nn.py 368.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
shippingwang 已提交
182
    'shuffle_channel',
S
sneaxiy 已提交
183
    'py_func',
184
    'psroi_pool',
H
heqiaozhi 已提交
185
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
186
    'huber_loss',
Z
zhaozhehao 已提交
187
    'tree_conv',
Y
Yu Yang 已提交
188 189
]

J
jerrywgz 已提交
190 191
kIgnoreIndex = -100

Y
Yu Yang 已提交
192 193 194 195 196 197 198

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
199
       is_test=False,
200
       name=None):
Y
Yu Yang 已提交
201
    """
202
    **Fully Connected Layer**
Y
Yu Yang 已提交
203

204 205 206 207 208 209 210 211
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
212
    to the output as well.
C
caoying03 已提交
213

C
caoying03 已提交
214
    This process can be formulated as follows:
215 216 217

    .. math::

218
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
219 220 221

    In the above equation:

C
caoying03 已提交
222 223 224 225
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
226
    * :math:`Act`: The activation function.
C
caoying03 已提交
227
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
228 229

    Args:
R
ranqiu 已提交
230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
240
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
241 242 243 244
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
245 246
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
247
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
248
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
249
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
250

251
    Returns:
F
fengjiayi 已提交
252
        Variable: The transformation result.
253 254

    Raises:
C
caoying03 已提交
255
        ValueError: If rank of the input tensor is less than 2.
256 257 258 259

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
260
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
261
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
262
    """
C
caoying03 已提交
263

C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
265 266 267 268

    dtype = helper.input_dtype()

    mul_results = []
269 270
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
271 272 273
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
274

Y
Yu Yang 已提交
275
        w = helper.create_parameter(
276
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
277
        tmp = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
282
            outputs={"Out": tmp},
M
mozga-intel 已提交
283 284
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
285 286 287 288
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
289
    else:
X
Xin Pan 已提交
290
        pre_bias = helper.create_variable_for_type_inference(dtype)
291
        helper.append_op(
292 293 294
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
295
            attrs={"use_mkldnn": False})
296 297 298 299
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
300 301


302 303 304
def embedding(input,
              size,
              is_sparse=False,
305
              is_distributed=False,
306 307 308
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
309
    """
310 311
    **Embedding Layer**

312
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
313 314
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
315 316 317

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
318 319

    Args:
320 321 322 323 324
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
325
        is_distributed(bool): Whether to run lookup table from remote parameter server.
326 327
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
328
            with zeros whenever lookup encounters it in :attr:`input`. If
329
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
330 331
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
333

334 335 336
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
337

338 339
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
340

C
chengduoZH 已提交
341
          dict_size = len(dataset.ids)
342
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
343
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
344 345 346
    """

    helper = LayerHelper('embedding', **locals())
347
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
348 349
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
350 351
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
352
    tmp = helper.create_variable_for_type_inference(dtype)
353 354
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
355 356 357 358 359
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
360 361 362
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
363
            'remote_prefetch': remote_prefetch,
364 365
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
366 367 368
    return tmp


W
wopeizl 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
385

W
wopeizl 已提交
386 387 388 389 390 391 392 393 394 395 396
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
489 490


P
phlrain 已提交
491 492 493 494 495 496
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
497
         dropout_prob=0.0,
P
phlrain 已提交
498 499 500 501 502
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
503
    """
P
phlrain 已提交
504
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
505 506

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
507
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
508 509
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
510
    .. math::
M
minqiyang 已提交
511 512 513 514 515 516 517

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
518
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
519 520 521 522

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
523 524

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
525 526 527 528 529 530
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
531 532 533
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
534
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
535

M
minqiyang 已提交
536
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
537 538 539 540 541
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
542
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
543 544 545 546 547
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
548
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
549 550
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
551 552
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
553 554 555 556 557 558
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
559
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
560

L
liuhongyu 已提交
561 562

    Returns:
M
minqiyang 已提交
563 564
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
565
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
566

H
haowang101779990 已提交
567 568 569 570
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
571
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
572 573
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
590
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
591 592 593 594 595 596
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
597 598 599
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
659 660 661 662 663 664 665 666 667 668 669
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
670 671
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
672 673 674
    """
    **Dynamic LSTMP Layer**

675 676 677 678 679 680
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
681 682 683 684 685

    The formula is as follows:

    .. math::

686
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
687

688
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
689

690
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
691

692
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
693

694
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
695

696
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
697

698
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
699

Y
Yibing Liu 已提交
700 701 702 703 704 705
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
706
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
707
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
708
          bias vector).
Y
Yibing Liu 已提交
709 710 711
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
712
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
713
    * :math:`h`: The hidden state.
714
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
715 716
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
717
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
718
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
719
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
720 721
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
722 723 724 725

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
726

Y
Yibing Liu 已提交
727 728 729 730 731 732 733 734 735 736 737 738
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
739
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
740 741
                               hidden-hidden weight and projection weight.

742 743
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
744 745
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
746 747
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
748
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
749 750 751 752 753

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
754
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
755 756 757 758 759 760
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
761
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
762 763 764
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
765
                                - The shape is (1 x 7D).
C
chengduo 已提交
766 767 768 769 770

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
771 772 773 774 775 776 777 778 779
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
780
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
781 782
                              default "tanh".
        proj_activation(str): The activation for projection output.
783
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
784 785
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
786 787
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
788 789

    Returns:
790 791 792 793
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
794 795

    Examples:
796

Y
Yibing Liu 已提交
797 798
        .. code-block:: python

799 800 801 802
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
803
            hidden_dim, proj_dim = 512, 256
804
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
805
                                     act=None, bias_attr=None)
806 807 808
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
809 810 811 812
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
813
    """
814

C
chengduo 已提交
815
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
816
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
817
    size = size // 4
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
828 829 830 831 832 833
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
862 863 864 865 866 867 868
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
869 870
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
871
    """
872
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
873

874 875 876
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
877

G
guosheng 已提交
878 879 880 881 882 883 884 885 886
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
887

G
guosheng 已提交
888
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
889

Q
Qiao Longfei 已提交
890 891 892

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
893 894 895 896 897 898 899 900 901 902 903 904
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
905
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
906 907
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
908 909 910 911
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
912
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
913 914

    Args:
915 916
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
917
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
918
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
919 920
            is the hidden size.
        size(int): The dimension of the gru cell.
921
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
922 923
            hidden-hidden weight matrix. Note:

924
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
925
              :math:`D` is the hidden size.
926
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
927
              The first part are weights of the update gate and reset gate with
928
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
929
              candidate hidden state with shape :math:`(D \\times D)`.
930 931 932 933 934

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
935
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
936
            the bias in the update gate, reset gate and candidate calculations.
937 938 939
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
940 941
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
942
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
943 944 945
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
946
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
947
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
948 949 950 951
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
952 953

    Returns:
G
guosheng 已提交
954
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
955
            and sequence length is the same with the input.
956

G
guosheng 已提交
957
    Examples:
958

G
guosheng 已提交
959 960
        .. code-block:: python

961 962 963 964
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
965
            hidden_dim = 512
966
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
967
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
968 969 970 971 972 973 974 975 976
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
977
    batch_size = input.shape[0]
G
guosheng 已提交
978
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
979
    if h_0:
G
guosheng 已提交
980
        assert h_0.shape == (
Y
Yancey 已提交
981 982 983
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
984

X
Xin Pan 已提交
985 986 987 988
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1002 1003
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1004 1005 1006 1007
        })
    return hidden


Y
Yu Yang 已提交
1008 1009 1010
def gru_unit(input,
             hidden,
             size,
1011 1012
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1013
             activation='tanh',
Q
Qiao Longfei 已提交
1014 1015
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1016
    """
1017 1018 1019
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1020
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1021
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1022

1023 1024
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1025

1026
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1027

1028
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1045 1046

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1047 1048 1049
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1050 1051
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1052 1053
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1054 1055 1056
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1057 1058 1059

    Args:
        input (Variable): The fc transformed input value of current step.
1060
        hidden (Variable): The hidden value of gru unit from previous step.
1061
        size (integer): The input dimension value.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1076
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1077
            the bias in the update gate, reset gate and candidate calculations.
1078 1079 1080
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1081 1082
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1083 1084 1085 1086
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1087

1088 1089 1090 1091 1092 1093
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1094

1095
             # assuming we have x_t_data and prev_hidden of size=10
1096
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1097 1098
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1111
    size = size // 3
Y
Yu Yang 已提交
1112 1113

    # create weight
1114 1115
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1116

X
Xin Pan 已提交
1117 1118 1119
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1120
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1121
    # create bias
1122
    if helper.bias_attr:
Y
Yu Yang 已提交
1123 1124 1125
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1126
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1127 1128 1129

    helper.append_op(
        type='gru_unit',
1130
        inputs=inputs,
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1137 1138
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1139 1140 1141 1142 1143
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1144
@templatedoc()
1145
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1146 1147 1148 1149 1150 1151 1152
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1153
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1154 1155 1156 1157
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1158 1159 1160
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1161 1162

    """
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1192 1193 1194 1195
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1196

W
wopeizl 已提交
1197 1198
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1199

W
wopeizl 已提交
1200
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1201

W
wopeizl 已提交
1202
        label(${label_type}): ${label_comment}
1203

W
wopeizl 已提交
1204 1205
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1206

W
wopeizl 已提交
1207 1208
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1209

W
wopeizl 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1220
                "Transition": transition,
W
wopeizl 已提交
1221 1222
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1223

W
wopeizl 已提交
1224
    return viterbi_path
Y
Yu Yang 已提交
1225 1226


Y
yi.wu 已提交
1227
@templatedoc()
F
fengjiayi 已提交
1228
def cos_sim(X, Y):
Y
Yu Yang 已提交
1229
    """
Y
yi.wu 已提交
1230 1231 1232
    ${comment}

    Args:
1233 1234
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1235

Y
yi.wu 已提交
1236
    Returns:
1237
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1238
    """
F
fengjiayi 已提交
1239
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1240 1241 1242
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1253 1254 1255 1256 1257
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1258
            dropout_implementation="downgrade_in_infer"):
1259 1260 1261 1262 1263
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1264
    training. The dropout operator randomly sets (according to the given dropout
1265 1266 1267
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1268 1269
    dropout op can be removed from the program to make the program more efficient.

1270
    Args:
1271 1272
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1273 1274 1275 1276 1277 1278 1279
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1280 1281
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1282
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1283 1284 1285 1286 1287 1288

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1289
                                        2. upscale_in_train, upscale the outcome at training time
1290

H
haowang101779990 已提交
1291 1292
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1293

H
haowang101779990 已提交
1294 1295
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1296

M
minqiyang 已提交
1297

1298
    Returns:
1299
        Variable: A tensor variable is the shape with `x`.
1300 1301

    Examples:
1302

1303 1304
        .. code-block:: python

1305 1306
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1307 1308
    """

F
fengjiayi 已提交
1309
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1310 1311 1312
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1313 1314 1315 1316

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1317 1318 1319 1320 1321
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1322 1323 1324 1325
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1326 1327
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1328
        })
1329 1330 1331
    return out


J
jerrywgz 已提交
1332
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1333
    """
Y
Yibing Liu 已提交
1334 1335
    **Cross Entropy Layer**

1336 1337 1338
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1339 1340

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1341
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1342

Y
Yibing Liu 已提交
1343
        .. math::
Y
yangyaming 已提交
1344

Y
Yibing Liu 已提交
1345 1346 1347
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1348 1349
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1350 1351 1352 1353 1354

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1355
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1356 1357 1358
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1359 1360
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1361
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1362

Y
Yibing Liu 已提交
1363
    Args:
Y
yangyaming 已提交
1364
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1365 1366 1367 1368
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1369
        label (Variable|list): the ground truth which is a 2-D tensor. When
1370 1371 1372 1373
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1374
        soft_label (bool): a flag indicating whether to
1375
                                           interpretate the given labels as soft
1376
                                           labels. Default: `False`.
M
minqiyang 已提交
1377 1378
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1379
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1380 1381 1382 1383 1384

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1385 1386 1387
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1388

H
haowang101779990 已提交
1389 1390
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1391

H
haowang101779990 已提交
1392 1393
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1394 1395 1396 1397 1398 1399

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1400
    """
F
fengjiayi 已提交
1401
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1402
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1403 1404 1405 1406 1407
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1408 1409
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1410 1411 1412
    return out


F
frankwhzhang 已提交
1413
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1414 1415 1416
    """
    Bayesian Personalized Ranking Loss Operator.

1417
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1418 1419 1420 1421 1422 1423
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1424 1425 1426 1427 1428 1429
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1430 1431
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1432 1433 1434
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1435 1436 1437
    Examples:
        .. code-block:: python

1438
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1439
    """
1440 1441 1442 1443 1444 1445

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1446
                'Label': [label]},
1447 1448 1449 1450
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1451
def square_error_cost(input, label):
Y
Yu Yang 已提交
1452
    """
1453 1454
    **Square error cost layer**

1455 1456
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1471 1472
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1473 1474

    Returns:
G
guosheng 已提交
1475
        Variable: The tensor variable storing the element-wise squared error \
1476
                  difference of input and label.
1477 1478 1479 1480 1481 1482 1483 1484

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1485
    """
F
fengjiayi 已提交
1486
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1487
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1488 1489 1490 1491 1492 1493
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1494
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1495
    helper.append_op(
F
fengjiayi 已提交
1496 1497
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1498 1499 1500
    return square_out


Y
yi.wu 已提交
1501
@templatedoc()
Y
Yu Yang 已提交
1502 1503 1504 1505
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1506
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1507
    """
Y
yi.wu 已提交
1508
    **Chunk Evaluator**
Y
yi.wu 已提交
1509

Y
yangyaming 已提交
1510
    This function computes and outputs the precision, recall and
1511
    F1-score of chunk detection.
Y
yi.wu 已提交
1512

M
minqiyang 已提交
1513
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1514
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1515 1516 1517 1518 1519 1520

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1521

Y
yi.wu 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1547

Y
yi.wu 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1572
    Args:
1573 1574 1575 1576 1577
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1578

Y
yi.wu 已提交
1579
    Returns:
Y
update  
yi.wu 已提交
1580 1581 1582
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1583

Y
yi.wu 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1596
    """
F
fengjiayi 已提交
1597
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1598 1599

    # prepare output
X
Xin Pan 已提交
1600 1601 1602 1603 1604 1605 1606
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613 1614

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1615 1616 1617 1618
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1619 1620 1621
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1622 1623
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1624
        })
1625 1626
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1627 1628


1629
@templatedoc()
Y
Yu Yang 已提交
1630 1631 1632 1633 1634 1635 1636
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1637 1638
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1639 1640 1641 1642
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1643 1644 1645 1646 1647 1648 1649

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1663

1664 1665
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1666 1667 1668 1669 1670 1671 1672
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1673
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1684
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1685 1686 1687 1688 1689 1690
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1691
def sequence_softmax(input, use_cudnn=False, name=None):
1692 1693 1694
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1695
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1712 1713 1714
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1727 1728
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1729
    softmax_out = helper.create_variable_for_type_inference(dtype)
1730 1731 1732 1733 1734 1735 1736 1737
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1738
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1739
    """
1740
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1741
    has the same shape as the input.
Q
qiaolongfei 已提交
1742

1743 1744 1745 1746 1747 1748
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1749
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1750 1751 1752 1753 1754 1755 1756

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1757
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1758 1759 1760 1761 1762 1763 1764 1765

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1766 1767 1768
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1781 1782
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1783
    softmax_out = helper.create_variable_for_type_inference(dtype)
1784 1785 1786 1787 1788 1789 1790 1791
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1792 1793 1794
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1795 1796
           stride=1,
           padding=0,
1797
           dilation=1,
Y
Yu Yang 已提交
1798 1799 1800
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1801
           use_cudnn=True,
1802 1803
           act=None,
           name=None):
Y
Yu Yang 已提交
1804
    """
C
chengduoZH 已提交
1805
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1806 1807
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1808
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1809 1810 1811 1812 1813 1814 1815
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1816 1817 1818
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1819

1820
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1821

C
chengduoZH 已提交
1822 1823
    .. math::

C
refine  
chengduoZH 已提交
1824
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1825

T
tensor-tang 已提交
1826
    Where:
C
chengduoZH 已提交
1827

1828 1829 1830 1831 1832
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1833
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1834 1835 1836

    Example:

1837 1838
        - Input:

W
weixing02 已提交
1839
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1840

W
weixing02 已提交
1841
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1842

1843
        - Output:
T
tensor-tang 已提交
1844

W
weixing02 已提交
1845
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1846

C
chengduoZH 已提交
1847
        Where
1848 1849

        .. math::
C
chengduoZH 已提交
1850

W
weixing02 已提交
1851 1852
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1853 1854

    Args:
1855
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1856
        num_filters(int): The number of filter. It is as same as the output
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1874 1875 1876 1877 1878
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1879
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1880 1881 1882 1883 1884
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1885 1886
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1887 1888
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1889
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1890
            will be named automatically. Default: None
C
chengduoZH 已提交
1891 1892

    Returns:
G
guosheng 已提交
1893
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1894 1895
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1896
    Raises:
1897 1898
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1899

C
chengduoZH 已提交
1900 1901 1902
    Examples:
        .. code-block:: python

1903 1904
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1905 1906 1907
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1908
    assert param_attr is not False, "param_attr should not be False here."
1909
    l_type = 'conv2d'
X
xzl 已提交
1910 1911
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1912
        l_type = 'depthwise_conv2d'
1913 1914 1915 1916

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1917 1918 1919 1920 1921
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1922
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1923

C
chengduoZH 已提交
1924 1925 1926
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1927
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1928

C
chengduoZH 已提交
1929 1930
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1931 1932

    input_shape = input.shape
M
minqiyang 已提交
1933
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1934 1935

    def _get_default_param_initializer():
C
chengduo 已提交
1936 1937
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1938 1939 1940 1941 1942 1943 1944 1945
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1946
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1962
    helper.append_op(
1963
        type=l_type,
Y
Yu Yang 已提交
1964 1965 1966 1967 1968
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1969 1970 1971
        attrs={
            'strides': stride,
            'paddings': padding,
1972
            'dilations': dilation,
C
chengduoZH 已提交
1973
            'groups': groups,
1974
            'use_cudnn': use_cudnn,
1975
            'use_mkldnn': False,
1976
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1977
        })
Y
Yu Yang 已提交
1978 1979 1980 1981 1982 1983

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2001 2002 2003 2004 2005 2006
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2016 2017
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2018 2019 2020
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2021
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2047
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2048 2049
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2050
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2051 2052
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2053
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2054 2055
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2056
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2057 2058 2059 2060 2061 2062
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2073 2074
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2075 2076
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2077
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2078
            will be named automatically. Default: None.
C
chengduoZH 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2091 2092
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2093 2094 2095
    """

    l_type = 'conv3d'
C
chengduo 已提交
2096
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2107
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2121 2122 2123
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2124 2125 2126 2127 2128 2129 2130 2131
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2132
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2147
            'use_mkldnn': False
C
chengduoZH 已提交
2148 2149
        })

2150
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2151 2152 2153 2154

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2155
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2156
    """
Y
yangyaming 已提交
2157 2158 2159
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2171
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2172 2173 2174 2175 2176
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2177
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2178 2179 2180 2181 2182 2183 2184

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2185 2186
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2187

L
Luo Tao 已提交
2188 2189
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2190
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2191
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2192
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2193 2194 2195 2196 2197 2198 2199

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2200

Y
yangyaming 已提交
2201
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2202 2203 2204 2205 2206
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2207 2208
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2209
    """
F
fengjiayi 已提交
2210
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2211
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2212 2213
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2214 2215 2216 2217 2218 2219

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2220 2221
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2222

Y
yangyaming 已提交
2223 2224 2225 2226 2227
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2228 2229 2230
    return pool_out


C
add doc  
chengduoZH 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2251 2252 2253 2254 2255
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2256
def sequence_first_step(input):
L
Luo Tao 已提交
2257
    """
L
Luo Tao 已提交
2258
    This function gets the first step of sequence.
L
Luo Tao 已提交
2259 2260 2261 2262

    .. code-block:: text

       x is a 1-level LoDTensor:
2263
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2264 2265 2266 2267 2268
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2269
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2270
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2271

L
Luo Tao 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2281

Y
yangyaming 已提交
2282
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2283 2284 2285
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2286 2287 2288
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2289
def sequence_last_step(input):
L
Luo Tao 已提交
2290
    """
L
Luo Tao 已提交
2291
    This function gets the last step of sequence.
L
Luo Tao 已提交
2292 2293 2294 2295

    .. code-block:: text

       x is a 1-level LoDTensor:
2296
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2297 2298 2299 2300 2301
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2302
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2303
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2304

L
Luo Tao 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2314

Y
yangyaming 已提交
2315
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2316 2317 2318
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2319 2320 2321
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2322 2323 2324 2325
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2326
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2327 2328 2329 2330 2331
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2332

H
haowang101779990 已提交
2333
              - Case:
Y
Yibing Liu 已提交
2334

2335
            Given the input Variable **input**:
2336

2337 2338 2339
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2340

2341
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2342

2343
            the output Variable will be
2344

2345 2346 2347
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2348

M
minqiyang 已提交
2349
    Note:
H
haowang101779990 已提交
2350
          The first dimension size of **input**, **offset** and **length**
2351
          should be equal. The **offset** should start from 0.
2352

Y
Yibing Liu 已提交
2353
    Args:
2354
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2355
                         sequences.
Y
Yibing Liu 已提交
2356 2357 2358 2359 2360 2361
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2362
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2373
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2374 2375 2376 2377
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2378
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2393
@templatedoc()
Y
Yu Yang 已提交
2394
def pool2d(input,
C
chengduoZH 已提交
2395 2396
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2397 2398
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2399
           global_pooling=False,
C
chengduoZH 已提交
2400
           use_cudnn=True,
2401
           ceil_mode=False,
2402 2403
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2404
    """
F
fengjiayi 已提交
2405
    ${comment}
2406 2407

    Args:
2408 2409 2410
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2411
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2412
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2413 2414
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2415
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2416 2417 2418 2419 2420 2421
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2422 2423 2424
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2425
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2426
                        layer will be named automatically.
2427
        exclusive (bool): Whether to exclude padding points in average pooling
2428
                          mode, default is true
F
fengjiayi 已提交
2429

2430
    Returns:
F
fengjiayi 已提交
2431
        Variable: The pooling result.
F
fengjiayi 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2445 2446 2447 2448
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2449
                            global_pooling=False)
Y
Yu Yang 已提交
2450 2451 2452 2453 2454
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2455

C
chengduoZH 已提交
2456 2457 2458 2459 2460
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2461 2462 2463 2464
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2465 2466
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2467

C
Add doc  
chengduoZH 已提交
2468
    l_type = 'pool2d'
2469 2470

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2471
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2472
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2473 2474

    helper.append_op(
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2486 2487
            "use_mkldnn": False,
            "exclusive": exclusive,
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2501 2502
           name=None,
           exclusive=True):
2503 2504
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2505
    pooling configurations mentioned in input parameters.
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2518
        exclusive (bool): Whether to exclude padding points in average pooling
2519
                          mode, default is true
2520

2521
    Returns:
2522
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2523 2524 2525 2526 2527
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2528

C
chengduoZH 已提交
2529 2530 2531 2532 2533
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2534 2535 2536
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2537

C
chengduoZH 已提交
2538 2539
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2540

2541 2542
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2543
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2544
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2545 2546

    helper.append_op(
2547
        type=l_type,
Y
Yu Yang 已提交
2548 2549 2550 2551 2552 2553 2554
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2555
            "paddings": pool_padding,
2556
            "use_cudnn": use_cudnn,
2557
            "ceil_mode": ceil_mode,
2558 2559
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2560 2561 2562 2563 2564
        })

    return pool_out


2565 2566 2567 2568 2569 2570 2571
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2572 2573 2574 2575 2576 2577 2578
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2579 2580 2581 2582 2583 2584 2585 2586 2587

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2588 2589
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2604
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2605
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2606
          # of input data into m * n grids averagely and performs poolings in each
2607 2608
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2609
          #
2610 2611 2612 2613 2614 2615 2616 2617
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2618 2619
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2620
          pool_out = fluid.layers.adaptive_pool2d(
2621 2622
                            input=data,
                            pool_size=[3, 3],
2623
                            pool_type='avg')
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2634
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2660
    return (pool_out, mask) if require_index else pool_out
2661 2662 2663 2664 2665 2666 2667 2668 2669


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2670 2671 2672 2673 2674 2675 2676
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2677 2678 2679

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2680 2681 2682
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2683
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2684
            it must contain three integers, (Depth, Height, Width).
2685
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2686 2687
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2702 2703
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2704
          # of input data into l * m * n grids averagely and performs poolings in each
2705 2706
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2707
          #
2708 2709 2710 2711 2712 2713 2714 2715 2716
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2717
          #                 output[:, :, i, j, k] =
2718 2719
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2720 2721
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2722
          pool_out, mask = fluid.layers.adaptive_pool3d(
2723
                            input=data,
D
dengkaipeng 已提交
2724
                            pool_size=[3, 3, 3],
2725
                            pool_type='avg')
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2736
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2762
    return (pool_out, mask) if require_index else pool_out
2763 2764


Y
Yu Yang 已提交
2765 2766 2767 2768 2769 2770 2771
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2772
               data_layout='NCHW',
Y
Yang Yang 已提交
2773
               in_place=False,
2774 2775
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2776
               moving_variance_name=None,
2777
               do_model_average_for_mean_and_var=False,
2778 2779
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2780
    """
Q
qiaolongfei 已提交
2781 2782 2783 2784
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2785

Q
qiaolongfei 已提交
2786
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2787

Q
qiaolongfei 已提交
2788 2789
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2790 2791 2792
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2805

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2819
    Args:
Q
qiaolongfei 已提交
2820
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2821 2822 2823 2824
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2825 2826 2827 2828 2829 2830 2831 2832
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2833
        data_layout(string, default NCHW): NCHW|NHWC
2834
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2835 2836 2837 2838
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2839
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2840
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2841 2842 2843 2844 2845
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2846 2847

    Returns:
Q
qiaolongfei 已提交
2848
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2849 2850 2851 2852 2853 2854 2855

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2856
    """
C
chengduo 已提交
2857
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2858 2859 2860
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2861 2862 2863 2864
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2882 2883 2884
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2885 2886

    bias = helper.create_parameter(
2887
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2888 2889
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2890
        bias.stop_gradient = True
Y
Yu Yang 已提交
2891

2892 2893
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2894 2895 2896
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2897
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2898
        shape=param_shape,
W
Wu Yi 已提交
2899
        dtype=dtype)
2900 2901 2902 2903 2904 2905
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2906
            trainable=False,
W
wanghaoshuang 已提交
2907
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2908
        shape=param_shape,
W
Wu Yi 已提交
2909
        dtype=dtype)
2910
    variance.stop_gradient = True
Y
Yu Yang 已提交
2911 2912 2913 2914 2915 2916

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2917 2918 2919 2920
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2921

X
Xin Pan 已提交
2922 2923
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2941 2942 2943 2944
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2945
            "data_layout": data_layout,
X
Xin Pan 已提交
2946
            "use_mkldnn": False,
2947 2948
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2949
        })
Y
Yu Yang 已提交
2950 2951 2952 2953

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3081
@templatedoc()
G
guosheng 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3092
    ${comment}
G
guosheng 已提交
3093 3094 3095

    The formula is as follows:

Y
yuyang18 已提交
3096
    ..  math::
G
guosheng 已提交
3097 3098 3099 3100 3101 3102 3103

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3104 3105 3106 3107 3108 3109 3110 3111
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3112

G
guosheng 已提交
3113 3114
    Args:
        input(Variable): The input tensor variable.
3115
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3116
            normalization. Default True.
3117
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3118 3119
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3120
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3121
            Default 1.
3122
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3123
            division by zero. Default 1e-05.
G
guosheng 已提交
3124
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3125 3126
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3127 3128
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3129
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3130 3131
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3132
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3133
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3134
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3135 3136 3137
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3138 3139

    Returns:
Y
yuyang18 已提交
3140
        ${y_comment}
G
guosheng 已提交
3141 3142 3143

    Examples:

Y
yuyang18 已提交
3144 3145 3146
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3162
    if shift:
G
guosheng 已提交
3163 3164 3165 3166 3167 3168
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3169 3170 3171 3172 3173
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3201
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3249 3250
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
Dun 已提交
3251
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3267 3268 3269 3270
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3271 3272 3273
                     padding=0,
                     stride=1,
                     dilation=1,
3274
                     groups=None,
C
caoying03 已提交
3275
                     param_attr=None,
3276
                     bias_attr=None,
C
chengduoZH 已提交
3277
                     use_cudnn=True,
3278
                     act=None,
C
caoying03 已提交
3279
                     name=None):
Y
Yu Yang 已提交
3280
    """
3281 3282 3283 3284 3285 3286 3287 3288
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3289 3290
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3291 3292 3293
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3294 3295 3296 3297 3298

    For each input :math:`X`, the equation is:

    .. math::

3299
        Out = \sigma (W \\ast X + b)
3300

3301
    Where:
3302 3303 3304

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3305 3306 3307 3308
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3309

3310 3311 3312 3313
    Example:

        - Input:

3314
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3315

3316
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3317 3318 3319

        - Output:

3320
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3321 3322

        Where
Y
Yu Yang 已提交
3323

3324 3325
        .. math::

3326 3327
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3328 3329
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3330 3331

    Args:
3332 3333 3334 3335
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3336 3337 3338 3339
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3368
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3369 3370 3371
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3372
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3373
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3374 3375

    Returns:
3376
        Variable: The tensor variable storing the convolution transpose result.
3377 3378

    Raises:
3379 3380
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3381 3382 3383 3384

    Examples:
       .. code-block:: python

3385 3386
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3387
    """
C
chengduo 已提交
3388
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3389 3390 3391 3392 3393 3394 3395 3396
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3397 3398 3399
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3400 3401 3402
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3403

C
chengduoZH 已提交
3404 3405
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3406

Y
Yu Yang 已提交
3407 3408 3409 3410 3411
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3412

Y
Yu Yang 已提交
3413 3414
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3415

C
chengduoZH 已提交
3416
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3417
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3418
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3419
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3420
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3421 3422 3423
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3424

3425 3426 3427 3428 3429 3430 3431
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3432
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3433
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3434

Y
Yu Yang 已提交
3435 3436 3437
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3438
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3439
    helper.append_op(
3440
        type=op_type,
Y
Yu Yang 已提交
3441 3442
        inputs={'Input': [input],
                'Filter': [img_filter]},
3443
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3444
        attrs={
3445
            'output_size': output_size,
3446 3447 3448 3449 3450
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3451 3452
        })

3453 3454 3455
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3456 3457


3458
def conv3d_transpose(input,
Y
Yu Yang 已提交
3459 3460 3461
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3462 3463 3464
                     padding=0,
                     stride=1,
                     dilation=1,
3465
                     groups=None,
C
caoying03 已提交
3466
                     param_attr=None,
3467
                     bias_attr=None,
C
chengduoZH 已提交
3468
                     use_cudnn=True,
3469
                     act=None,
C
caoying03 已提交
3470
                     name=None):
Y
Yu Yang 已提交
3471
    """
3472
    **Convlution3D transpose layer**
3473

3474
    The convolution3D transpose layer calculates the output based on the input,
3475
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3476 3477 3478 3479 3480 3481
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3482 3483 3484
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3485 3486 3487 3488 3489

    For each input :math:`X`, the equation is:

    .. math::

3490
        Out = \sigma (W \\ast X + b)
3491 3492 3493

    In the above equation:

3494 3495
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3496 3497 3498 3499
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3500

3501 3502 3503 3504
    Example:

        - Input:

3505
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3506

3507
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3508 3509 3510

        - Output:

3511
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3512 3513

        Where
Y
Yu Yang 已提交
3514

3515 3516
        .. math::

3517 3518 3519
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3520 3521

    Args:
3522
        input(Variable): The input image with [N, C, D, H, W] format.
3523 3524 3525
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3526
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3527 3528
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3529
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3530 3531 3532
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3533 3534
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3535
        stride(int|tuple): The stride size. If stride is a tuple, it must
3536 3537
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3538
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3539 3540 3541
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3542 3543 3544 3545 3546
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3556 3557
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3558 3559
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3560 3561
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3562 3563

    Returns:
3564
        Variable: The tensor variable storing the convolution transpose result.
3565 3566

    Raises:
3567 3568
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3569 3570 3571 3572

    Examples:
       .. code-block:: python

3573 3574
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3575
    """
C
chengduo 已提交
3576
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3577 3578
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3579
    if not isinstance(input, Variable):
3580
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3581 3582
    input_channel = input.shape[1]

3583 3584 3585
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3586

C
chengduoZH 已提交
3587 3588 3589
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3590 3591 3592 3593 3594 3595
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3596 3597 3598
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3599

3600
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3601
                         padding[0] - 1) // dilation[0] + 1
3602
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3603
                         padding[1] - 1) // dilation[1] + 1
3604
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3605
                         padding[2] - 1) // dilation[2] + 1
3606
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3607
    else:
3608 3609
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3610

3611
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3612
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3613 3614 3615
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3616
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3617
    helper.append_op(
3618
        type=l_type,
Y
Yu Yang 已提交
3619 3620
        inputs={'Input': [input],
                'Filter': [img_filter]},
3621
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3622 3623 3624 3625
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3626
            'groups': groups,
C
chengduoZH 已提交
3627 3628
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3629

3630 3631
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3632
    return out
Y
yangyaming 已提交
3633 3634


Y
yangyaming 已提交
3635
def sequence_expand(x, y, ref_level=-1, name=None):
3636
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3637 3638 3639 3640
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3641 3642 3643 3644 3645

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3646
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3647
                x.data = [[a], [b], [c], [d]]
3648 3649 3650
                x.dims = [4, 1]

            y is a LoDTensor:
3651 3652
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3653

Y
yangyaming 已提交
3654
            ref_level: 0
3655

Y
yangyaming 已提交
3656
            then output is a 1-level LoDTensor:
3657
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3658
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3659 3660 3661 3662
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3663
                x.data = [[a], [b], [c]]
3664 3665 3666
                x.dims = [3, 1]

            y is a LoDTensor:
3667
                y.lod = [[2, 0, 3]]
3668

Y
yangyaming 已提交
3669
            ref_level: -1
3670

Y
yangyaming 已提交
3671 3672 3673
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3674 3675 3676
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3677 3678
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3679
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3680
                        will be named automatically.
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3691
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3692
    """
Y
yangyaming 已提交
3693
    helper = LayerHelper('sequence_expand', input=x, **locals())
3694
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3695
    tmp = helper.create_variable_for_type_inference(dtype)
3696
    helper.append_op(
Y
yangyaming 已提交
3697 3698 3699 3700 3701
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3702
    return tmp
3703 3704


C
chengduo 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3761
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3762 3763 3764 3765 3766 3767 3768 3769
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3770
@templatedoc()
3771
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3772 3773 3774 3775 3776
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3777 3778 3779
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3780
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3781 3782 3783 3784
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3785 3786 3787
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3788

F
fengjiayi 已提交
3789
    Returns:
M
minqiyang 已提交
3790
        Variable: The padded sequence batch and the original lengths before
3791
                  padding. All sequences has the same length.
M
minqiyang 已提交
3792

F
fengjiayi 已提交
3793 3794 3795 3796 3797 3798 3799
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3800
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3801
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3802 3803 3804 3805 3806
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3807 3808
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3809 3810 3811 3812

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3813 3814 3815 3816 3817 3818
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3819 3820
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3821
        attrs={'padded_length': maxlen})
3822
    return out, length
F
fengjiayi 已提交
3823 3824


3825
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3826
    """
3827
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3828

3829 3830
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3840 3841 3842
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3843
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3844 3845 3846 3847 3848 3849

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3850
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3851 3852 3853 3854 3855 3856

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3857 3858
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3873
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3885 3886 3887 3888 3889 3890 3891
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3892
                is_accumulated=True,
3893 3894
                name=None,
                return_parent_idx=False):
3895
    """
3896 3897
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3898 3899 3900

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3901 3902

    This layer does the search in beams for one time step. Specifically, it
3903 3904 3905
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3917 3918 3919 3920

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3921

3922
    Args:
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3946 3947
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
3948 3949
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
3950 3951 3952 3953
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
3954

3955
    Returns:
3956 3957 3958 3959
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
3960 3961 3962 3963

    Examples:
        .. code-block:: python

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3981
    helper = LayerHelper('beam_search', **locals())
3982 3983 3984 3985 3986 3987
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
3988

X
Xin Pan 已提交
3989 3990 3991
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
3992 3993 3994 3995 3996
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
3997 3998 3999

    helper.append_op(
        type='beam_search',
4000
        inputs=inputs,
Q
Qiao Longfei 已提交
4001 4002 4003
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4004
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4005 4006 4007 4008 4009 4010
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4011
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4012
        })
4013 4014 4015 4016
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4017 4018


4019 4020 4021 4022 4023 4024 4025
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4036

4037 4038 4039 4040 4041 4042
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4043

4044 4045
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4046

4047 4048 4049 4050 4051 4052
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4053 4054
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4070 4071 4072 4073
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4074
              param_attr=None,
C
caoying03 已提交
4075 4076
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4077 4078 4079 4080
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4081
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4082

4083
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4084

4085
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4086

4087
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4088 4089 4090

            h_t & = o_t tanh(c_t)

4091 4092 4093 4094 4095 4096
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4097 4098 4099

        .. math::

4100
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4101 4102 4103 4104 4105 4106 4107 4108

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4109
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4110 4111

    Args:
Y
yangyaming 已提交
4112 4113 4114 4115 4116 4117
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4118
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4131 4132
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4133 4134

    Returns:
Y
yangyaming 已提交
4135
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4136 4137

    Raises:
4138 4139 4140 4141
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4142 4143 4144 4145 4146 4147

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4148
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4149
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4150
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4167
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4168 4169 4170 4171
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4172 4173
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4174 4175 4176
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4177
    size = cell_t_prev.shape[1]
4178
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4179 4180
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4181
                param_attr=param_attr,
4182
                bias_attr=bias_attr)
Y
yangyaming 已提交
4183
    dtype = x_t.dtype
X
Xin Pan 已提交
4184 4185
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4195
    return h, c
G
guosheng 已提交
4196 4197


C
caoying03 已提交
4198
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4199
    """
Y
yangyaming 已提交
4200
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4201 4202 4203

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4204
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4205 4206
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4207 4208
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4209
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4210
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4211
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4212 4213
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4214 4215 4216

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4217

G
guosheng 已提交
4218 4219 4220 4221 4222 4223
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4224
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4225 4226 4227 4228
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4229 4230 4231 4232

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4233
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4234 4235 4236
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4237 4238
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4239
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4240 4241
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4242 4243 4244 4245 4246
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4247
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4248 4249 4250 4251
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4252 4253


C
caoying03 已提交
4254
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4255
    """
Y
Yibing Liu 已提交
4256
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4257 4258 4259

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4260 4261 4262
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4263
            must be in the range :math:`[-rank(input), rank(input))`. If
4264
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4265
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4266 4267
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4268
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4269
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4270
                       will be named automatically.
G
guosheng 已提交
4271 4272

    Returns:
Y
Yibing Liu 已提交
4273
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4274

G
guosheng 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4285 4286
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4287 4288 4289 4290 4291 4292 4293

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4294 4295
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4296
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4297 4298
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4299 4300 4301 4302 4303
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4304
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4305 4306 4307 4308
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4309 4310


C
caoying03 已提交
4311
def reduce_max(input, dim=None, keep_dim=False, name=None):
4312
    """
Y
yangyaming 已提交
4313
    Computes the maximum of tensor elements over the given dimension.
4314 4315 4316

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4317
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4318 4319 4320
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4321
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4322 4323
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4324
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4325 4326
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4327 4328 4329

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4342 4343 4344 4345 4346 4347 4348

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4349 4350
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4351
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4352 4353
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4354 4355 4356 4357 4358
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4359
            'dim': dim if dim != None else [0],
4360 4361 4362 4363 4364 4365
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4366
def reduce_min(input, dim=None, keep_dim=False, name=None):
4367
    """
Y
yangyaming 已提交
4368
    Computes the minimum of tensor elements over the given dimension.
4369 4370 4371

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4372
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4373 4374 4375
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4376
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4377 4378
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4379
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4380 4381
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4382 4383 4384

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4385

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4397 4398 4399 4400 4401 4402 4403

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4404 4405
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4406
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4407 4408
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4409 4410 4411 4412 4413
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4414
            'dim': dim if dim != None else [0],
4415 4416 4417 4418
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4419 4420


4421 4422 4423 4424 4425 4426
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4427
        dim (list|int|None): The dimensions along which the product is performed. If
4428 4429
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4430 4431
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4432 4433 4434
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4435
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4436
            layer will be named automatically.
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4451
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4452
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4453 4454 4455 4456 4457 4458 4459

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4460 4461
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4462
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4463 4464
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4465 4466 4467 4468 4469
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4470
            'dim': dim if dim != None else [0],
4471 4472 4473 4474 4475 4476
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4477
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4478
    """
C
caoying03 已提交
4479
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4480 4481 4482

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4483 4484 4485 4486 4487
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4488
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4489
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4490
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4491 4492
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4493 4494

    Returns:
D
dzhwinter 已提交
4495
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4505 4506
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4522
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4545
    .. math::
4546 4547

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4548 4549 4550 4551 4552

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4553
        x(Variable|list): The input tensor to l2_normalize layer.
4554
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4555 4556
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4557
        epsilon(float): The epsilon value is used to avoid division by zero, \
4558
            the defalut value is 1e-10.
4559
        name(str|None): A name for this layer(optional). If set None, the layer \
4560
            will be named automatically.
C
caoying03 已提交
4561 4562

    Returns:
4563
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4564 4565

    Examples:
4566

C
caoying03 已提交
4567 4568
        .. code-block:: python

4569 4570 4571 4572
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4573 4574
    """

F
fengjiayi 已提交
4575 4576
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4577 4578
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4579 4580
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4581
    helper.append_op(
4582 4583 4584 4585
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4586
        attrs={
4587 4588
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4589 4590
        })
    return out
4591 4592


S
sneaxiy 已提交
4593
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4594
    """
Y
ying 已提交
4595 4596 4597 4598
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4599

C
chengduoZH 已提交
4600
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4601
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4602

4603 4604 4605 4606 4607
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4608
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4609

C
chengduoZH 已提交
4610
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4611
      performs in the following way.
G
guosheng 已提交
4612

4613
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4614
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4615
        last two dimensions and a batched matrix multiply supporting broadcast
4616
        applies on the two tensors.
G
guosheng 已提交
4617

Y
ying 已提交
4618 4619
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4620
    removed after matrix multiplication.
G
guosheng 已提交
4621 4622 4623

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4624 4625 4626
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4627
        alpha (float): The scale of output. Default 1.0.
4628
        name(str|None): A name for this layer(optional). If set None, the layer
4629
            will be named automatically.
G
guosheng 已提交
4630 4631

    Returns:
4632
        Variable: The product Tensor variable.
G
guosheng 已提交
4633

G
guosheng 已提交
4634 4635 4636
    Examples:
        .. code-block:: python

4637
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4638 4639
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4640

4641 4642
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4643

4644 4645
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4646

4647 4648
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4649 4650 4651 4652

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4653 4654
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4655

Y
ying 已提交
4656
            # x: [M], y: [N]
4657
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4658
    """
Y
ying 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4671
            y_shape = y_shape + [1]
Y
ying 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4688
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4689
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4690
    helper.append_op(
4691 4692 4693 4694
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4695 4696 4697
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4698
            'alpha': float(alpha),
S
sneaxiy 已提交
4699
        })
4700
    return out
4701 4702


4703
def topk(input, k, name=None):
Q
qingqing01 已提交
4704 4705 4706 4707
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4708
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4709 4710 4711 4712 4713 4714
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4736 4737 4738
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4739
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4740
                 of input.
4741
        name(str|None): A name for this layer(optional). If set None, the layer
4742
                       will be named automatically.
F
fengjiayi 已提交
4743
                       Default: None
Q
qingqing01 已提交
4744 4745

    Returns:
4746 4747 4748
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4749
        within the last dimension of input.
Q
qingqing01 已提交
4750

F
fengjiayi 已提交
4751 4752
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4753 4754 4755 4756 4757 4758 4759

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4760 4761
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4762 4763 4764 4765 4766 4767
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4768 4769
    helper.append_op(
        type="top_k",
W
whs 已提交
4770
        inputs=inputs,
Q
qingqing01 已提交
4771 4772
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4773
        attrs=attrs)
Q
qingqing01 已提交
4774 4775 4776 4777 4778
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4779
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4780
    """
Y
ying 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4790

Y
ying 已提交
4791
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4792

4793
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4794 4795
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4796
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4797

4798
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4799 4800
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4801

4802 4803 4804
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4805
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4806
                          the length of reference string.
4807
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4808
                                     calculating edit distance.
4809
        name (str): The name of this layer. It is optional.
4810

W
wanghaoshuang 已提交
4811
    Returns:
W
wanghaoshuang 已提交
4812
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4813 4814 4815 4816

    Examples:
        .. code-block:: python

T
tink2123 已提交
4817 4818
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4819
            cost = fluid.layers.edit_distance(input=x,label=y)
4820
    """
4821
    helper = LayerHelper("edit_distance", **locals())
4822

4823
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4824
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4825 4826
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4827 4828 4829 4830 4831

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4832
            attrs={"tokens": ignored_tokens})
4833 4834 4835 4836 4837
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4838
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4839
            attrs={"tokens": ignored_tokens})
4840 4841
        label = erased_label

4842
    # edit distance op
X
Xin Pan 已提交
4843 4844
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4845 4846 4847 4848
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4849 4850
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4851 4852
        attrs={"normalized": normalized})

4853
    return edit_distance_out, sequence_num
4854 4855 4856 4857 4858


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4859

Y
ying 已提交
4860 4861 4862 4863
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4881
        input.lod = [[4, 4]]
M
minqiyang 已提交
4882

W
whs 已提交
4883
        Computation:
4884

W
whs 已提交
4885 4886 4887 4888 4889 4890
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4891 4892 4893 4894 4895

        output.data = [[2],
                       [1],
                       [3]]

4896
        output.lod = [[2, 1]]
4897

W
whs 已提交
4898

4899 4900
    Args:

Y
ying 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4910
        name (str): The name of this layer. It is optional.
4911 4912

    Returns:
H
haowang101779990 已提交
4913 4914 4915
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4916
                  LoD [[]] and dims [1, 1].
4917 4918 4919 4920 4921

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4922

4923
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4924
    """
4925
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4926
    _, topk_indices = topk(input, k=1)
4927 4928

    # ctc align op
X
Xin Pan 已提交
4929
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4930 4931 4932
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4933
        outputs={"Output": [ctc_out]},
4934 4935
        attrs={"merge_repeated": True,
               "blank": blank})
4936
    return ctc_out
4937 4938


W
Wu Yi 已提交
4939
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4940
    """
4941 4942
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4943
    to compute Connectionist Temporal Classification (CTC) loss.
4944 4945
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4946 4947 4948
    input tensor.

    Args:
4949
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4950 4951 4952 4953
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4954
       label (Variable): The ground truth of variable-length sequence,
4955 4956 4957
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4958 4959
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4960 4961 4962
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4963
         follewed by a mean_op.
W
Wu Yi 已提交
4964
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4965 4966

    Returns:
4967 4968
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4969 4970

    Examples:
4971

W
wanghaoshuang 已提交
4972
        .. code-block:: python
4973

4974 4975 4976
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4977 4978

    """
F
fengjiayi 已提交
4979
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4980 4981
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4982 4983 4984 4985 4986 4987
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4988 4989 4990 4991 4992
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4993
    return loss_out
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5009 5010 5011
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5012 5013 5014 5015 5016
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5017

5018
            out.lod  = [[0, 1, 3]]
5019 5020 5021 5022

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5023 5024 5025 5026 5027 5028 5029
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5030 5031 5032

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5033 5034

    Returns:
5035

5036 5037 5038 5039 5040
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5041
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5042
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5043 5044
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5045
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5046 5047 5048 5049 5050 5051
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5052 5053


5054 5055 5056 5057
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5058 5059 5060 5061 5062 5063
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5064
        num_neg_samples=None,
5065 5066 5067
        name=None,
        sampler="uniform",
        custom_dist=None,
5068 5069
        seed=0,
        is_sparse=False):
5070 5071 5072 5073 5074 5075 5076
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5077 5078
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5079
            sample is 1.0.
C
chengduo 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5089
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5090 5091
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5092 5093 5094
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5095
        custom_dist (float[]): A float[] with size=num_total_classes.
5096 5097 5098 5099
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5100
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5101

5102
    Returns:
Y
Yibing Liu 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5130 5131 5132 5133 5134 5135 5136 5137 5138

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5139

5140
    """
Y
Yang Yu 已提交
5141 5142 5143
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5144 5145

    dim = input.shape[1]
Y
Yang Yu 已提交
5146 5147 5148 5149 5150 5151
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5152
    inputs = {}
C
chengduo 已提交
5153 5154 5155 5156 5157 5158 5159
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5160 5161 5162
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5163

5164 5165 5166 5167
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5168 5169 5170 5171 5172 5173 5174

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5175 5176 5177 5178 5179 5180 5181 5182 5183
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5184
            if normal_prob - 1.0 > 0:
5185
                bigs.append((i, normal_prob))
5186
            elif 1.0 - normal_prob > 0:
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5202
            if big_left - 1.0 > 0:
5203
                bigs.append((big_idx, big_left))
5204
            elif 1.0 - big_left > 0:
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5234 5235 5236 5237
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5238 5239 5240 5241 5242
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5243 5244 5245 5246
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5247

Y
Yang Yu 已提交
5248 5249
    attrs = {
        'num_total_classes': int(num_total_classes),
5250 5251
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5252
        'sampler': sampler,
5253 5254
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5255
    }
Y
Yang Yu 已提交
5256 5257 5258

    helper.append_op(
        type='nce',
C
chengduo 已提交
5259
        inputs=inputs,
Y
Yang Yu 已提交
5260 5261 5262 5263 5264 5265
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5266
    return cost / (num_neg_samples + 1)
5267 5268


C
chengduo 已提交
5269 5270
def hsigmoid(input,
             label,
5271
             num_classes,
C
chengduo 已提交
5272 5273
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5274
             name=None,
5275 5276 5277
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5278
             is_sparse=False):
W
weixing02 已提交
5279 5280
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5281
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5282
    complete binary tree, or you can use is_custom to pass your own tree to
5283
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5284 5285 5286 5287 5288 5289
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5290
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5291
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5292

5293 5294
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5295 5296 5297 5298
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5299
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5300
       related to the same batch of inputs.
5301

W
weixing02 已提交
5302
    Args:
M
minqiyang 已提交
5303
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5304 5305 5306 5307
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5308 5309
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5310
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5322
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5323
            it should be in leaf -> root order
M
minqiyang 已提交
5324 5325 5326
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5327
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5328
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5329
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5330
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5331
             of W and input will be sparse.
W
weixing02 已提交
5332 5333

    Returns:
J
JiabinYang 已提交
5334
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5335 5336 5337 5338 5339

    Examples:

        .. code-block:: python

G
guosheng 已提交
5340 5341 5342
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5343 5344 5345 5346
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5347 5348
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5349
    dim = input.shape[1]
5350
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5351 5352 5353
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5354 5355 5356 5357
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5358 5359
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5360 5361 5362
    else:
        pass

J
JiabinYang 已提交
5363
    weights = None
5364 5365 5366 5367
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5368
    if not is_custom:
J
JiabinYang 已提交
5369 5370 5371 5372 5373 5374 5375 5376
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5377
            shape=[num_classes, dim],
J
JiabinYang 已提交
5378 5379
            is_bias=False,
            dtype=input.dtype)
5380 5381 5382
    inputs = {
        "X": input,
        "W": weights,
5383
        "PathTable": path_table,
5384
        "PathCode": path_code,
5385 5386
        "Label": label
    }
W
weixing02 已提交
5387
    if helper.bias_attr:
5388
        if not is_custom:
J
JiabinYang 已提交
5389 5390
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5391
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5392 5393 5394 5395 5396 5397
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5398
                shape=[num_classes, 1],
J
JiabinYang 已提交
5399 5400 5401
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5402 5403
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5404
        inputs=inputs,
W
weixing02 已提交
5405
        outputs={"Out": out,
5406 5407 5408 5409 5410 5411 5412
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5413 5414 5415
    return out


Y
fix ci.  
ying 已提交
5416
def transpose(x, perm, name=None):
Y
ying 已提交
5417 5418 5419 5420 5421 5422 5423
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5424 5425 5426
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5427 5428 5429 5430 5431 5432 5433

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5434
            # use append_batch_size=False to avoid prepending extra
5435
            # batch size in shape
5436
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5437
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5438
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5439 5440
    """

Y
fix ci.  
ying 已提交
5441
    if len(perm) != len(x.shape):
Y
ying 已提交
5442 5443 5444
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5445 5446 5447 5448 5449 5450
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5451 5452

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5453 5454
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5455
    helper.append_op(
5456
        type='transpose2',
Y
fix ci.  
ying 已提交
5457
        inputs={'X': [x]},
5458 5459
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5460 5461
        attrs={'axis': perm})
    return out
5462 5463


5464 5465 5466 5467 5468 5469 5470
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5471
    """
5472 5473 5474 5475 5476 5477 5478
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5507 5508 5509 5510 5511 5512 5513 5514 5515
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5516 5517 5518
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5519 5520 5521 5522 5523
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5551 5552 5553
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5566
            output.dims = {8, 8}
5567

5568
            output.lod = [[4, 4]]
5569

T
Tink_Y 已提交
5570
    Examples:
5571 5572 5573

        .. code-block:: python

5574 5575
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5576 5577

    """
W
wanghaoshuang 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5588 5589 5590 5591 5592 5593 5594
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5595
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5596
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5597
    helper.append_op(
5598
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5599
    return out
5600 5601


Y
yuyang18 已提交
5602
@templatedoc()
5603
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5604 5605
    """
    ${comment}
5606 5607

    Args:
Y
yuyang18 已提交
5608
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5609 5610
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5611 5612 5613 5614 5615
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5616
        ${out_comment}.
5617 5618

    Examples:
Y
yuyang18 已提交
5619 5620 5621 5622
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5623 5624 5625 5626 5627 5628
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5629
    out = helper.create_variable_for_type_inference(dtype)
5630 5631 5632 5633 5634
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5635
    return helper.append_activation(out)
5636 5637


Y
yuyang18 已提交
5638
@templatedoc()
5639 5640
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5641 5642 5643 5644 5645 5646 5647
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5648 5649

    Args:
Y
yuyang18 已提交
5650 5651
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5652 5653

    Returns:
Y
yuyang18 已提交
5654
        ${out_comment}.
5655 5656
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5657 5658 5659 5660 5661

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5662
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5663 5664 5665 5666 5667 5668
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5669 5670


5671 5672 5673
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5674
                               ignore_index=kIgnoreIndex,
5675 5676
                               numeric_stable_mode=False,
                               return_softmax=False):
5677 5678
    """
    **Softmax With Cross Entropy Operator.**
5679

5680 5681 5682 5683
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5684

5685 5686 5687
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5688

5689 5690 5691
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5692

5693
    The equation is as follows:
5694

5695
    1) Hard label (one-hot label, so every sample has exactly one class)
5696

5697 5698 5699 5700
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5701

5702 5703 5704
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5705

5706 5707 5708 5709
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5710 5711 5712
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5713

H
haowang101779990 已提交
5714
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5715

H
haowang101779990 已提交
5716
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5717

H
haowang101779990 已提交
5718
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5719 5720 5721

    and then cross entropy loss is calculated by softmax and label.

5722 5723 5724 5725 5726 5727 5728 5729
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5730 5731
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5732
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5733 5734 5735
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5736 5737 5738
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5739
                                    stable algorithm. Default: False
5740
        return_softmax (bool): A flag indicating whether to return the softmax
5741
                               along with the cross entropy loss. Default: False
5742

5743
    Returns:
H
haowang101779990 已提交
5744 5745 5746 5747 5748
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5749 5750 5751 5752 5753 5754 5755

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5756 5757
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5758 5759
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5760 5761
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5762 5763 5764 5765 5766 5767
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5768 5769 5770 5771 5772
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5773 5774 5775 5776

    if return_softmax:
        return loss, softmax

5777 5778 5779 5780 5781
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5782 5783
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5784
    For each instance, it computes the smooth L1 loss element by element first
5785
    and then sums all the losses. So the shape of ouput Variable is
5786
    [batch_size, 1].
5787

5788 5789
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5790
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5791
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5792
            L1 loss op with same shape as :attr:`x`.
5793
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5794 5795
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5796
            by this tensor element by element.
5797
        outside_weight (Variable|None): A tensor with rank at least 2. This
5798 5799
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5800
            element by element.
5801
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5802 5803
           scalar with default value 1.0.

5804
    Returns:
5805
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5806 5807 5808 5809 5810

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5811 5812
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5813
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5814
            out = fluid.layers.smooth_l1(x=fc, y=label)
5815
    """
5816

5817
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5818 5819
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5832 5833 5834 5835


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5836
    This layer creates the one-hot representations for input indices.
5837 5838

    Args:
Y
Yibing Liu 已提交
5839 5840
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5841 5842

    Returns:
Y
Yibing Liu 已提交
5843
        Variable: The one-hot representations of input.
5844 5845

    Examples:
C
caoying03 已提交
5846
        .. code-block:: python
5847

Y
Yibing Liu 已提交
5848 5849
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5850 5851
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5852
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5853 5854 5855 5856 5857 5858
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5859 5860


Y
Yu Yang 已提交
5861
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5862
    """
Y
yi.wu 已提交
5863 5864 5865
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5866 5867 5868 5869 5870 5871

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5872 5873
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5874 5875 5876 5877 5878 5879

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5880 5881
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5882 5883
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5884 5885 5886 5887 5888
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5889
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5890
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5891 5892
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5893
            outputs={'Out': [counter]},
M
minqiyang 已提交
5894 5895
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5896 5897 5898
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5899 5900


5901
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5902
    """
C
caoying03 已提交
5903 5904
    Gives a new shape to the input Tensor without changing its data.

5905 5906 5907 5908 5909
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5910

5911
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5912

5913 5914 5915 5916
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5917
    2. 0 means the actual dimension value is going to be copied from the
5918 5919 5920 5921
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5922 5923

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5924
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5925
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5926

5927
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5928 5929
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5930 5931
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5932
    dimensions.
C
caoying03 已提交
5933

5934
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5935 5936 5937 5938
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5939 5940

    Args:
5941
        x(variable): The input tensor.
C
caoying03 已提交
5942 5943
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5944 5945 5946 5947 5948
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5949 5950
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
5951 5952 5953
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
5954
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
5955
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5956

5957
    Returns:
G
guosheng 已提交
5958 5959 5960 5961
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5962

X
Xin Pan 已提交
5963 5964 5965
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5966 5967
    Examples:
        .. code-block:: python
G
guosheng 已提交
5968

5969
            data = fluid.layers.data(
5970
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5971
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5972
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5973 5974 5975
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5976
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5977 5978 5979 5980 5981
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5982

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5998
    helper = LayerHelper("reshape2", **locals())
5999 6000
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6001
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6002
    helper.append_op(
6003
        type="reshape2",
X
Xin Pan 已提交
6004
        inputs=inputs,
D
dzhwinter 已提交
6005
        attrs={"shape": shape},
6006 6007
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6008

D
dzhwinter 已提交
6009
    return helper.append_activation(out)
6010

6011

6012
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6013
    """
M
minqiyang 已提交
6014 6015 6016
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6017
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6018

H
haowang101779990 已提交
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6040

Y
Yibing Liu 已提交
6041
    Args:
6042
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6043
        axes (list): List of integers, indicating the dimensions to be squeezed.
6044
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6045 6046 6047 6048 6049 6050 6051 6052

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6053
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6054 6055
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6056 6057
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6058
    helper.append_op(
6059
        type="squeeze2",
6060
        inputs={"X": input},
Y
Yibing Liu 已提交
6061
        attrs={"axes": axes},
6062 6063
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6064

6065 6066 6067
    return out


6068
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6069
    """
M
minqiyang 已提交
6070 6071 6072
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6073

M
minqiyang 已提交
6074
    For example:
H
haowang101779990 已提交
6075 6076 6077

    .. code-block:: text

M
minqiyang 已提交
6078
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6079
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6080

Y
Yibing Liu 已提交
6081
    Args:
6082
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6083
        axes (list): List of integers, indicating the dimensions to be inserted.
6084
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6085 6086 6087 6088 6089 6090 6091 6092

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6093
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6094 6095
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6096 6097
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6098
    helper.append_op(
6099
        type="unsqueeze2",
6100
        inputs={"X": input},
Y
Yibing Liu 已提交
6101
        attrs={"axes": axes},
6102 6103
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6104

6105 6106
    return out

6107

Y
yangyaming 已提交
6108
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6109
    """
Y
Yibing Liu 已提交
6110
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6111 6112 6113 6114
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6115
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6116 6117 6118 6119 6120 6121

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6122
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6123 6124 6125
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6126
            target_lod: [4, 2]
Y
yangyaming 已提交
6127 6128

            then we get a 1-level LoDTensor:
6129
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6130 6131 6132 6133 6134 6135
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6136
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6137 6138 6139 6140
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6141
                y.data = [[2, 4]]
Y
yangyaming 已提交
6142 6143 6144
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6145
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6146 6147 6148 6149 6150 6151
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6152
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6153 6154 6155 6156
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6157
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6158 6159 6160 6161
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6162
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6163 6164 6165 6166 6167
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6168
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6169
                           from :attr:`y`.
Y
yangyaming 已提交
6170
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6171
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6172 6173

    Returns:
Y
Yibing Liu 已提交
6174
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6175 6176

    Raises:
Y
Yibing Liu 已提交
6177
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6178 6179 6180 6181 6182 6183 6184 6185 6186

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6187
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6213
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6242 6243
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6256 6257 6258
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6272 6273 6274 6275


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6276
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6277
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6278

G
guosheng 已提交
6279 6280 6281 6282
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6305
                         The length of :attr:paddings must be
G
guosheng 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6316

G
guosheng 已提交
6317 6318 6319 6320 6321 6322
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6323
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6324 6325 6326 6327 6328 6329 6330
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6331 6332


C
chengduo 已提交
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6364 6365
		And
            pad_value = -1,
C
chengduo 已提交
6366

T
Tink_Y 已提交
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6402
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6412 6413 6414 6415 6416 6417 6418
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6419 6420
    called label-smoothing regularization (LSR).

6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6444
                              be :math:`(1, class\_num)`.
6445 6446
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6447
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6467
    smooth_label = helper.create_variable_for_type_inference(dtype)
6468 6469 6470 6471 6472 6473 6474
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6475 6476


W
wopeizl 已提交
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6513 6514


J
jerrywgz 已提交
6515 6516 6517 6518 6519 6520
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6521 6522
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6539 6540 6541
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6542 6543 6544 6545 6546 6547
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6548
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6589 6590
        .. code-block:: python

W
whs 已提交
6591 6592 6593 6594
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6595
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6596 6597 6598 6599 6600 6601
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6602 6603


6604 6605 6606 6607
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6608
                 resample='BILINEAR',
6609 6610
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6611
                 align_mode=1):
6612
    """
Q
qiaolongfei 已提交
6613
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6614

6615
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6616 6617 6618
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6619

6620
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6621

6622
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6623

6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6634
    Align_corners and align_mode are optinal parameters,the calculation method 
6635 6636 6637 6638
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6639
      For scale:
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6652
      if:
6653 6654 6655 6656 6657 6658 6659 6660
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6661
      else:
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6672
      if:
6673 6674 6675 6676 6677 6678 6679 6680 6681
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6682
      else:
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6698
    Args:
6699
        input (Variable): The input tensor of image resize layer,
6700 6701
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6702
        out_shape(list|tuple|Variable|None): Output shape of image resize
6703 6704
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6705
        scale(float|None): The multiplier for the input height or width.
6706 6707 6708
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6709 6710
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6711
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6712
                       currently.
6713
                       Default: 'BILINEAR'
6714 6715 6716
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6717
                                :attr:`out_shape` and :attr:`scale` specifying
6718 6719 6720 6721 6722 6723 6724
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6725 6726
                                constructing stage.
                                Default: None
6727 6728 6729 6730
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6731
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6732 6733
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6734 6735

    Returns:
Q
update  
qiaolongfei 已提交
6736 6737
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6738

6739 6740 6741
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6742
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6743 6744 6745
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6746 6747
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6748

6749 6750 6751
    Examples:
        .. code-block:: python

6752
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6753
    """
6754 6755 6756 6757
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6758 6759
    if resample not in resample_methods:
        raise ValueError(
6760
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6761
        )
6762
    resample_type = resample_methods[resample]
6763 6764 6765 6766 6767 6768

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6769
    if out_shape is None and scale is None:
6770
        raise ValueError("One of out_shape and scale must not be None.")
6771
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6772
    dtype = helper.input_dtype()
6773 6774 6775 6776

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6777 6778 6779
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6780
    if out_shape is not None:
6781 6782 6783 6784
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6785
            inputs['OutSize'] = out_shape
6786 6787 6788 6789 6790 6791 6792 6793
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6794 6795 6796 6797
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6798 6799 6800 6801 6802
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6803
    out = helper.create_variable_for_type_inference(dtype)
6804
    helper.append_op(
6805
        type='{}_interp'.format(resample_type),
6806
        inputs=inputs,
6807
        outputs={"Out": out},
6808 6809 6810 6811 6812 6813 6814
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6815
    return out
F
stash  
fengjiayi 已提交
6816 6817


6818
@templatedoc(op_type="bilinear_interp")
6819 6820 6821 6822
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6823 6824
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6825
                    align_mode=1):
6826
    """
6827 6828
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6829 6830
    in priority order.

6831 6832 6833 6834
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6835 6836
    again in the other direction.

6837
    For details of bilinear interpolation, please refer to Wikipedia:
6838
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6839

T
tink2123 已提交
6840
    Align_corners and align_mode are optinal parameters,the calculation 
6841 6842 6843
    method of interpolation can be selected by them.


T
tink2123 已提交
6844
    Align_corners and align_mode are optinal parameters,the calculation method 
6845 6846 6847 6848
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6849
      For scale:
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6861
      if:
6862 6863 6864 6865 6866 6867 6868 6869 6870
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6871 6872
      else:

6873 6874 6875 6876 6877 6878 6879 6880
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6881 6882 6883 6884
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6885

Y
yuyang18 已提交
6886 6887 6888 6889 6890
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6891 6892 6893
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6894
                                :attr:`out_shape` and :attr:`scale` specifying
6895 6896 6897 6898 6899 6900 6901
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6902 6903
                                constructing stage.
                                Default: None
6904 6905
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
6906 6907 6908

    Returns:
        ${out_comment}.
6909 6910 6911 6912 6913

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6914 6915
    """

6916 6917
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
6918 6919


6920
@templatedoc(op_type="nearest_interp")
6921 6922 6923 6924
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
6925 6926
                   actual_shape=None,
                   align_corners=True):
6927
    """
6928
    Resize input by performing nearest neighbor interpolation in both the
6929 6930
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6931 6932
    out_shape and scale in priority order.

6933 6934
    Example:

T
tink2123 已提交
6935
      For scale:
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6948
      if:
6949 6950 6951 6952 6953 6954 6955 6956
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6957
      else:
6958 6959 6960 6961 6962 6963 6964 6965 6966
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


6967
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6968
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6969 6970 6971 6972 6973

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6974

Y
yuyang18 已提交
6975 6976 6977 6978 6979
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6980 6981 6982
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6983
                                :attr:`out_shape` and :attr:`scale` specifying
6984 6985 6986 6987 6988 6989 6990
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6991 6992
                                constructing stage.
                                Default: None
6993
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
6994 6995 6996

    Returns:
        ${out_comment}.
6997 6998 6999 7000 7001

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7002 7003
    """

7004 7005
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7006 7007 7008 7009


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7010 7011 7012
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7013 7014 7015 7016 7017 7018 7019
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7020
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7021

7022
    Returns:
Q
update  
qiaolongfei 已提交
7023
        Variable: The output is a 4-D tensor of the shape
7024
        (num_batches, channls, out_h, out_w).
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7035 7036 7037
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7038 7039 7040
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7041 7042
def gather(input, index):
    """
Q
qiaolongfei 已提交
7043 7044
    **Gather Layer**

7045
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7046 7047 7048 7049
    of X indexed by `index` and concatenate them together.

    .. math::

7050
        Out = X[Index]
W
whs 已提交
7051 7052 7053 7054 7055 7056 7057


    .. code-block:: text


                Given:

7058 7059
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7070
        input (Variable): The source input with rank>=1.
W
whs 已提交
7071 7072 7073 7074 7075 7076
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7077

W
whs 已提交
7078 7079 7080 7081 7082 7083
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7084
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7085 7086 7087 7088 7089 7090 7091 7092
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7124
    out = helper.create_variable_for_type_inference(dtype)
7125 7126 7127 7128 7129 7130 7131 7132 7133
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7134 7135 7136 7137 7138 7139 7140 7141 7142
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7143

Q
Qingsheng Li 已提交
7144
    Given the following input:
H
haowang101779990 已提交
7145

Q
Qingsheng Li 已提交
7146
    .. code-block:: text
H
haowang101779990 已提交
7147

Q
Qingsheng Li 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7160

Q
Qingsheng Li 已提交
7161
    .. code-block:: text
H
haowang101779990 已提交
7162

Q
Qingsheng Li 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7178
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7179 7180 7181 7182 7183 7184 7185 7186 7187 7188

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7189
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7212

7213 7214 7215
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7216
    """
F
stash  
fengjiayi 已提交
7217
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7218
    dtype = x.dtype
X
Xin Pan 已提交
7219
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7220
    if seed is None:
7221
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7222
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7223
    if isinstance(seed, int):
F
fengjiayi 已提交
7224 7225 7226 7227 7228
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7229 7230 7231 7232
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7233
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7234 7235
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7236 7237
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7238
    return out
W
whs 已提交
7239 7240


7241
def log(x, name=None):
W
wanghaoshuang 已提交
7242 7243 7244 7245 7246
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7247
        Out = \\ln(x)
W
wanghaoshuang 已提交
7248 7249

    Args:
7250
        x (Variable): Input tensor.
7251 7252
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7253 7254 7255 7256 7257 7258 7259 7260

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7261
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7262 7263
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7264
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7265
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7266
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7267 7268 7269
    return out


7270
def relu(x, name=None):
W
wanghaoshuang 已提交
7271 7272
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7273
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7274 7275 7276 7277
    the tensor elementwise.

    .. math::

7278
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7279 7280

    Args:
7281
        x (Variable): The input tensor.
7282 7283
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7284 7285 7286 7287 7288 7289 7290 7291

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7292
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7293 7294
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7295
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7296
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7297 7298
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7299
    return out
7300 7301


C
chengduo 已提交
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7343 7344 7345
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7346 7347 7348 7349
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7350
    .. math::
7351

H
haowang101779990 已提交
7352
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7353

7354
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7355 7356 7357 7358 7359
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7360
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7361
                           Its shape should be the same as input.
7362
        num_classes (int): The possible number of labels.
W
whs 已提交
7363 7364

    Returns:
M
minqiyang 已提交
7365 7366
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7367
                     Three variables:
M
minqiyang 已提交
7368

H
haowang101779990 已提交
7369 7370 7371
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7372 7373 7374 7375

    Examples:

        .. code-block:: python
7376

W
whs 已提交
7377 7378 7379 7380
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7381 7382 7383
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7384 7385
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7386 7387
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7388
        outputs={
W
whs 已提交
7389 7390 7391
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7392 7393 7394
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7463
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7464 7465 7466 7467 7468

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7469
            isinstance(shape, Variable)):
7470 7471 7472 7473 7474
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7475
    out = helper.create_variable_for_type_inference(x.dtype)
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7493 7494


W
whs 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7512

W
whs 已提交
7513
              out_shape = [2, 3, 5, 5]
7514

W
whs 已提交
7515
          Step 1:
7516

W
whs 已提交
7517 7518 7519
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7520

W
whs 已提交
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7566
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7567
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7580

W
whs 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7592
            isinstance(out_shape, Variable)):
W
whs 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7614 7615
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7616

7617 7618
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7619
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7620 7621 7622
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7623

7624 7625
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7626

H
haowang101779990 已提交
7627 7628
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7629 7630
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7631

H
haowang101779990 已提交
7632 7633 7634 7635 7636 7637 7638 7639
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7640 7641 7642

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7677
    out = helper.create_variable_for_type_inference("float32")
7678 7679 7680 7681 7682 7683 7684 7685

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7686 7687


M
minqiyang 已提交
7688 7689
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7690
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7691
    which compares left score and right score passed in.
M
minqiyang 已提交
7692
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7693 7694 7695

    .. math::

H
haowang101779990 已提交
7696
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7697 7698

    Args:
M
minqiyang 已提交
7699
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7700 7701
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7702
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7703 7704
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7705

M
minqiyang 已提交
7706
    Returns:
M
minqiyang 已提交
7707
       Variable: The ranking loss.
H
haowang101779990 已提交
7708

M
minqiyang 已提交
7709
    Raises:
M
minqiyang 已提交
7710
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7711

M
minqiyang 已提交
7712
    Examples:
H
haowang101779990 已提交
7713

M
minqiyang 已提交
7714
        .. code-block:: python
H
haowang101779990 已提交
7715

M
minqiyang 已提交
7716 7717 7718 7719 7720
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7721
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7722 7723 7724 7725 7726 7727
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7728 7729
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7753
        .. code-block:: text
W
whs 已提交
7754

T
Tink_Y 已提交
7755
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7756

T
Tink_Y 已提交
7757 7758
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7759

T
Tink_Y 已提交
7760
	      Case 0:
M
minqiyang 已提交
7761

T
Tink_Y 已提交
7762 7763 7764
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7765

T
Tink_Y 已提交
7766 7767 7768
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7769

T
Tink_Y 已提交
7770
	      Case 1:
M
minqiyang 已提交
7771

T
Tink_Y 已提交
7772 7773
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7774

T
Tink_Y 已提交
7775 7776 7777
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7778

T
Tink_Y 已提交
7779
	      Case 2:
M
minqiyang 已提交
7780

T
Tink_Y 已提交
7781 7782
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7783

T
Tink_Y 已提交
7784 7785 7786
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7787 7788


W
whs 已提交
7789 7790
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7791
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7815
    out = helper.create_variable_for_type_inference(dtype)
7816 7817 7818 7819 7820 7821 7822 7823 7824
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7825
    helper.append_op(
7826
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7827 7828 7829 7830

    return out


7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7843 7844 7845 7846 7847

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7848 7849
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7850 7851
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7852
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7873 7874 7875 7876 7877

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7878 7879
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7880 7881
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7882
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7903 7904 7905 7906 7907

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7908 7909
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7910 7911
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7912
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7934 7935 7936 7937 7938

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7939
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7940
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7941 7942
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7943
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7966 7967 7968 7969 7970

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7971 7972
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7973 7974
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7975
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7997 7998 7999 8000 8001

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8002 8003
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8004 8005
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8006
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8007 8008 8009 8010 8011 8012 8013 8014
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8015 8016 8017 8018
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8019 8020
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8021 8022 8023

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8024
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8025
          weight (alpha).
J
jerrywgz 已提交
8026
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8027 8028 8029
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8030
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8031
          will be named automatically.
J
jerrywgz 已提交
8032 8033 8034 8035 8036 8037 8038 8039

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8040
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8054
        attr=helper.param_attr,
J
jerrywgz 已提交
8055 8056 8057 8058
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8059
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8060 8061 8062 8063 8064 8065 8066 8067 8068
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8069 8070 8071 8072 8073 8074 8075 8076 8077 8078
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8079
    Returns:
8080
        output(${out_type}): ${out_comment}
8081 8082 8083

    Examples:

8084
    .. code-block:: python
8085

H
haowang101779990 已提交
8086 8087
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8088 8089
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8090
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8109
    Returns:
8110
        output(${out_type}): ${out_comment}
8111 8112 8113 8114 8115

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8116 8117
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8118 8119
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8138
    Returns:
8139
        output(${out_type}): ${out_comment}
8140 8141 8142 8143 8144

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8145 8146
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8147 8148
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8149
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8150 8151 8152 8153 8154 8155 8156 8157
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8158 8159 8160 8161
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8162

H
haowang101779990 已提交
8163
    For Example:
M
minqiyang 已提交
8164

H
haowang101779990 已提交
8165
    .. code-block:: text
8166

H
haowang101779990 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8188 8189 8190

    Args:
        x (Variable): A tensor of rank >= axis.
8191 8192
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8193 8194 8195 8196 8197 8198 8199 8200
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8201 8202 8203
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8204 8205 8206 8207
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8208
        ValueError: If axis is not in range [0, rank(x)].
8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8225 8226
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8227
    helper.append_op(
8228
        type='flatten2',
8229
        inputs={"X": x},
8230 8231
        outputs={'Out': out,
                 'XShape': x_shape},
8232 8233
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8234 8235


C
chenweihang 已提交
8236
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8237
    """
C
chenweihang 已提交
8238
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8239
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8240 8241
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8242

H
haowang101779990 已提交
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8260 8261

    Args:
C
chenweihang 已提交
8262 8263 8264
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8276 8277
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8278 8279 8280 8281 8282 8283
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8284
    return out
8285

8286

S
sneaxiy 已提交
8287 8288 8289 8290 8291 8292 8293 8294 8295
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8296

S
sneaxiy 已提交
8297
    .. math::
8298

S
sneaxiy 已提交
8299 8300 8301
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8302
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8303 8304 8305 8306
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8307 8308 8309
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8310 8311
    Returns:
        Variable: The output sequence mask.
8312

S
sneaxiy 已提交
8313 8314
    """

Q
qingqing01 已提交
8315
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8316
    if name is None:
X
Xin Pan 已提交
8317
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8318
    else:
X
Xin Pan 已提交
8319
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8320

Q
qingqing01 已提交
8321 8322 8323
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8324 8325
        outputs={'Y': out},
        attrs={
8326
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8327 8328 8329
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8330 8331


X
Xin Pan 已提交
8332
def stack(x, axis=0):
S
sneaxiy 已提交
8333 8334 8335 8336
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8337 8338 8339 8340 8341 8342 8343

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8344
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8345
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8346

C
chengduozh 已提交
8347 8348
    For Example:

C
chengduozh 已提交
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8387
    Args:
8388
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8389
        axis (int|None): The axis along which all inputs are stacked.
8390

S
sneaxiy 已提交
8391 8392
    Returns:
        Variable: The stacked variable.
8393

S
sneaxiy 已提交
8394 8395
    """

X
Xin Pan 已提交
8396 8397 8398 8399 8400 8401
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8402
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8403
    helper.append_op(
S
sneaxiy 已提交
8404 8405
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8406

X
Xin Pan 已提交
8407
    return out
D
dzhwinter 已提交
8408 8409 8410 8411 8412 8413 8414


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8415

D
dzhwinter 已提交
8416 8417 8418
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8419
    raised.
D
dzhwinter 已提交
8420 8421

    Args:
M
minqiyang 已提交
8422
        x (Variable): Input variable.
D
dzhwinter 已提交
8423 8424
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8425

D
dzhwinter 已提交
8426 8427
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8428

D
dzhwinter 已提交
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8439
    for _ in range(num):
X
Xin Pan 已提交
8440
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8441 8442 8443 8444 8445 8446 8447 8448

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8461

W
whs 已提交
8462 8463 8464 8465
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8466

W
whs 已提交
8467
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8468

W
whs 已提交
8469
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8470

W
whs 已提交
8471 8472 8473 8474
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8475

W
whs 已提交
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8492
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8493 8494 8495 8496 8497 8498
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8499 8500


G
fix  
gongweibao 已提交
8501 8502 8503
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8504
@templatedoc()
G
fix  
gongweibao 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8514
    ${comment}
G
fix  
gongweibao 已提交
8515 8516

    Args:
G
gongweibao 已提交
8517 8518 8519
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8520
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8521 8522 8523
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8524 8525
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8526
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8527

8528 8529 8530 8531 8532
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8533 8534 8535
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8536
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8553 8554


G
gongweibao 已提交
8555
@templatedoc()
X
Xin Pan 已提交
8556
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8557
    """
G
gongweibao 已提交
8558
    ${comment}
G
fix  
gongweibao 已提交
8559 8560

    Args:
G
gongweibao 已提交
8561 8562 8563 8564
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8565 8566 8567
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8568
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8569

8570 8571 8572 8573
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8574 8575 8576
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8577
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8588
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8589 8590 8591 8592 8593
        })

    return out


G
gongweibao 已提交
8594
@templatedoc()
G
fix  
gongweibao 已提交
8595
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8596
    """
G
gongweibao 已提交
8597
    ${comment}
G
fix  
gongweibao 已提交
8598 8599

    Args:
G
gongweibao 已提交
8600 8601 8602 8603
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8604
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8605 8606

    Returns:
G
gongweibao 已提交
8607
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8608

8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8619 8620 8621
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8622
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8634
@templatedoc()
G
fix  
gongweibao 已提交
8635 8636 8637 8638 8639 8640 8641 8642 8643
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8644
    ${comment}
G
fix  
gongweibao 已提交
8645 8646

    Args:
G
gongweibao 已提交
8647 8648
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8649
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8650 8651 8652 8653
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8654
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8655 8656

    Returns:
G
gongweibao 已提交
8657
        out (Variable): ${out_comment}
8658 8659 8660 8661 8662 8663 8664 8665

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8666 8667 8668
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8669
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8688
@templatedoc()
X
Xin Pan 已提交
8689
def sum(x):
G
fix  
gongweibao 已提交
8690
    """
G
gongweibao 已提交
8691
    ${comment}
G
fix  
gongweibao 已提交
8692 8693

    Args:
G
gongweibao 已提交
8694
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8695 8696

    Returns:
G
gongweibao 已提交
8697
        out (Variable): ${out_comment}
8698 8699 8700 8701 8702 8703

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8704 8705 8706
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8707 8708
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8709 8710 8711 8712
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8713
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8714 8715 8716 8717

    return out


G
gongweibao 已提交
8718
@templatedoc()
G
fix  
gongweibao 已提交
8719 8720
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8721
    ${comment}
G
fix  
gongweibao 已提交
8722 8723

    Args:
G
gongweibao 已提交
8724 8725 8726 8727
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8728 8729

    Returns:
G
gongweibao 已提交
8730
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8731

8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8743 8744 8745
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8746 8747
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
8761 8762
    **Shape Layer**

C
fix doc  
chengduozh 已提交
8763
    Get the shape of the input.
G
fix  
gongweibao 已提交
8764 8765

    Args:
C
chengduozh 已提交
8766
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
8767 8768

    Returns:
C
fix doc  
chengduozh 已提交
8769
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
8770

8771 8772 8773 8774 8775 8776
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8777 8778 8779
    """

    helper = LayerHelper('shape', **locals())
8780
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8781
    helper.append_op(
G
fix  
gongweibao 已提交
8782
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8783 8784

    return out
G
merge  
gongweibao 已提交
8785 8786


S
sneaxiy 已提交
8787 8788 8789 8790 8791 8792 8793 8794
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8795 8796
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8797
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8798 8799 8800
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8801

S
sneaxiy 已提交
8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8813
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8814 8815 8816 8817 8818 8819 8820 8821
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8822
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8823
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8824 8825 8826 8827 8828 8829

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8830
    if name is None:
X
Xin Pan 已提交
8831
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8832 8833 8834
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8835 8836 8837 8838 8839 8840 8841 8842 8843 8844

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8845
    return helper.append_activation(out)
S
sneaxiy 已提交
8846 8847


X
Xin Pan 已提交
8848
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8849 8850 8851
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8852
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8853 8854 8855
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8856
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8857 8858 8859
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8860
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8861 8862 8863
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8864
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8865 8866 8867
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8868
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8869 8870 8871
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8872
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8884 8885
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8886
        ])
M
minqiyang 已提交
8887 8888


8889
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8890 8891
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8892 8893
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8894 8895 8896

    if out is None:
        if name is None:
X
Xin Pan 已提交
8897
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8913
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8925 8926 8927 8928 8929 8930 8931 8932 8933

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8934 8935 8936 8937 8938 8939 8940
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8941
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8953 8954 8955 8956 8957 8958 8959 8960 8961

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8962 8963 8964 8965 8966 8967 8968
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8969
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8981 8982 8983 8984 8985 8986 8987 8988 8989

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8990 8991 8992 8993 8994 8995 8996
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8997
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9008 9009 9010 9011 9012 9013 9014

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9015 9016 9017 9018
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9034 9035 9036 9037 9038 9039 9040

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9041 9042 9043 9044 9045
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9046 9047 9048 9049
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9073 9074 9075 9076 9077 9078 9079

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9080 9081 9082 9083 9084
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9085 9086 9087 9088
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9089 9090 9091 9092 9093 9094 9095 9096

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9115
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9168
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9169 9170 9171 9172 9173 9174 9175 9176 9177
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9178 9179
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9180 9181 9182 9183 9184 9185
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9186 9187 9188
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9189 9190
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9191 9192 9193 9194 9195 9196
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9197
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9198
        name(basestring|None): Name of the output.
9199 9200
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9201 9202 9203

    Returns:
        out(${out_type}): ${out_comment}
9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9218 9219 9220 9221 9222
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9223
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9224 9225 9226 9227 9228 9229 9230 9231
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9232 9233
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9254
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9255 9256 9257 9258 9259 9260 9261 9262 9263 9264
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9265 9266


J
JiabinYang 已提交
9267
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9268
    """
J
JiabinYang 已提交
9269
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9270 9271 9272

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9273
    The attr blocksize indicates the input block size.
9274 9275

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9276
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9277 9278

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9279
    (but keeping all data)
J
JiabinYang 已提交
9280

J
JiabinYang 已提交
9281
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9282
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9283 9284 9285 9286 9287
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9288
    Args:
J
JiabinYang 已提交
9289
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9290
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9291 9292

    Returns:
J
JiabinYang 已提交
9293
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9294 9295

    Raises:
J
JiabinYang 已提交
9296
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9297 9298 9299 9300 9301 9302

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9303
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9304
                x=data, blocksize=2)
J
JiabinYang 已提交
9305 9306
    """

J
JiabinYang 已提交
9307
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9308

J
JiabinYang 已提交
9309 9310
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9311 9312

    if name is None:
J
JiabinYang 已提交
9313 9314
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9315 9316 9317 9318 9319
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9320
        type="space_to_depth",
J
JiabinYang 已提交
9321
        inputs={"X": x},
J
JiabinYang 已提交
9322
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9323
        outputs={"Out": out})
J
JiabinYang 已提交
9324 9325
    return out

J
JiabinYang 已提交
9326

S
sneaxiy 已提交
9327 9328
@templatedoc()
def sequence_reverse(x, name=None):
9329
    """
S
sneaxiy 已提交
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9341
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9352 9353


9354 9355 9356 9357 9358 9359
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9360

9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9380
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9393 9394


B
barrierye 已提交
9395
def similarity_focus(input, axis, indexes, name=None):
9396
    """
B
barrierye 已提交
9397
    SimilarityFocus Operator
B
barrierye 已提交
9398 9399

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9400

9401 9402 9403
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9404
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9405 9406 9407 9408 9409 9410 9411
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9412
       each index.
B
barrierye 已提交
9413 9414 9415 9416
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9466
    Args:
9467
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9468
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9469
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9470
            1, 2 or 3.
B
barrierye 已提交
9471
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9472 9473

    Returns:
H
haowang101779990 已提交
9474 9475
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9476

B
barrierye 已提交
9477 9478
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9479

B
barrierye 已提交
9480
            data = fluid.layers.data(
B
barrierye 已提交
9481 9482
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9483

B
barrierye 已提交
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9496 9497 9498 9499 9500
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9501 9502 9503 9504 9505 9506 9507
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9508 9509


M
minqiyang 已提交
9510 9511
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9512 9513
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9514 9515
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9554
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9555
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9556 9557 9558 9559 9560 9561

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9562

M
minqiyang 已提交
9563 9564 9565
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9566 9567
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9568 9569
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9570 9571 9572 9573 9574 9575 9576
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9577 9578


D
dengkaipeng 已提交
9579
@templatedoc()
9580 9581
def grid_sampler(x, grid, name=None):
    """
9582
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9583
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9584 9585 9586 9587
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9588
    interpolation value of 4 nearest corner points.
9589

H
haowang101779990 已提交
9590
    .. code-block:: text
9591

H
haowang101779990 已提交
9592 9593
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9594

H
haowang101779990 已提交
9595 9596
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9597

H
haowang101779990 已提交
9598 9599 9600
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9601

H
haowang101779990 已提交
9602 9603 9604 9605 9606 9607 9608 9609 9610
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9611

H
haowang101779990 已提交
9612 9613 9614 9615
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9616

H
haowang101779990 已提交
9617 9618 9619 9620
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9621

H
haowang101779990 已提交
9622 9623 9624 9625
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9626

H
haowang101779990 已提交
9627 9628
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9629 9630

    Args:
9631 9632 9633
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9634 9635

    Returns:
H
haowang101779990 已提交
9636
        Variable: Output of shape [N, C, H, W] data samples input X
9637 9638
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9639 9640 9641 9642 9643 9644 9645 9646
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9647

D
dengkaipeng 已提交
9648 9649 9650 9651 9652 9653 9654 9655 9656
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9657
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9658 9659
    ipts = {'X': x, 'Grid': grid}

9660
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9661 9662 9663
    return out


G
gmcather 已提交
9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9730
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9752 9753 9754 9755
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9756
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9757 9758
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9759
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9760 9761

    .. math::
H
haowang101779990 已提交
9762 9763 9764
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9765 9766

    Where:
H
haowang101779990 已提交
9767 9768
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9783

G
gmcather 已提交
9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9810
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9811

Q
Qiao Longfei 已提交
9812
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9813 9814 9815
    For example:

    .. math::
H
haowang101779990 已提交
9816
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9817

Q
Qiao Longfei 已提交
9818
    In this formula:
9819 9820
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9821
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9822
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9823 9824 9825
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9826 9827
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9828 9829 9830
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9831
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9832
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9833
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9834 9835 9836 9837
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9838
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9839 9840 9841 9842

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9843
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9844 9845
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9846
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9847 9848 9849 9850

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9851
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9892 9893


S
shippingwang 已提交
9894
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
9895 9896
    """
    **Shuffle Channel Operator**
9897

S
shippingwang 已提交
9898 9899 9900 9901 9902 9903
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
9904
    
S
shippingwang 已提交
9905
    .. code-block:: text
9906

S
shippingwang 已提交
9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
9935
    Args: 
S
shippingwang 已提交
9936 9937
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
9938 9939

    Returns:
S
shippingwang 已提交
9940 9941
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
9942 9943

    Raises:
S
shippingwang 已提交
9944
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9945 9946 9947

    Examples:
        .. code-block:: python
9948 9949

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
9950
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
9951 9952 9953
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
9954
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
9955 9956 9957 9958 9959 9960 9961 9962 9963

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9964
    return out
S
Add  
shippingwang 已提交
9965 9966


S
sneaxiy 已提交
9967
class PyFuncRegistry(object):
S
sneaxiy 已提交
9968 9969 9970
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9971
        if func is None or not callable(func):
S
sneaxiy 已提交
9972 9973 9974
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9975
        # find named args using reflection
S
sneaxiy 已提交
9976 9977 9978 9979 9980 9981 9982
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9983 9984 9985
        '''
        Why record self here?

M
minqiyang 已提交
9986 9987
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9988
           to find the registered function corresponding
M
minqiyang 已提交
9989
           to :code:`idx`.
S
sneaxiy 已提交
9990

M
minqiyang 已提交
9991 9992
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9993
           whose reference count is 1 would cause
M
minqiyang 已提交
9994
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9995 9996
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9997
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10012 10013 10014 10015 10016 10017 10018 10019 10020
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10021

S
sneaxiy 已提交
10022 10023
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10024 10025

        ret = []
S
sneaxiy 已提交
10026 10027 10028
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10029 10030
                continue

S
sneaxiy 已提交
10031 10032
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10033

S
sneaxiy 已提交
10034 10035 10036
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10037

S
sneaxiy 已提交
10038
        return tuple(ret)
S
sneaxiy 已提交
10039 10040


S
sneaxiy 已提交
10041 10042 10043 10044
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10045

S
sneaxiy 已提交
10046 10047 10048 10049 10050 10051 10052 10053
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10054
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10055

S
sneaxiy 已提交
10056 10057
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10058 10059 10060 10061
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10062
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10063
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10064 10065
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10066 10067 10068 10069 10070
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10071
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10072
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10073
                                       None means no backward. Default None.
S
sneaxiy 已提交
10074
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10075
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10076 10077
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10078
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10079 10080 10081

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10082 10083

    Examples:
M
minqiyang 已提交
10084

S
sneaxiy 已提交
10085 10086 10087 10088 10089
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10090
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10091 10092
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10093
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10094 10095 10096
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10097
        >>>
S
sneaxiy 已提交
10098 10099 10100 10101 10102
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10103
        >>>     print(x)
S
sneaxiy 已提交
10104 10105 10106 10107 10108 10109
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10110
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10111 10112
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10113 10114
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10115 10116 10117 10118 10119 10120 10121 10122
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10123
    """
S
sneaxiy 已提交
10124
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10125 10126 10127
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10128
        x = [x]
S
sneaxiy 已提交
10129 10130
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10131

S
sneaxiy 已提交
10132 10133 10134
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10135
        out_list = [out]
S
sneaxiy 已提交
10136
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10137
        out_list = out
S
sneaxiy 已提交
10138 10139 10140
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10141

S
sneaxiy 已提交
10142 10143
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10144
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10145 10146

    for each_out in out_list:
S
sneaxiy 已提交
10147 10148
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10149 10150
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10151

S
sneaxiy 已提交
10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10167 10168 10169 10170

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10171 10172
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10173 10174 10175
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10176
        })
S
sneaxiy 已提交
10177
    return out
S
sneaxiy 已提交
10178 10179 10180


# For debug usage
S
sneaxiy 已提交
10181 10182 10183 10184
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10237

M
minqiyang 已提交
10238

M
minqiyang 已提交
10239
def huber_loss(input, label, delta):
10240
    """
M
minqiyang 已提交
10241 10242 10243
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10244 10245 10246 10247

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10248
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10249 10250 10251 10252

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10253
        huber\_loss = 0.5 * (label - input) * (label - input)
10254 10255 10256 10257 10258 10259 10260


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10261
        delta (float): The parameter of huber loss, which controls
10262 10263 10264
                       the range of outliers

    Returns:
M
minqiyang 已提交
10265
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10266 10267 10268 10269 10270

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10271
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10272
    """
M
minqiyang 已提交
10273
    helper = LayerHelper('huber_loss', **locals())
10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)