074
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
7075 7076

    Returns:
Y
Yibing Liu 已提交
7077
        Variable: The one-hot representations of input.
7078 7079

    Examples:
C
caoying03 已提交
7080
        .. code-block:: python
7081

7082
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7083 7084
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
7085 7086
    """
    helper = LayerHelper("one_hot", **locals())
7087

X
Xin Pan 已提交
7088
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
7099
            depth.stop_gradient = True
7100 7101
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
7102 7103
    helper.append_op(
        type="one_hot",
7104 7105
        inputs=inputs,
        attrs=attrs,
7106 7107
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
7108
    return one_hot_out
Y
Yu Yang 已提交
7109 7110


Y
Yu Yang 已提交
7111
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
7112
    """
Y
yi.wu 已提交
7113 7114 7115
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
7116 7117 7118 7119 7120 7121

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

7122 7123
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
7124 7125 7126 7127

    Examples:
        .. code-block:: python

7128
           import paddle.fluid as fluid
Y
yi.wu 已提交
7129
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
7130
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
7131 7132
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
7133 7134
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
7135 7136 7137 7138 7139
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
7140
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
7141
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
7142 7143
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
7144
            outputs={'Out': [counter]},
7145
            attrs={'step': float(step)})
Y
Yu Yang 已提交
7146 7147 7148
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
7149 7150


7151
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
7152
    """
C
caoying03 已提交
7153 7154
    Gives a new shape to the input Tensor without changing its data.

7155
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
7156
    :attr:`shape` is a list of integer or tensor variable while :attr:`actual_shape` is a tensor
7157
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
7158
    if it is provided and it only contains integer, while :attr:`shape` still should be set correctly to
7159
    gurantee shape inference in compile-time.
C
caoying03 已提交
7160

7161
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
7162

7163 7164 7165 7166
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

7167
    2. 0 means the actual dimension value is going to be copied from the
7168 7169 7170 7171
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
7172 7173

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
7174
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
7175
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
7176

7177
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7178 7179
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
7180 7181
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
7182
    dimensions.
C
caoying03 已提交
7183

7184
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7185 7186 7187 7188
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
7189

7190 7191
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`shape` instead.

C
caoying03 已提交
7192
    Args:
7193
        x(variable): The input tensor.
7194 7195 7196 7197
        shape(list|tuple|Variable): The new shape. At most one dimension of the new shape can
                     be -1. If :attr:`shape` is a list or tuple, it can contain Variable or not and
                     the shape of Variable must be [1].

7198 7199 7200 7201
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
7202 7203 7204 7205
                                than :attr:`shape(list|tuple)` but not :attr:`shape(Variable)`. \
                                This argument :attr:`actual_shape` will be removed in a future version. \
                                Instructions for updating: :attr:`actual_shape` is deprecated,
                                only use :attr:`shape` instead.
7206 7207
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
7208 7209 7210
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
7211
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
7212
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
7213

7214
    Returns:
G
guosheng 已提交
7215 7216 7217 7218
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
7219

X
Xin Pan 已提交
7220 7221 7222
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7223 7224
    Examples:
        .. code-block:: python
G
guosheng 已提交
7225

7226
            import paddle.fluid as fluid
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            data_1 = fluid.layers.data(
                name='data_1', shape=[2, 4, 6], dtype='float32')
            reshaped_1 = fluid.layers.reshape(
                x=data_1, shape=[-1, 0, 3, 2], inplace=True)

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
C
caoying03 已提交
7240 7241
    """

7242 7243 7244
    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "Input shape must be an Variable or python list or tuple.")
7245

7246 7247
    if not isinstance(actual_shape, Variable) and (actual_shape is not None):
        raise TypeError("actual_shape should either be Variable or None.")
7248

7249
    helper = LayerHelper("reshape2", **locals())
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension in shape can be unknown.")
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The indice of 0s in shape can not exceed Rank(X).")
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must not be negtive "
                        "except one unknown dimension.")
        return attrs_shape

7293 7294 7295 7296
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
7309

7310 7311
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7312
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7313
    helper.append_op(
7314
        type="reshape2",
X
Xin Pan 已提交
7315
        inputs=inputs,
7316
        attrs=attrs,
7317 7318
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7319

D
dzhwinter 已提交
7320
    return helper.append_activation(out)
7321

7322

7323
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7324
    """
M
minqiyang 已提交
7325 7326 7327
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7328
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7329

H
haowang101779990 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7351

Y
Yibing Liu 已提交
7352
    Args:
7353
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7354
        axes (list): List of integers, indicating the dimensions to be squeezed.
7355
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7356 7357 7358 7359 7360 7361 7362

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7363
            import paddle.fluid as fluid
7364
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7365
            x = layers.data(name='x', shape=[5, 1, 10])
7366
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7367
    """
L
lujun 已提交
7368
    assert not in_dygraph_mode(), (
L
lujun 已提交
7369
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7370
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7371 7372
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7373
    helper.append_op(
7374
        type="squeeze2",
7375
        inputs={"X": input},
Y
Yibing Liu 已提交
7376
        attrs={"axes": axes},
7377 7378
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7379

7380 7381 7382
    return out


7383
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7384
    """
M
minqiyang 已提交
7385 7386 7387
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7388

M
minqiyang 已提交
7389
    For example:
H
haowang101779990 已提交
7390 7391 7392

    .. code-block:: text

M
minqiyang 已提交
7393
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7394
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7395

Y
Yibing Liu 已提交
7396
    Args:
7397
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7398
        axes (list): List of integers, indicating the dimensions to be inserted.
7399
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7400 7401 7402 7403 7404 7405 7406

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7407 7408 7409
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7410 7411
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7412 7413
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7414
    helper.append_op(
7415
        type="unsqueeze2",
7416
        inputs={"X": input},
Y
Yibing Liu 已提交
7417
        attrs={"axes": axes},
7418 7419
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7420

7421 7422
    return out

7423

Y
yangyaming 已提交
7424
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7425
    """
Y
Yibing Liu 已提交
7426
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7427 7428 7429 7430
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7431
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7432 7433 7434 7435 7436 7437

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7438
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7439 7440 7441
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7442
            target_lod: [4, 2]
Y
yangyaming 已提交
7443 7444

            then we get a 1-level LoDTensor:
7445
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7446 7447 7448 7449 7450 7451
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7452
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7453 7454 7455 7456
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7457
                y.data = [[2, 4]]
Y
yangyaming 已提交
7458 7459 7460
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7461
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7462 7463 7464 7465 7466 7467
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7468
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7469 7470 7471 7472
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7473
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7474 7475 7476 7477
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7478
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7479 7480 7481 7482
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7483
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7484
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7485
                           from :attr:`y`.
Y
yangyaming 已提交
7486
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7487
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7488 7489

    Returns:
Y
Yibing Liu 已提交
7490
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7491 7492

    Raises:
Y
Yibing Liu 已提交
7493
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7494 7495 7496 7497

    Examples:
        .. code-block:: python

7498
            import paddle.fluid as fluid
7499 7500 7501
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7502 7503
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7504
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7542
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7543 7544 7545 7546 7547 7548

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7549

7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7560 7561 7562
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7563 7564
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7565 7566 7567 7568 7569 7570 7571 7572

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7573
    helper.append_op(
7574
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7575
    return out
D
dragonwarrior 已提交
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7587
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7616
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7617 7618
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7631 7632 7633
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7647 7648 7649 7650


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7651
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7652
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7653

G
guosheng 已提交
7654
    Specifically, the number of values padded before the contents of :attr:`x`
7655
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7656
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7657
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7680
                         The length of :attr:paddings must be
G
guosheng 已提交
7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7691

G
guosheng 已提交
7692
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7693 7694
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7695 7696 7697 7698 7699
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7700
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7701 7702 7703 7704 7705 7706 7707
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7708 7709


C
chengduo 已提交
7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7741 7742
		And
            pad_value = -1,
C
chengduo 已提交
7743

T
Tink_Y 已提交
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7774 7775 7776
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7777 7778 7779 7780 7781
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7782
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7783 7784 7785 7786 7787 7788 7789 7790 7791
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7792 7793 7794 7795 7796 7797 7798
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7799 7800
    called label-smoothing regularization (LSR).

7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7824
                              be :math:`(1, class\_num)`.
7825 7826
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7827
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7828 7829 7830 7831 7832 7833 7834 7835 7836
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7837
            
7838
            import paddle.fluid as fluid
7839
            import paddle.fluid.layers as layers
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7850
    smooth_label = helper.create_variable_for_type_inference(dtype)
7851 7852 7853 7854 7855 7856 7857
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7858 7859


W
wopeizl 已提交
7860 7861 7862 7863 7864 7865 7866
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7867 7868 7869 7870 7871
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7912 7913


J
jerrywgz 已提交
7914 7915 7916 7917 7918 7919
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7920 7921
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7922 7923 7924 7925 7926
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7927 7928 7929 7930 7931
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7942
            import paddle.fluid as fluid
J
jerrywgz 已提交
7943 7944 7945 7946
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7947 7948 7949
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7950 7951 7952 7953 7954 7955
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7956
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7997 7998
        .. code-block:: python

S
SunGaofeng 已提交
7999 8000 8001
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
8002
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
8003
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
8004 8005
    """
    label = one_hot(label, depth=input.shape[-1])
8006
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
8007 8008 8009 8010 8011 8012
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
8013 8014


8015 8016 8017 8018
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
8019
                 resample='BILINEAR',
8020 8021
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
8022
                 align_mode=1):
8023
    """
Q
qiaolongfei 已提交
8024
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
8025

K
Kaipeng Deng 已提交
8026 8027 8028
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
8029

8030 8031 8032
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

8033
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
8034

8035
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
8036

K
Kaipeng Deng 已提交
8037 8038
        'TRILINEAR' : Trilinear interpolation

8039
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
8040

8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
8051 8052 8053 8054 8055
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
8056
    Align_corners and align_mode are optinal parameters,the calculation method 
8057 8058 8059 8060
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8061
    .. code-block:: text
8062

T
Tink_Y 已提交
8063
        For scale:
8064
          
T
Tink_Y 已提交
8065
            if align_corners = True && out_size > 1 :
8066

T
Tink_Y 已提交
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
8078

T
Tink_Y 已提交
8079 8080
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8081

T
Tink_Y 已提交
8082 8083
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
8084

T
Tink_Y 已提交
8085 8086
          else:
              align_corners = True
8087

T
Tink_Y 已提交
8088 8089
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8090

T
Tink_Y 已提交
8091 8092
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8093

T
Tink_Y 已提交
8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8104

T
Tink_Y 已提交
8105 8106 8107 8108
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8109

T
Tink_Y 已提交
8110 8111
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8112

K
Kaipeng Deng 已提交
8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
8135 8136 8137 8138 8139 8140
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
8141 8142 8143
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

8144 8145


8146
    Args:
8147
        input (Variable): The input tensor of image resize layer,
8148
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
8149 8150 8151
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
8152
        out_shape(list|tuple|Variable|None): Output shape of image resize
8153 8154 8155 8156 8157 8158 8159
             layer, the shape is (out_h, out_w) when input is a 4-D tensor and is
             (out_d, out_h, out_w) when input is a 5-D tensor. Default: None. If 
             a list, each element can be an integer or a tensor Variable of shape: [1].
             If a tesnosr Variable, its dimensions size should be a 1.
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
8160
             Default: None.
8161 8162
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
8163 8164
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
8165 8166 8167
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8168
                                :attr:`out_shape` and :attr:`scale` specifying
8169 8170
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8171 8172 8173 8174 8175 8176
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8177
                                Default: None
8178 8179 8180 8181
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
8182
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
8183 8184
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
8185 8186

    Returns:
Q
update  
qiaolongfei 已提交
8187
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
8188 8189
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
8190

8191 8192 8193
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
8194 8195 8196 8197
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
8198
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
8199 8200
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
8201
        ValueError: scale should be greater than zero.
8202 8203
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
8204

8205 8206 8207
    Examples:
        .. code-block:: python

8208
            import paddle.fluid as fluid
8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.image_resize(input, out_shape=[12, dim1], resample="NEAREST")
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.image_resize(input, out_shape=shape_tensor, resample="NEAREST")
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.image_resize(input, out_shape=[4, 4], resample="NEAREST", actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.image_resize(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8235
    """
8236 8237
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
8238
        'TRILINEAR': 'trilinear',
8239 8240
        'NEAREST': 'nearest',
    }
8241 8242
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
8243 8244
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
8245
    resample_type = resample_methods[resample]
8246

K
Kaipeng Deng 已提交
8247 8248 8249 8250 8251
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

8252 8253 8254 8255 8256
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

8257
    if out_shape is None and scale is None:
8258
        raise ValueError("One of out_shape and scale must not be None.")
8259
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
8260
    dtype = helper.input_dtype()
8261 8262 8263 8264

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

8265
    inputs = {"X": input}
D
dengkaipeng 已提交
8266
    attrs = {
8267 8268 8269
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
8270 8271 8272 8273 8274
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

8275
    if out_shape is not None:
8276
        if isinstance(out_shape, Variable):
8277
            out_shape.stop_gradient = True
8278
            inputs['OutSize'] = out_shape
8279 8280
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8281 8282
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
8311 8312 8313 8314
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
8315 8316 8317 8318 8319 8320 8321
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
8322 8323 8324 8325
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
8326 8327 8328 8329 8330 8331 8332 8333 8334
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
8335

8336
    else:
8337 8338 8339 8340 8341 8342 8343
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        if isinstance(scale, float):
            if scale <= 0:
                raise ValueError("scale should be greater than zero.")
            attrs['scale'] = float(scale)
8344

8345
    if isinstance(actual_shape, Variable):
8346 8347 8348 8349 8350
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
8351 8352 8353 8354
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8355
    out = helper.create_variable_for_type_inference(dtype)
8356
    helper.append_op(
8357
        type='{}_interp'.format(resample_type),
8358
        inputs=inputs,
8359
        outputs={"Out": out},
D
dengkaipeng 已提交
8360
        attrs=attrs)
8361
    return out
F
stash  
fengjiayi 已提交
8362 8363


8364
@templatedoc(op_type="bilinear_interp")
8365 8366 8367 8368
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8369 8370
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
8371
                    align_mode=1):
8372
    """
8373 8374
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8375 8376
    in priority order.

8377 8378 8379
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

8380 8381 8382 8383
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8384 8385
    again in the other direction.

8386
    For details of bilinear interpolation, please refer to Wikipedia:
8387
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8388

T
tink2123 已提交
8389
    Align_corners and align_mode are optinal parameters,the calculation 
8390 8391 8392 8393
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8394
    .. code-block:: text
8395

T
Tink_Y 已提交
8396
        For scale:
8397
          
T
Tink_Y 已提交
8398
            if align_corners = True && out_size > 1 :
8399

T
Tink_Y 已提交
8400 8401 8402 8403 8404
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8405

T
Tink_Y 已提交
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8416 8417


T
Tink_Y 已提交
8418
          else:
T
tink2123 已提交
8419

T
Tink_Y 已提交
8420 8421
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8422

T
Tink_Y 已提交
8423 8424
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8425 8426 8427



Y
yuyang18 已提交
8428
    Args:
8429 8430
        input(${x_type}): input should be a 4-D tensor of shape 
                          (num_batches, channels, in_h, in_w).
Y
yuyang18 已提交
8431

D
dengkaipeng 已提交
8432
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8433 8434 8435
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
            element can be an integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
8436

8437
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8438
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8439
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8440
             Default: None.
Y
yuyang18 已提交
8441 8442

        name(str|None): The output variable name.
8443 8444 8445
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8446
                                :attr:`out_shape` and :attr:`scale` specifying
8447 8448
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8449 8450 8451 8452 8453 8454
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8455
                                Default: None
8456 8457
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8458 8459

    Returns:
K
Kaipeng Deng 已提交
8460
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8461 8462 8463 8464

    Examples:
        .. code-block:: python

8465
            import paddle.fluid as fluid
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_bilinear(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_bilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_bilinear(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_bilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
8491 8492
    """

8493 8494
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8495 8496


K
Kaipeng Deng 已提交
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

8510 8511 8512
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
8563 8564
        input(${x_type}): input should be a 5-D tensor of shape 
                          (num_batches, channls, in_d, in_h, in_w).
K
Kaipeng Deng 已提交
8565 8566

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8567 8568 8569
            layer, the shape is (out_d, out_h, out_w). Default: None. If a list, 
            each element can be  an integer or a tensor Variable with shape: [1]. If 
            a tensor Variable, its dimension size should be 1.
K
Kaipeng Deng 已提交
8570

8571
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8583 8584 8585 8586 8587 8588
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
            input = fluid.layers.data(name="input", shape=[3, 6, 9, 11], dtype="float32")
            # input.shape = [-1, 3, 6, 9, 11], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
            # out0.shape = [-1, 3, 12, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_trilinear(input, out_shape=[12, dim1, 4])
            # out1.shape = [-1, 3, 12, -1, 4]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_trilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_trilinear(input, out_shape=[4, 4, 8], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4, 8]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_trilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1, -1]

K
Kaipeng Deng 已提交
8626 8627 8628 8629 8630 8631
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8632
@templatedoc(op_type="nearest_interp")
8633 8634 8635 8636
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8637 8638
                   actual_shape=None,
                   align_corners=True):
8639
    """
8640
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8641 8642
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8643 8644
    out_shape and scale in priority order.

8645 8646 8647
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

8648 8649
    Example:

T
Tink_Y 已提交
8650 8651 8652 8653 8654
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8655

T
Tink_Y 已提交
8656 8657 8658 8659 8660 8661 8662 8663
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8664
          
T
Tink_Y 已提交
8665 8666
          if:
              align_corners = False
8667

T
Tink_Y 已提交
8668 8669
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8670

T
Tink_Y 已提交
8671 8672
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8673

T
Tink_Y 已提交
8674 8675
          else:
              align_corners = True
8676

T
Tink_Y 已提交
8677 8678
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8679

T
Tink_Y 已提交
8680 8681
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8682 8683


8684
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8685
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8686 8687

    Args:
8688 8689
        input(${x_type}): input should be a 4-D tensor of shape 
                          (num_batches, channls, in_h, in_w).
Y
yuyang18 已提交
8690

D
dengkaipeng 已提交
8691
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
8692 8693 8694
            layer, the shape is (out_h, out_w). Default: None. If a list, each 
            element can be integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
8695

8696
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8697
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8698
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8699
             Default: None.
Y
yuyang18 已提交
8700 8701

        name(str|None): The output variable name.
8702 8703 8704
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8705
                                :attr:`out_shape` and :attr:`scale` specifying
8706 8707
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8708 8709 8710 8711 8712 8713
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8714
                                Default: None
8715
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8716 8717

    Returns:
K
Kaipeng Deng 已提交
8718
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8719 8720 8721 8722

    Examples:
        .. code-block:: python

8723
            import paddle.fluid as fluid
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_nearest(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_nearest(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="resize_shape", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_nearest(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_nearest(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_nearest(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8750 8751
    """

8752 8753
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8754 8755 8756 8757


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8758 8759 8760
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8761 8762 8763 8764 8765 8766 8767
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8768
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8769

8770
    Returns:
Q
update  
qiaolongfei 已提交
8771
        Variable: The output is a 4-D tensor of the shape
8772
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8773 8774 8775 8776

    Examples:
        .. code-block:: python

8777
            import paddle.fluid as fluid
R
ruri 已提交
8778 8779
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8780 8781 8782 8783 8784 8785 8786 8787 8788 8789
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8790 8791 8792
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8793 8794 8795
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8796
def gather(input, index, overwrite=True):
W
whs 已提交
8797
    """
Q
qiaolongfei 已提交
8798 8799
    **Gather Layer**

8800
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8801 8802 8803 8804
    of X indexed by `index` and concatenate them together.

    .. math::

8805
        Out = X[Index]
W
whs 已提交
8806 8807 8808 8809 8810 8811 8812


    .. code-block:: text


                Given:

8813 8814
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8815 8816 8817 8818 8819 8820 8821 8822 8823 8824
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8825
        input (Variable): The source input with rank>=1.
W
whs 已提交
8826
        index (Variable): The index input with rank=1.
8827 8828 8829 8830 8831 8832
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8833 8834 8835 8836 8837

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8838

W
whs 已提交
8839 8840
        .. code-block:: python

8841
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8842 8843
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8844 8845 8846 8847
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8848
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8849 8850 8851 8852
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8853 8854
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8855 8856 8857
    return out


8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
        input (Variable): The source input
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


8943
def scatter(input, index, updates, name=None, overwrite=True):
8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8961 8962 8963 8964
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8965 8966 8967 8968 8969 8970 8971 8972

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8973 8974 8975 8976 8977
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8978

8979
            output = fluid.layers.scatter(input, index, updates)
8980 8981 8982
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8983
    out = helper.create_variable_for_type_inference(dtype)
8984 8985 8986 8987 8988
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8989
        attrs={'overwrite': overwrite},
8990 8991 8992 8993
        outputs={"Out": out})
    return out


8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` 
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
        ref (Variable): The ref input.
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape and type as ref.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd op. 
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Q
Qingsheng Li 已提交
9115 9116 9117 9118 9119 9120 9121 9122 9123
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
9124

Q
Qingsheng Li 已提交
9125
    Given the following input:
H
haowang101779990 已提交
9126

Q
Qingsheng Li 已提交
9127
    .. code-block:: text
H
haowang101779990 已提交
9128

Q
Qingsheng Li 已提交
9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
9141

Q
Qingsheng Li 已提交
9142
    .. code-block:: text
H
haowang101779990 已提交
9143

Q
Qingsheng Li 已提交
9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
9159
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
9160 9161 9162 9163

    Examples:

        .. code-block:: python
9164
	
9165
            import paddle.fluid as fluid
9166
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
9167

9168 9169 9170
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
9171 9172 9173
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
9174
    assert not in_dygraph_mode(), (
9175
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
9176 9177
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9178
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
9179 9180 9181 9182 9183 9184 9185 9186 9187
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
9201

9202
    Examples:
9203
        >>> import paddle.fluid as fluid
9204 9205
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
9206
    """
F
stash  
fengjiayi 已提交
9207
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
9208
    dtype = x.dtype
X
Xin Pan 已提交
9209
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
9210
    if seed is None:
9211
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
9212
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
9213
    if isinstance(seed, int):
F
fengjiayi 已提交
9214 9215 9216 9217 9218
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
9219 9220 9221 9222
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
9223
        inputs={"X": x,
F
stash  
fengjiayi 已提交
9224 9225
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
9226 9227
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
9228
    return out
W
whs 已提交
9229 9230


9231
def log(x, name=None):
W
wanghaoshuang 已提交
9232 9233 9234 9235 9236
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

9237
        Out = \\ln(x)
W
wanghaoshuang 已提交
9238 9239

    Args:
9240
        x (Variable): Input tensor.
9241 9242
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9243 9244 9245 9246 9247 9248 9249 9250

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

9251
            import paddle.fluid as fluid
9252
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9253
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
9254 9255
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
9256
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9257
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
9258
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
9259 9260 9261
    return out


9262
def relu(x, name=None):
W
wanghaoshuang 已提交
9263 9264
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
9265
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
9266 9267 9268 9269
    the tensor elementwise.

    .. math::

9270
        Out = \\max(0, x)
W
wanghaoshuang 已提交
9271 9272

    Args:
9273
        x (Variable): The input tensor.
9274 9275
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9276 9277 9278 9279 9280 9281 9282 9283

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

9284
            import paddle.fluid as fluid
9285
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9286
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
9287 9288
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
9289
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9290
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
9291 9292
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
9293
    return out
9294 9295


C
chengduo 已提交
9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
9320 9321 9322 9323 9324 9325
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
9341 9342 9343
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
9344 9345 9346 9347
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
9348
    .. math::
9349

H
haowang101779990 已提交
9350
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
9351

9352
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
9353 9354 9355 9356 9357
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
9358
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
9359
                           Its shape should be the same as input.
9360
        num_classes (int): The possible number of labels.
W
whs 已提交
9361 9362

    Returns:
M
minqiyang 已提交
9363 9364
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
9365
                     Three variables:
M
minqiyang 已提交
9366

H
haowang101779990 已提交
9367 9368 9369
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
9370 9371 9372 9373

    Examples:

        .. code-block:: python
9374

B
Bai Yifan 已提交
9375
            import paddle.fluid as fluid
9376 9377 9378 9379
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
9380
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
9381
                                                          num_classes)
W
whs 已提交
9382 9383 9384
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9385 9386 9387
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
9388 9389
    helper.append_op(
        type="mean_iou",
W
whs 已提交
9390 9391
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
9392
        outputs={
W
whs 已提交
9393 9394 9395
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
9396 9397 9398
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
9399 9400 9401 9402 9403 9404


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

9405 9406 9407 9408 9409
    **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
    Instructions for updating: Use `fluid.layers.crop_tensor
    <https://www.paddlepaddle.org.cn/documentation/docs/en/api/layers/nn.html#crop_tensor>`_
    instead.

9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
9441
            by `shape`, which can be a Variable or a list/tuple of integer.
9442 9443
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
9444
            iteration. If a list/tuple of integer, it's length must be the same
9445
            as the rank of `x`
S
SunGaofeng 已提交
9446
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
9447
            offsets at each dimension. It can be a Variable or a list/tuple
S
SunGaofeng 已提交
9448
            of integers. If a tensor Variable, it's rank must be the same as `x`.
9449
            This way is suitable for the case that the offsets may be changed
9450
            each iteration. If a list/tuple of integer, it's length must be the
9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
9466
            import paddle.fluid as fluid
9467 9468 9469 9470 9471 9472
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
9473
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
9474 9475 9476 9477 9478

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
9479
            isinstance(shape, Variable)):
9480 9481 9482 9483 9484
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
9485
    out = helper.create_variable_for_type_inference(x.dtype)
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
9503 9504


9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X =  [[[0, 1, 2, 3]
                       [0, 5, 6, 7]
                       [0, 0, 0, 0]],

                      [[0, 3, 4, 5]
                       [0, 6, 7, 8]
                       [0, 0, 0, 0]]].
            and
                shape = [2, 2, 3],
                offsets = [0, 0, 1],
            output is:
                Out = [[[1, 2, 3]
                        [5, 6, 7]],

                        [[3, 4, 5]
                         [6, 7, 8]]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list|tuple of integer): The output shape is specified
            by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a 
            1-D tensor Variable, it's rank must be the same as `x`. If a 
            list/tuple, it's length must be the same as the rank of `x`. Each 
            element of list can be an integer or a tensor Variable of shape: [1].
            If Variable contained, it is suitable for the case that the shape may 
            be changed each iteration. Only the first element of list/tuple can be 
            set to -1, it means that the first dimension of the output is the same 
            as the input.
        offsets (Variable|list|tuple of integer|None): Specifies the cropping
            offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
            If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple, 
            it's length must be the same as the rank of `x`. Each element of list can be
            an integer or a tensor Variable of shape: [1]. If Variable contained, it is 
            suitable for the case that the offsets may be changed each iteration. If None, 
            the offsets are 0 at each dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.
        ValueError: If offsets is not None and not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

            # shape is a 1-D tensor variable
            crop_shape = fluid.layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False)
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
            # crop1.shape = [-1, 2, 3]

            # or shape is a list in which each element is a constant or variable
            y = fluid.layers.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop2 = fluid.layers.crop_tensor(y, shape=[-1, 3, dim1, 4])
            # crop2.shape = [-1, 3, -1, 4]

            # offsets is a 1-D tensor variable
            crop_offsets = fluid.layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False)
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

            # offsets is a list in which each element is a constant or variable
            offsets_var =  fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
            isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    if not (isinstance(offsets, list) or isinstance(offsets, tuple) or \
            isinstance(offsets, Variable)):
        raise ValueError("The offsets should be a list, tuple or Variable.")

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def contain_var(input_list):
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
    elif contain_var(offsets):
        new_offsets_tensor = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                assert dim >= 0, ("offsets should be greater or equal to zero.")
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
        ipts['OffsetsTensor'] = new_offsets_tensor
    else:
        attrs['offsets'] = offsets

    unk_dim_idx = -1
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_idx, dim_size in enumerate(shape):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(-1)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one element in shape can be unknown.")
                    assert dim_idx == 0, (
                        "Only the first element in shape can be -1.")
                    unk_dim_idx = dim_idx
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must be greater than zero."
                    )
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
9704

W
whs 已提交
9705
              out_shape = [2, 3, 5, 5]
9706

W
whs 已提交
9707
          Step 1:
9708

W
whs 已提交
9709 9710 9711
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
9712

W
whs 已提交
9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
9758
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
9759
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
9772

S
SunGaofeng 已提交
9773
            import paddle.fluid as fluid
W
whs 已提交
9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
9785
            isinstance(out_shape, Variable)):
W
whs 已提交
9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9807 9808
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9809

9810 9811
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9812
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9813 9814 9815
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9816

9817 9818
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9819

H
haowang101779990 已提交
9820 9821
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9822 9823
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9824

H
haowang101779990 已提交
9825 9826 9827 9828 9829 9830 9831 9832
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9833 9834 9835

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9853
            import paddle.fluid as fluid
9854 9855 9856
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9871
    out = helper.create_variable_for_type_inference("float32")
9872 9873 9874 9875 9876 9877 9878 9879

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9880 9881


M
minqiyang 已提交
9882 9883
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9884
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9885
    which compares left score and right score passed in.
M
minqiyang 已提交
9886
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9887 9888 9889

    .. math::

H
haowang101779990 已提交
9890
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9891 9892

    Args:
M
minqiyang 已提交
9893
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9894 9895
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9896
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9897 9898
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9899

M
minqiyang 已提交
9900
    Returns:
M
minqiyang 已提交
9901
       Variable: The ranking loss.
H
haowang101779990 已提交
9902

M
minqiyang 已提交
9903
    Raises:
M
minqiyang 已提交
9904
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9905

M
minqiyang 已提交
9906
    Examples:
H
haowang101779990 已提交
9907

M
minqiyang 已提交
9908
        .. code-block:: python
H
haowang101779990 已提交
9909

9910
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9911 9912 9913
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9914 9915
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9916
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9917 9918 9919 9920 9921 9922
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9923 9924
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9948
        .. code-block:: text
W
whs 已提交
9949

T
Tink_Y 已提交
9950
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9951

T
Tink_Y 已提交
9952 9953
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9954

T
Tink_Y 已提交
9955
	      Case 0:
M
minqiyang 已提交
9956

T
Tink_Y 已提交
9957 9958 9959
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9960

T
Tink_Y 已提交
9961 9962 9963
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9964

T
Tink_Y 已提交
9965
	      Case 1:
M
minqiyang 已提交
9966

T
Tink_Y 已提交
9967 9968
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9969

T
Tink_Y 已提交
9970 9971 9972
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9973

T
Tink_Y 已提交
9974
	      Case 2:
M
minqiyang 已提交
9975

T
Tink_Y 已提交
9976 9977
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9978

T
Tink_Y 已提交
9979 9980 9981
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9982 9983


W
whs 已提交
9984 9985
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9986
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
10004 10005 10006 10007 10008
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
10009 10010 10011 10012
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
10013
    out = helper.create_variable_for_type_inference(dtype)
10014 10015 10016 10017 10018 10019 10020 10021 10022
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
10023
    helper.append_op(
10024
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
10025 10026 10027 10028

    return out


10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10041 10042 10043 10044 10045

    Examples:

        .. code-block:: python

10046
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10047 10048
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
10049 10050
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
10051
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10072 10073 10074 10075 10076

    Examples:

        .. code-block:: python

10077
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10078 10079
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
10080 10081
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
10082
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
10097
        factor(float|Variable|1.0): The exponential factor of Pow.
10098 10099 10100 10101 10102
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10103 10104 10105 10106 10107

    Examples:

        .. code-block:: python

10108
            import paddle.fluid as fluid
10109

Z
ZhenWang 已提交
10110
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
10111 10112 10113 10114 10115 10116 10117

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
10118 10119
    """
    helper = LayerHelper('pow', **locals())
10120 10121 10122 10123 10124 10125 10126 10127
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
10128
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10129
    helper.append_op(
10130
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10147 10148 10149 10150 10151

    Examples:

        .. code-block:: python

10152
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10153
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
10154
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
10155 10156
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
10157
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10180 10181 10182 10183 10184

    Examples:

        .. code-block:: python

10185
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10186 10187
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
10188 10189
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
10190
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10212 10213 10214 10215 10216

    Examples:

        .. code-block:: python

10217
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10218 10219
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
10220 10221
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
10222
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10223 10224 10225 10226 10227 10228 10229 10230
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
10231 10232 10233 10234
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
10235 10236
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
10237

J
jerrywgz 已提交
10238 10239 10240 10241 10242 10243 10244 10245
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
10246 10247
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
10248
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
10249
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
10250
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
10251
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
10252
          will be named automatically.
J
jerrywgz 已提交
10253 10254 10255 10256 10257 10258 10259 10260

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
10261 10262 10263
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
10264
            mode = 'channel'
J
jerrywgz 已提交
10265 10266 10267
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
10279
        attr=helper.param_attr,
J
jerrywgz 已提交
10280 10281 10282 10283
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
10284
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
10285 10286 10287 10288 10289 10290 10291 10292 10293
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


10294 10295 10296 10297 10298 10299 10300 10301 10302 10303
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10304
    Returns:
10305
        output(${out_type}): ${out_comment}
10306 10307 10308

    Examples:

10309
    .. code-block:: python
10310

10311
            import paddle.fluid as fluid
H
haowang101779990 已提交
10312 10313
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
10314 10315
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
10316
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10335
    Returns:
10336
        output(${out_type}): ${out_comment}
10337 10338 10339 10340 10341

    Examples:

        .. code-block:: python

10342
            import paddle.fluid as fluid
H
haowang101779990 已提交
10343 10344
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
10345 10346
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
10347
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10365
    Returns:
10366
        output(${out_type}): ${out_comment}
10367 10368 10369

    Examples:

10370 10371 10372 10373 10374
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
10375
            y = fluid.layers.soft_relu(x, threshold=20.0)
10376 10377
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
10378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10379 10380 10381 10382 10383 10384 10385 10386
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


10387 10388 10389 10390
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
10391

H
haowang101779990 已提交
10392
    For Example:
M
minqiyang 已提交
10393

H
haowang101779990 已提交
10394
    .. code-block:: text
10395

H
haowang101779990 已提交
10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
10417 10418 10419

    Args:
        x (Variable): A tensor of rank >= axis.
10420 10421
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
10422 10423 10424 10425 10426 10427 10428 10429
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
10430 10431 10432
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
10433 10434 10435 10436
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
10437
        ValueError: If axis is not in range [0, rank(x)].
10438 10439 10440 10441 10442

    Examples:

        .. code-block:: python

10443
            import paddle.fluid as fluid
10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
10455 10456
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
10457
    helper.append_op(
10458
        type='flatten2',
10459
        inputs={"X": x},
10460 10461
        outputs={'Out': out,
                 'XShape': x_shape},
10462 10463
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
10464 10465


C
chenweihang 已提交
10466
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
10467
    """
C
chenweihang 已提交
10468
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
10469
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
10470 10471
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
10472

H
haowang101779990 已提交
10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
10490 10491

    Args:
C
chenweihang 已提交
10492 10493 10494
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
10495 10496 10497 10498 10499 10500 10501

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

10502 10503 10504
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
10505 10506
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
10507
    assert not in_dygraph_mode(), (
10508
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
10509
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
10510 10511
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
10512 10513 10514 10515 10516 10517
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
10518
    return out
10519

10520

S
sneaxiy 已提交
10521 10522 10523 10524 10525 10526 10527 10528 10529
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
10530

S
sneaxiy 已提交
10531
    .. math::
10532

S
sneaxiy 已提交
10533 10534 10535
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
10536
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
10537 10538 10539 10540
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
10541 10542 10543
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
10544 10545
    Returns:
        Variable: The output sequence mask.
10546

10547 10548 10549
    Examples:
        .. code-block:: python
	
10550
            import paddle.fluid as fluid
10551 10552 10553 10554 10555
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
10556
    """
Q
qingqing01 已提交
10557
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
10558
    if name is None:
X
Xin Pan 已提交
10559
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
10560
    else:
X
Xin Pan 已提交
10561
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
10562

10563 10564 10565 10566 10567 10568 10569 10570
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
10571
    helper.append_op(
10572 10573 10574
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
10575
    return out
S
sneaxiy 已提交
10576 10577


X
Xin Pan 已提交
10578
def stack(x, axis=0):
S
sneaxiy 已提交
10579 10580 10581 10582
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
10583 10584 10585 10586 10587 10588 10589

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
10590
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
10591
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
10592

C
chengduozh 已提交
10593 10594
    For Example:

C
chengduozh 已提交
10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
10633
    Args:
10634
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
10635
        axis (int|None): The axis along which all inputs are stacked.
10636

S
sneaxiy 已提交
10637 10638
    Returns:
        Variable: The stacked variable.
10639

10640 10641 10642
    Examples:
        .. code-block:: python

10643
            import paddle.fluid as fluid
10644
            import paddle.fluid.layers as layers
10645 10646
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
10647 10648
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
10649 10650
    """

X
Xin Pan 已提交
10651 10652 10653 10654 10655 10656
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
10657
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
10658
    helper.append_op(
S
sneaxiy 已提交
10659 10660
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
10661

X
Xin Pan 已提交
10662
    return out
D
dzhwinter 已提交
10663 10664


J
Jiawei Wang 已提交
10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
10735 10736 10737 10738 10739
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
10740

D
dzhwinter 已提交
10741 10742 10743
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
10744
    raised.
D
dzhwinter 已提交
10745 10746

    Args:
M
minqiyang 已提交
10747
        x (Variable): Input variable.
D
dzhwinter 已提交
10748 10749
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
10750

D
dzhwinter 已提交
10751 10752
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
10753

10754 10755 10756 10757 10758 10759
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
10760 10761 10762 10763 10764 10765 10766 10767 10768 10769
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
10770
    for _ in range(num):
X
Xin Pan 已提交
10771
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
10772 10773 10774 10775 10776 10777 10778 10779

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
10792

W
whs 已提交
10793 10794 10795 10796
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
10797

W
whs 已提交
10798
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
10799

W
whs 已提交
10800
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
10801

W
whs 已提交
10802 10803 10804 10805
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
10806

W
whs 已提交
10807 10808
    Args:
        x (Variable): A tensor with rank in [1, 6].
L
liym27 已提交
10809
        expand_times (list|tuple|Variable): Expand times number for each dimension.
W
whs 已提交
10810 10811 10812 10813 10814 10815 10816

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
L
liym27 已提交
10817

W
wangchaochaohu 已提交
10818
            import paddle.fluid as fluid
L
liym27 已提交
10819 10820 10821 10822 10823 10824 10825 10826 10827

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
W
whs 已提交
10828
    """
L
liym27 已提交
10829 10830 10831 10832 10833

    if not isinstance(expand_times, (list, tuple, Variable)):
        raise ValueError(
            "Input expand_times must be an Variable, python list or tuple.")

W
whs 已提交
10834
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
10867 10868 10869 10870 10871

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
10872 10873 10874 10875 10876 10877 10878 10879
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
10880

L
liym27 已提交
10881 10882
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
10883
    helper.append_op(
10884
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10885
    return out
S
sneaxiy 已提交
10886 10887


G
fix  
gongweibao 已提交
10888 10889 10890
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10891
@templatedoc()
G
fix  
gongweibao 已提交
10892 10893 10894 10895 10896 10897 10898 10899 10900
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10901
    ${comment}
G
fix  
gongweibao 已提交
10902 10903

    Args:
G
gongweibao 已提交
10904 10905 10906
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10907
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10908 10909 10910
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10911 10912
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10913
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10914

10915 10916 10917
    Examples:
        .. code-block:: python

10918
            import paddle.fluid as fluid
10919 10920
            import paddle.fluid.layers as layers 

10921 10922
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10923 10924 10925
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10926
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10943 10944


G
gongweibao 已提交
10945
@templatedoc()
X
Xin Pan 已提交
10946
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10947
    """
G
gongweibao 已提交
10948
    ${comment}
G
fix  
gongweibao 已提交
10949 10950

    Args:
G
gongweibao 已提交
10951 10952 10953 10954
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10955 10956 10957
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10958
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10959

10960 10961 10962
    Examples:
        .. code-block:: python

10963
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10964
            import paddle.fluid.layers as layers
10965
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10966 10967 10968
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10969
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10970 10971 10972 10973 10974 10975 10976 10977 10978 10979
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10980
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10981 10982 10983 10984 10985
        })

    return out


G
gongweibao 已提交
10986
@templatedoc()
G
fix  
gongweibao 已提交
10987
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10988
    """
G
gongweibao 已提交
10989
    ${comment}
G
fix  
gongweibao 已提交
10990 10991

    Args:
G
gongweibao 已提交
10992 10993 10994 10995
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10996
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10997 10998

    Returns:
G
gongweibao 已提交
10999
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11000

11001 11002 11003
    Examples:
        .. code-block:: python

11004
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11005
            x = fluid.layers.data(
11006 11007 11008 11009 11010
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
11011
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
11012 11013 11014
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
11015
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
11027
@templatedoc()
G
fix  
gongweibao 已提交
11028 11029 11030 11031 11032 11033 11034 11035 11036
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
11037
    ${comment}
G
fix  
gongweibao 已提交
11038 11039

    Args:
G
gongweibao 已提交
11040 11041
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
11042
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
11043 11044 11045 11046
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11047
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11048 11049

    Returns:
G
gongweibao 已提交
11050
        out (Variable): ${out_comment}
11051 11052 11053 11054

    Examples:
        .. code-block:: python

11055
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11056
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
11057

Y
Yibing Liu 已提交
11058
            out = fluid.layers.gaussian_random_batch_size_like(
11059
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
11060 11061 11062
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
11063
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
11082
@templatedoc()
X
Xin Pan 已提交
11083
def sum(x):
G
fix  
gongweibao 已提交
11084
    """
G
gongweibao 已提交
11085
    ${comment}
G
fix  
gongweibao 已提交
11086 11087

    Args:
G
gongweibao 已提交
11088
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
11089 11090

    Returns:
G
gongweibao 已提交
11091
        out (Variable): ${out_comment}
11092 11093 11094 11095

    Examples:
        .. code-block:: python

11096
            import paddle.fluid as fluid
11097 11098 11099 11100
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
11101 11102 11103
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
11104 11105
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
11106 11107 11108 11109
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
11110
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
11111 11112 11113 11114

    return out


G
gongweibao 已提交
11115
@templatedoc()
G
fix  
gongweibao 已提交
11116 11117
def slice(input, axes, starts, ends):
    """
11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
11133

11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
11151
    Args:
G
gongweibao 已提交
11152 11153
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
11154 11155
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}
G
fix  
gongweibao 已提交
11156 11157

    Returns:
G
gongweibao 已提交
11158
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11159

11160 11161 11162
    Examples:
        .. code-block:: python

11163
            import paddle.fluid as fluid
11164

11165
            input = fluid.layers.data(
11166 11167
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
G
fix  
gongweibao 已提交
11179 11180
    """

11181 11182 11183 11184 11185 11186 11187
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
11188
    helper = LayerHelper('slice', **locals())
11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
11259 11260
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
11261
    helper.append_op(
11262
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
11263 11264 11265 11266

    return out


W
wangchaochaohu 已提交
11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
    Strided Slice OP

    The conceptualization that really helped me understand this was 
    that this function emulates the indexing behavior of numpy arrays.
    If you're familiar with numpy arrays, you'll know that you can make 
    slices via input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN]. 
    Basically, a very succinct way of writing for loops to get certain elements of the array.
    strided_slice just allows you to do this fancy indexing without the syntactic sugar. 
    The numpy (#input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN])
    example from above just becomes fluid.strided_slice(input,[0, 1, ..., N], 
    [start1, start2, ..., startN], [end1, end2, ..., endN], [strides1, strides2, ..., stridesN]),
    the axes which controls the dimension you want to slice makes it more flexible.

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7] ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, -1]
                ends = [-1, 0]
                strides = [1, -1]
            Then:
                result = [ [4, 3, 2] ]
    Atrgs:
       input (Varibale): the input variable.
       axes(List):axis we need to slice
       starts (List): the start index in axis
       ends (List): the end index in axis
       strides (List): the stride length when we do slice operation
    Returns
       out(Variable): the result by strided_slice Op
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
 
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]
            strides= [1, 1, 1]

            input = fluid.layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides)
    """
    helper = LayerHelper('strided_slice', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))

    helper.append_op(
        type='strided_slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides
        })

    return out


G
fix  
gongweibao 已提交
11346 11347
def shape(input):
    """
C
chengduozh 已提交
11348 11349
    **Shape Layer**

C
fix doc  
chengduozh 已提交
11350
    Get the shape of the input.
G
fix  
gongweibao 已提交
11351 11352

    Args:
C
chengduozh 已提交
11353
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
11354 11355

    Returns:
C
fix doc  
chengduozh 已提交
11356
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
11357

11358 11359 11360
    Examples:
        .. code-block:: python

11361 11362 11363
            import paddle.fluid as fluid

            input = fluid.layers.data(
11364
                name="input", shape=[3, 100, 100], dtype="float32")
11365
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
11366 11367 11368
    """

    helper = LayerHelper('shape', **locals())
11369
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
11370
    helper.append_op(
G
fix  
gongweibao 已提交
11371
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
11372 11373

    return out
G
merge  
gongweibao 已提交
11374 11375


Z
zhoukunsheng 已提交
11376 11377 11378 11379
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
11380
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
11381 11382 11383 11384 11385 11386 11387 11388 11389 11390

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

11391 11392 11393 11394
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
11395 11396 11397 11398 11399 11400 11401 11402
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
11432 11433 11434 11435
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
11436
    if in_dygraph_mode():
X
Xin Pan 已提交
11437 11438 11439
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
11440 11441 11442 11443
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
11444 11445
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
11446
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11447 11448 11449
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11450

S
sneaxiy 已提交
11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
11462
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
11463 11464 11465 11466 11467 11468 11469 11470
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
11471
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
11472
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
11473 11474 11475

    Returns:
        out(${out_type}): ${out_comment}
11476 11477 11478 11479 11480 11481 11482 11483

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
11484 11485 11486
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
11487
    if name is None:
X
Xin Pan 已提交
11488
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11489 11490 11491
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11492 11493 11494 11495 11496 11497 11498 11499 11500 11501

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
11502
    return helper.append_activation(out)
S
sneaxiy 已提交
11503 11504


X
Xin Pan 已提交
11505
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11506 11507 11508
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
11509
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11510 11511 11512
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
11513
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11514 11515 11516
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
11517
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11518 11519 11520
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11521
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11522 11523 11524
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11525
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11526 11527 11528
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11529
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11530 11531 11532
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11533 11534 11535 11536 11537 11538 11539 11540
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11541
for func in [
11542 11543 11544 11545 11546 11547 11548 11549 11550
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
11551 11552 11553 11554 11555
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11556 11557
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11558
        ])
11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11596 11597


11598
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11599 11600
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11601 11602
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11603 11604 11605

    if out is None:
        if name is None:
X
Xin Pan 已提交
11606
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11622
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11634 11635 11636 11637

    Examples:
        .. code-block:: python

11638
            import paddle.fluid as fluid
11639
            left = fluid.layers.data(
石晓伟 已提交
11640
                name='left', shape=[1], dtype='bool')
11641
            right = fluid.layers.data(
石晓伟 已提交
11642
                name='right', shape=[1], dtype='bool')
11643
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
11644 11645 11646 11647 11648 11649 11650
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11651
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11663 11664 11665 11666

    Examples:
        .. code-block:: python

11667
            import paddle.fluid as fluid
11668
            left = fluid.layers.data(
石晓伟 已提交
11669
                name='left', shape=[1], dtype='bool')
11670
            right = fluid.layers.data(
石晓伟 已提交
11671
                name='right', shape=[1], dtype='bool')
11672
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
11673 11674 11675 11676 11677 11678 11679
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11680
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11692 11693 11694 11695

    Examples:
        .. code-block:: python

11696
            import paddle.fluid as fluid
11697
            left = fluid.layers.data(
石晓伟 已提交
11698
                name='left', shape=[1], dtype='bool')
11699
            right = fluid.layers.data(
石晓伟 已提交
11700
                name='right', shape=[1], dtype='bool')
11701
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
11702 11703 11704 11705 11706 11707 11708
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11709
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11710 11711 11712 11713 11714 11715 11716 11717 11718 11719
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11720 11721 11722 11723

    Examples:
        .. code-block:: python

11724
            import paddle.fluid as fluid
11725
            left = fluid.layers.data(
石晓伟 已提交
11726
                name='left', shape=[1], dtype='bool')
11727
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
11728 11729 11730 11731
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11747 11748 11749 11750

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11751
            import paddle.fluid as fluid
11752 11753 11754
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11755 11756 11757 11758 11759
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11760 11761
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11762 11763 11764

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11788 11789 11790 11791

    Examples:
        .. code-block:: python

11792
            import paddle.fluid as fluid
11793 11794 11795
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11796 11797 11798 11799 11800
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11801 11802
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11803 11804 11805

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11806 11807 11808 11809 11810 11811 11812 11813

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11827 11828 11829 11830

    Examples:
        .. code-block:: python

11831
            import paddle.fluid as fluid
11832 11833 11834
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11835 11836 11837 11838 11839
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
11840
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11841 11842 11843 11844 11845 11846 11847 11848 11849 11850
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11862 11863 11864 11865

    Examples:
        .. code-block:: python

11866
            import paddle.fluid as fluid
11867 11868 11869 11870 11871
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11910 11911 11912 11913 11914
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
11915
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11916 11917 11918 11919 11920 11921 11922 11923 11924
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11925 11926
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11927 11928 11929 11930 11931 11932
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
11933 11934 11935
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
11936 11937
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
11938 11939 11940 11941 11942 11943
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
11944
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
11945
        name(basestring|None): Name of the output.
11946 11947
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
11948 11949 11950

    Returns:
        out(${out_type}): ${out_comment}
11951 11952 11953 11954

    Examples:
        .. code-block:: python

11955
            import paddle.fluid as fluid
11956 11957 11958 11959 11960 11961 11962 11963 11964 11965
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
11966 11967 11968 11969 11970
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
11971
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11972 11973 11974 11975 11976 11977 11978 11979
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
11980 11981
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
11998 11999 12000 12001

    Examples:
        .. code-block:: python

12002
            import paddle.fluid as fluid
J
jerrywgz 已提交
12003 12004 12005 12006 12007
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
12008 12009 12010 12011
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
12012
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
12013 12014 12015 12016 12017 12018 12019 12020 12021 12022
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
12023 12024


J
JiabinYang 已提交
12025
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
12026
    """
J
JiabinYang 已提交
12027
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
12028 12029 12030

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
12031
    The attr blocksize indicates the input block size.
12032 12033

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
12034
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
12035 12036

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
12037
    (but keeping all data)
J
JiabinYang 已提交
12038

J
JiabinYang 已提交
12039
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
12040
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
12041 12042 12043 12044 12045
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
12046
    Args:
J
JiabinYang 已提交
12047
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
12048
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
12049 12050

    Returns:
J
JiabinYang 已提交
12051
        Variable: The output LoDtensor.
J
JiabinYang 已提交
12052 12053

    Raises:
J
JiabinYang 已提交
12054
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
12055 12056 12057

    Examples:
        .. code-block:: python
12058 12059 12060
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
12061 12062

            data = fluid.layers.data(
12063
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
12064
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
12065
                x=data, blocksize=2)
12066

12067
            exe = fluid.Executor(fluid.CPUPlace())
12068 12069 12070 12071
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
12072

J
JiabinYang 已提交
12073 12074
    """

J
JiabinYang 已提交
12075
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
12076

J
JiabinYang 已提交
12077 12078
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
12079 12080

    if name is None:
J
JiabinYang 已提交
12081 12082
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
12083 12084 12085 12086 12087
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
12088
        type="space_to_depth",
J
JiabinYang 已提交
12089
        inputs={"X": x},
J
JiabinYang 已提交
12090
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
12091
        outputs={"Out": out})
J
JiabinYang 已提交
12092 12093
    return out

J
JiabinYang 已提交
12094

S
sneaxiy 已提交
12095 12096
@templatedoc()
def sequence_reverse(x, name=None):
12097
    """
S
sneaxiy 已提交
12098 12099 12100 12101 12102 12103 12104 12105
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
12106 12107 12108 12109 12110 12111 12112

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
12113
    """
L
lujun 已提交
12114
    assert not in_dygraph_mode(), (
12115
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
12116 12117
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
12118
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
12119 12120 12121 12122 12123 12124 12125 12126 12127 12128
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
12129 12130


12131 12132 12133 12134 12135 12136
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
12137 12138 12139 12140 12141
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
12142

12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
12155
        act (str, default None): Activation to be applied to the output of this layer.
12156 12157 12158

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

12173 12174 12175 12176
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
12177
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
12189
    return helper.append_activation(out)
12190 12191


B
barrierye 已提交
12192
def similarity_focus(input, axis, indexes, name=None):
12193
    """
B
barrierye 已提交
12194
    SimilarityFocus Operator
B
barrierye 已提交
12195 12196

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
12197

12198 12199 12200
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
12201
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
12202 12203 12204 12205 12206 12207 12208
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
12209
       each index.
B
barrierye 已提交
12210 12211 12212 12213
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12263
    Args:
12264
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
12265
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
12266
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12267
            1, 2 or 3.
B
barrierye 已提交
12268
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12269 12270

    Returns:
H
haowang101779990 已提交
12271 12272
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12273

B
barrierye 已提交
12274 12275
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12276

12277
            import paddle.fluid as fluid
B
barrierye 已提交
12278
            data = fluid.layers.data(
Y
Yibing Liu 已提交
12279 12280
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
12293 12294 12295 12296 12297
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
12298 12299 12300 12301 12302 12303 12304
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12305 12306


M
minqiyang 已提交
12307 12308
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
12309 12310
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
12311 12312
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12313 12314 12315 12316 12317 12318 12319 12320

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
12321
        input.data = 
12322
            [[1, 2],
12323
             [3, 4]]
M
minqiyang 已提交
12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
12337 12338
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
12339 12340 12341 12342
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
12343
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
12344 12345
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
12346
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
12347
        name (str, default None): The name of this layer.
M
minqiyang 已提交
12348 12349

    Returns:
12350
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
12351 12352 12353

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
12354

12355 12356
            import paddle.fluid as fluid

12357 12358 12359 12360
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
12361 12362


12363 12364 12365 12366
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
12367 12368
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12369 12370
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12371 12372 12373 12374 12375 12376 12377
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12378 12379


D
dengkaipeng 已提交
12380
@templatedoc()
12381 12382
def grid_sampler(x, grid, name=None):
    """
12383
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
12384
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
12385 12386 12387 12388
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
12389
    interpolation value of 4 nearest corner points.
12390

H
haowang101779990 已提交
12391
    .. code-block:: text
12392

H
haowang101779990 已提交
12393 12394
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12395

H
haowang101779990 已提交
12396 12397
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12398

H
haowang101779990 已提交
12399 12400 12401
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12402

H
haowang101779990 已提交
12403 12404 12405 12406 12407 12408 12409 12410 12411
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12412

H
haowang101779990 已提交
12413 12414 12415 12416
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12417

H
haowang101779990 已提交
12418 12419 12420 12421
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12422

H
haowang101779990 已提交
12423 12424 12425 12426
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12427

H
haowang101779990 已提交
12428 12429
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12430 12431

    Args:
12432 12433 12434
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
12435 12436

    Returns:
H
haowang101779990 已提交
12437
        Variable: Output of shape [N, C, H, W] data samples input X
12438 12439
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
12440 12441 12442 12443
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12444 12445 12446 12447 12448
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12449
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12450

D
dengkaipeng 已提交
12451 12452 12453 12454 12455 12456 12457 12458 12459
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12460
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12461 12462
    ipts = {'X': x, 'Grid': grid}

12463
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12464 12465 12466
    return out


G
gmcather 已提交
12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12494
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12495 12496
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
12535
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
12536 12537 12538 12539 12540 12541 12542
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
12543 12544
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12545

12546 12547 12548 12549 12550
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
12551
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
12552

H
heqiaozhi 已提交
12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
12566 12567 12568 12569
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
12570
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
12571 12572
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
12573
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12574 12575

    .. math::
H
haowang101779990 已提交
12576 12577 12578
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12579 12580

    Where:
H
haowang101779990 已提交
12581 12582
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

12596 12597 12598 12599 12600 12601 12602 12603 12604
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12605

G
gmcather 已提交
12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12622 12623 12624 12625 12626 12627 12628 12629 12630 12631


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
12632
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12633

Q
Qiao Longfei 已提交
12634
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12635 12636 12637
    For example:

    .. math::
H
haowang101779990 已提交
12638
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12639

Q
Qiao Longfei 已提交
12640
    In this formula:
12641 12642
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
12643
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
12644
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12645 12646 12647
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
12648 12649
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
12650 12651 12652
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
12653
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
12654
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
12655
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
12656 12657 12658 12659
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
12660
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
12661 12662 12663 12664

    Examples:
        .. code-block:: python

12665
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12666 12667 12668
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12669 12670
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12671
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12672 12673 12674 12675

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12676
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
12707 12708 12709 12710 12711 12712 12713 12714

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12715 12716 12717 12718 12719 12720 12721 12722 12723 12724
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12725 12726


S
shippingwang 已提交
12727
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12728 12729
    """
    **Shuffle Channel Operator**
12730

S
shippingwang 已提交
12731 12732 12733 12734 12735 12736
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12737
    
S
shippingwang 已提交
12738
    .. code-block:: text
12739

S
shippingwang 已提交
12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12768
    Args: 
S
shippingwang 已提交
12769 12770
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12771 12772

    Returns:
S
shippingwang 已提交
12773 12774
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12775 12776

    Raises:
S
shippingwang 已提交
12777
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12778 12779 12780

    Examples:
        .. code-block:: python
12781

12782
            import paddle.fluid as fluid
12783
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
12784
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12785 12786 12787
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12788
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12789 12790 12791 12792 12793 12794 12795 12796 12797

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12798
    return out
S
Add  
shippingwang 已提交
12799 12800


12801
@templatedoc()
D
dengkaipeng 已提交
12802
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12803 12804 12805 12806 12807 12808 12809 12810
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12811
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
12812
        name (str, default None): The name of this layer.
12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12824
            import paddle.fluid as fluid
12825
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
12826
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12839 12840
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12841 12842 12843
    return out


S
sneaxiy 已提交
12844
class PyFuncRegistry(object):
S
sneaxiy 已提交
12845 12846 12847
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12848
        if func is None or not callable(func):
S
sneaxiy 已提交
12849 12850 12851
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12852
        # find named args using reflection
S
sneaxiy 已提交
12853 12854 12855 12856 12857 12858 12859
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12860 12861 12862
        '''
        Why record self here?

M
minqiyang 已提交
12863 12864
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12865
           to find the registered function corresponding
M
minqiyang 已提交
12866
           to :code:`idx`.
S
sneaxiy 已提交
12867

M
minqiyang 已提交
12868 12869
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12870
           whose reference count is 1 would cause
M
minqiyang 已提交
12871
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12872 12873
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12874
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12889 12890 12891 12892 12893 12894 12895 12896 12897
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12898

S
sneaxiy 已提交
12899 12900
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12901 12902

        ret = []
S
sneaxiy 已提交
12903 12904 12905
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12906 12907
                continue

S
sneaxiy 已提交
12908 12909
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12910

S
sneaxiy 已提交
12911 12912 12913
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12914

S
sneaxiy 已提交
12915
        return tuple(ret)
S
sneaxiy 已提交
12916 12917


S
sneaxiy 已提交
12918 12919 12920 12921
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
12922

S
sneaxiy 已提交
12923 12924 12925 12926 12927 12928 12929 12930
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
12931
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
12932

S
sneaxiy 已提交
12933 12934
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
12935 12936 12937 12938
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
12939
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
12940
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
12941 12942
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
12943 12944 12945 12946 12947
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
12948
            should create :code:`out` beforehand.
S
sneaxiy 已提交
12949
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
12950
                                       None means no backward. Default None.
S
sneaxiy 已提交
12951
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
12952
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
12953 12954
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
12955
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
12956 12957 12958

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
12959 12960

    Examples:
M
minqiyang 已提交
12961

S
sneaxiy 已提交
12962 12963 12964 12965 12966
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
12967
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
12968 12969
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
12970
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
12971 12972 12973
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
12974
        >>>
S
sneaxiy 已提交
12975 12976 12977 12978 12979
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
12980
        >>>     print(x)
S
sneaxiy 已提交
12981 12982 12983 12984 12985 12986
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
12987
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
12988 12989
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
12990 12991
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
12992 12993 12994 12995 12996 12997 12998 12999
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
13000
    """
S
sneaxiy 已提交
13001
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
13002 13003 13004
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
13005
        x = [x]
S
sneaxiy 已提交
13006 13007
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
13008

S
sneaxiy 已提交
13009 13010 13011
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
13012
        out_list = [out]
S
sneaxiy 已提交
13013
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
13014
        out_list = out
S
sneaxiy 已提交
13015 13016 13017
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
13018

S
sneaxiy 已提交
13019 13020
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
13021
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
13022 13023

    for each_out in out_list:
S
sneaxiy 已提交
13024 13025
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
13026 13027
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
13028

S
sneaxiy 已提交
13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
13044 13045 13046 13047

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
13048 13049
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
13050 13051 13052
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
13053
        })
S
sneaxiy 已提交
13054
    return out
S
sneaxiy 已提交
13055 13056 13057


# For debug usage
S
sneaxiy 已提交
13058 13059 13060 13061
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
13075 13076 13077 13078 13079
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
13092 13093 13094 13095
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184


@templatedoc()
def prroi_pool(input,
               rois,
               output_channels,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        output_channels (integer): The output's channel.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7)
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13185

M
minqiyang 已提交
13186

M
minqiyang 已提交
13187
def huber_loss(input, label, delta):
13188
    """
M
minqiyang 已提交
13189 13190 13191
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
13192 13193 13194 13195

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
13196
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
13197 13198 13199 13200

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
13201
        huber\_loss = 0.5 * (label - input) * (label - input)
13202 13203 13204 13205 13206 13207 13208


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
13209
        delta (float): The parameter of huber loss, which controls
13210 13211 13212
                       the range of outliers

    Returns:
M
minqiyang 已提交
13213
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
13214 13215 13216 13217

    Examples:
        .. code-block:: python

13218 13219 13220 13221 13222 13223 13224 13225 13226
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

13227
    """
M
minqiyang 已提交
13228
    helper = LayerHelper('huber_loss', **locals())
13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
13240 13241


D
dengkaipeng 已提交
13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

13259
            import paddle.fluid as fluid
D
dengkaipeng 已提交
13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


C
ceci3 已提交
13275
from .ops import square
C
ceci3 已提交
13276
from .control_flow import equal
C
ceci3 已提交
13277 13278


C
ceci3 已提交
13279 13280 13281
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
13282

C
ceci3 已提交
13283
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
13284 13285

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
13286
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
13287 13288 13289 13290 13291
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
13292 13293
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
13294 13295 13296 13297 13298 13299 13300

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

13301
       import paddle.fluid as fluid
C
ceci3 已提交
13302 13303 13304 13305 13306 13307 13308 13309
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
13310 13311 13312 13313 13314 13315 13316
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
13317
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
13318 13319
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
13320 13321
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
13322 13323 13324 13325
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
13326 13327 13328
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
13329 13330 13331
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
13332 13333


R
ruri 已提交
13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

13363
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13364 13365 13366 13367 13368 13369 13370 13371 13372

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

13373
            import paddle.fluid as fluid
R
ruri 已提交
13374
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13425 13426 13427 13428 13429 13430
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13431 13432 13433 13434 13435 13436 13437 13438
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13439 13440 13441 13442


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13443

H
heqiaozhi 已提交
13444
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13445

H
fix doc  
heqiaozhi 已提交
13446
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
13447 13448 13449
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
13450
    
H
fix doc  
heqiaozhi 已提交
13451
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
13452

H
heqiaozhi 已提交
13453
    Args:
H
fix doc  
heqiaozhi 已提交
13454 13455

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
13456 13457
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
13458
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
13459
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
13460

H
heqiaozhi 已提交
13461
    Returns:
H
fix doc  
heqiaozhi 已提交
13462 13463 13464

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
13465
    Examples:
H
fix doc  
heqiaozhi 已提交
13466

H
heqiaozhi 已提交
13467
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13468

13469
          import paddle.fluid as fluid
H
heqiaozhi 已提交
13470 13471 13472 13473 13474 13475 13476 13477 13478 13479
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13480

H
heqiaozhi 已提交
13481 13482 13483 13484 13485 13486 13487 13488 13489
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13490
    return out
Z
zhoukunsheng 已提交
13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

13509
             import paddle.fluid as fluid
13510 13511 13512
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13513
             # condition is a tensor [True, False, True]
13514 13515 13516
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13517 13518

             # condition is a tensor [[True, False], [False, True]]
13519 13520 13521
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13522 13523

             # condition is a tensor [False, False, False]
13524 13525 13526 13527
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13528 13529 13530 13531 13532 13533 13534 13535 13536
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

13554 13555 13556
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
13557
          # [1, 0, -1]
13558 13559
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13572 13573


Z
zhoukunsheng 已提交
13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13678
                    modulated=True,
13679 13680 13681 13682 13683 13684
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13685 13686 13687
   
    
    Deformable Convolution v2: 
13688 13689 13690 13691
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13692 13693

    Deformable Convolution v1:
13694
    
13695 13696 13697 13698 13699 13700 13701
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
    which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
13727
        offset (Variable): The input coordinate offset of deformable convolution layer.
13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13766 13767
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13779 13780
          #deformable conv v2:
         
13781
          import paddle.fluid as fluid
13782 13783 13784 13785
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13786 13787 13788 13789 13790 13791 13792 13793 13794
                                             num_filters=2, filter_size=3, padding=1, modulated=True)

          #deformable conv v1:

          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=3, padding=1, modulated=False)
13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13872 13873 13874

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

14038
        import paddle.fluid as fluid
C
cjt222 已提交
14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255


def mse_loss(input, label):
    """
    **Mean square error layer**

    This layer accepts input predications and target label and returns the mean square error.

    The loss can be described as:

    .. math::
        
        Out = mean((X - Y)^2)

    In the above equation:

        * :math:`X`: Input predications, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the mean square error difference of input and label.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
            mse = fluid.layers.mse_loss(input=y_predict, label=y)

    """
    return reduce_mean(square_error_cost(input, label))