nn.py 191.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
F
fengjiayi 已提交
26
from .. import unique_name
Y
Yu Yang 已提交
27 28

__all__ = [
Y
ying 已提交
29 30 31
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
32
    'dynamic_lstmp',
G
guosheng 已提交
33
    'dynamic_gru',
Y
ying 已提交
34 35 36 37 38 39 40 41 42
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
43
    'conv3d',
Y
ying 已提交
44
    'sequence_pool',
45 46
    'sequence_softmax',
    'softmax',
Y
ying 已提交
47
    'pool2d',
48
    'pool3d',
Y
ying 已提交
49 50 51
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
52
    'conv3d_transpose',
Y
ying 已提交
53 54 55 56 57 58
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
59
    'reduce_prod',
Y
ying 已提交
60 61 62 63
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
64 65
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
66 67
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
68
    'topk',
Y
ying 已提交
69 70
    'warpctc',
    'sequence_reshape',
71
    'transpose',
72
    'im2sequence',
73
    'nce',
W
weixing02 已提交
74
    'hsigmoid',
Q
Qiao Longfei 已提交
75
    'beam_search',
76
    'row_conv',
77
    'multiplex',
G
guosheng 已提交
78
    'layer_norm',
79 80
    'softmax_with_cross_entropy',
    'smooth_l1',
81
    'one_hot',
Y
Yu Yang 已提交
82
    'autoincreased_step_counter',
C
caoying03 已提交
83
    'reshape',
Y
yangyaming 已提交
84
    'lod_reset',
D
dragonwarrior 已提交
85
    'lrn',
G
guosheng 已提交
86
    'pad',
87
    'label_smooth',
88
    'roi_pool',
W
whs 已提交
89
    'dice_loss',
F
fengjiayi 已提交
90 91
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
92
    'resize_bilinear',
W
whs 已提交
93
    'gather',
94
    'random_crop',
95
    'mean_iou',
Y
yuyang18 已提交
96 97
    'relu',
    'log',
98
    'crop',
Y
Yu Yang 已提交
99 100 101 102 103 104 105 106
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
107
       use_mkldnn=False,
Y
Yu Yang 已提交
108
       act=None,
J
Jacek Czaja 已提交
109
       is_test=False,
110
       name=None):
Y
Yu Yang 已提交
111
    """
112
    **Fully Connected Layer**
Y
Yu Yang 已提交
113

114 115 116 117 118 119 120 121
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
122
    to the output as well.
C
caoying03 已提交
123

C
caoying03 已提交
124
    This process can be formulated as follows:
125 126 127

    .. math::

128
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
129 130 131

    In the above equation:

C
caoying03 已提交
132 133 134 135
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
136
    * :math:`Act`: The activation function.
C
caoying03 已提交
137
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
138 139

    Args:
R
ranqiu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
157
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
158 159
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
160
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
161

162
    Returns:
F
fengjiayi 已提交
163
        Variable: The transformation result.
164 165

    Raises:
C
caoying03 已提交
166
        ValueError: If rank of the input tensor is less than 2.
167 168 169 170

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
171
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
172
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
173
    """
C
caoying03 已提交
174

C
caoying03 已提交
175
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
176 177 178 179

    dtype = helper.input_dtype()

    mul_results = []
180 181
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
182 183 184
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
185

Y
Yu Yang 已提交
186
        w = helper.create_parameter(
187 188
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
189
        helper.append_op(
190 191 192
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
193
            outputs={"Out": tmp},
M
mozga-intel 已提交
194 195
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
196 197 198 199
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
200
    else:
201 202
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
203 204 205 206
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
207 208 209 210
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
211 212


213 214 215
def embedding(input,
              size,
              is_sparse=False,
216
              is_distributed=False,
217 218 219
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
220
    """
221 222
    **Embedding Layer**

223
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
224 225
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
226 227 228

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
229 230

    Args:
231 232 233 234 235
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
236
        is_distributed(bool): Whether to run lookup table from remote parameter server.
237 238
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
239
            with zeros whenever lookup encounters it in :attr:`input`. If
240
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
241 242
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
243
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
244

245 246 247
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
248

249 250
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
251

C
chengduoZH 已提交
252
          dict_size = len(dataset.ids)
253
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
254
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
255 256 257 258 259 260
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
261 262
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
263 264 265 266 267
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
268 269 270 271 272
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
273 274 275
    return tmp


Y
yi.wu 已提交
276
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
277 278
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
279 280
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
281 282 283 284 285 286 287
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
288 289
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
290
    """
Y
yi.wu 已提交
291
    ${comment}
Y
Yibing Liu 已提交
292 293

    Args:
Y
yi.wu 已提交
294 295
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
296 297 298 299 300 301 302
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

303
        param_attr(ParamAttr|None): The parameter attribute for the learnable
304
                               hidden-hidden weights.
Y
Yibing Liu 已提交
305 306 307

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
308 309
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
310
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
311 312 313
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
314

315
                              1. `use_peepholes = False`
Y
yi.wu 已提交
316 317
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
318
                              2. `use_peepholes = True`
Y
yi.wu 已提交
319
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
320
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
321
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
322 323 324 325 326 327 328 329
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
330 331

    Returns:
Y
Yibing Liu 已提交
332 333
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
334

Y
Yibing Liu 已提交
335
    Examples:
Y
Yibing Liu 已提交
336 337
        .. code-block:: python

Y
Yibing Liu 已提交
338 339
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
340
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
341 342
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
343
    """
344

Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
359 360 361 362 363 364 365 366 367 368
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
369 370 371

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
372
        inputs=inputs,
Y
Yu Yang 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
389 390 391 392 393 394 395 396 397 398 399
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
400 401
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
402 403 404
    """
    **Dynamic LSTMP Layer**

405 406 407 408 409 410
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
411 412 413 414 415

    The formula is as follows:

    .. math::

416
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
417

418
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
419

420
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
421

422
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
423

424
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
425

426
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
427

428
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
429

Y
Yibing Liu 已提交
430 431 432 433 434 435
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
436
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
437
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
438
          bias vector).
Y
Yibing Liu 已提交
439 440 441
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
442
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
443
    * :math:`h`: The hidden state.
444
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
445 446
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
447
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
448
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
449
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
450 451
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
452 453 454 455

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
456

Y
Yibing Liu 已提交
457 458 459 460 461 462 463 464 465 466 467 468
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
469
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
470 471
                               hidden-hidden weight and projection weight.

472 473
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
474 475
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
476 477
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
478 479
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
480 481 482 483 484 485
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
486
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
487 488 489
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
490
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
491 492 493 494 495 496 497 498 499
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
500
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
501 502
                              default "tanh".
        proj_activation(str): The activation for projection output.
503
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
504 505
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
506 507
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
508 509

    Returns:
510 511 512 513
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
514 515

    Examples:
516

Y
Yibing Liu 已提交
517 518
        .. code-block:: python

519 520 521 522
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
523
            hidden_dim, proj_dim = 512, 256
524
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
525
                                     act=None, bias_attr=None)
526 527 528
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
529 530 531 532
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
533
    """
534

Y
Yibing Liu 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
581 582 583 584 585 586 587 588 589
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
590
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
591

592
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
593
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
594

G
guosheng 已提交
595 596 597 598 599 600 601 602 603
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
604

G
guosheng 已提交
605
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
606

G
guosheng 已提交
607
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
608 609
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
610 611 612 613
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
614
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
615 616

    Args:
617 618
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
619
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
620
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
621 622
            is the hidden size.
        size(int): The dimension of the gru cell.
623
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
624 625
            hidden-hidden weight matrix. Note:

626
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
627
              :math:`D` is the hidden size.
628
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
629
              The first part are weights of the update gate and reset gate with
630
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
631
              candidate hidden state with shape :math:`(D \\times D)`.
632
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
633
            hidden-hidden bias.
634
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
635 636 637
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
638
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
639
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
640 641 642 643
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
644 645

    Returns:
G
guosheng 已提交
646
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
647
            and sequence length is the same with the input.
648

G
guosheng 已提交
649
    Examples:
650

G
guosheng 已提交
651 652
        .. code-block:: python

653 654 655 656
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
657
            hidden_dim = 512
658
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
659 660 661 662 663 664 665 666 667 668
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
669
    batch_size = input.shape[0]
G
guosheng 已提交
670 671 672
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
673 674 675
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
699 700 701
def gru_unit(input,
             hidden,
             size,
702 703
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
704
             activation='tanh',
705
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
706
    """
707
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
708

709 710
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
711

712
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
713

714
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
715

716
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
717 718

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
719 720 721
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
722 723
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

724 725
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
726 727 728
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
729 730 731 732 733

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
734 735
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
736 737 738 739
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
740

741 742 743 744 745 746
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
747

748
             # assuming we have x_t_data and prev_hidden of size=10
749
             x_t = fluid.layers.fc(input=x_t_data, size=30)
750 751
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
767 768
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
769

770 771 772 773
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
774
    # create bias
775
    if helper.bias_attr:
Y
Yu Yang 已提交
776 777 778
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
779
        inputs['Bias'] = bias
Y
Yu Yang 已提交
780 781 782

    helper.append_op(
        type='gru_unit',
783
        inputs=inputs,
Y
Yu Yang 已提交
784 785 786 787 788 789
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
790 791
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
792 793 794 795 796
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
797
@templatedoc()
798
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
799 800 801 802 803 804 805
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
806
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
807 808 809 810
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
811 812 813
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
814 815

    """
Y
Yu Yang 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
841
@templatedoc()
842
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
843 844 845 846 847
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
848

Y
yuyang18 已提交
849
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
850

Y
yuyang18 已提交
851 852 853
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
854
        Variable: ${viterbi_path_comment}
855

Y
yi.wu 已提交
856 857 858 859 860
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
861
    """
Y
Yu Yang 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
875
@templatedoc()
F
fengjiayi 已提交
876
def cos_sim(X, Y):
Y
Yu Yang 已提交
877
    """
Y
yi.wu 已提交
878
    ${comment}
879 880

    Args:
881 882
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
883

884 885
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
886
    """
F
fengjiayi 已提交
887
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


901
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
902 903 904 905 906
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
907
    training. The dropout operator randomly sets (according to the given dropout
908 909 910 911
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
912 913
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
914 915 916 917 918 919 920
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
921 922

    Returns:
923
        Variable: A tensor variable is the shape with `x`.
924 925

    Examples:
926

927 928
        .. code-block:: python

929 930
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
931 932
    """

F
fengjiayi 已提交
933
    helper = LayerHelper('dropout', **locals())
934 935 936 937 938 939 940
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
941 942 943 944 945 946
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
947 948 949
    return out


F
fengjiayi 已提交
950
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
951
    """
Y
Yibing Liu 已提交
952 953
    **Cross Entropy Layer**

954 955 956
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
957 958

    1) One-hot cross-entropy:
F
fengjiayi 已提交
959
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
960

Y
Yibing Liu 已提交
961
        .. math::
Y
yangyaming 已提交
962

Y
Yibing Liu 已提交
963 964 965
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
966 967
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
968 969 970 971 972

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
973
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
974 975 976
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
977 978
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
979
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
980

Y
Yibing Liu 已提交
981
    Args:
Y
yangyaming 已提交
982
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
983 984 985 986
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
987
        label (Variable|list): the ground truth which is a 2-D tensor. When
988 989 990 991
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
992
        soft_label (bool): a flag indicating whether to
993 994
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
995 996 997 998 999

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1000 1001 1002 1003 1004
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1005 1006 1007 1008 1009 1010

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1011
    """
F
fengjiayi 已提交
1012
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1013 1014 1015 1016 1017 1018
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1019
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1020 1021 1022
    return out


F
fengjiayi 已提交
1023
def square_error_cost(input, label):
Y
Yu Yang 已提交
1024
    """
1025 1026
    **Square error cost layer**

1027 1028
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1043 1044
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1045 1046

    Returns:
G
guosheng 已提交
1047
        Variable: The tensor variable storing the element-wise squared error \
1048
                  difference of input and label.
1049 1050 1051 1052 1053 1054 1055 1056

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1057
    """
F
fengjiayi 已提交
1058
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1068 1069
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1070 1071 1072
    return square_out


1073
@templatedoc()
Y
Yu Yang 已提交
1074 1075 1076 1077
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1078
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1079
    """
Y
yi.wu 已提交
1080
    **Chunk Evaluator**
Y
yi.wu 已提交
1081

Y
yangyaming 已提交
1082
    This function computes and outputs the precision, recall and
1083
    F1-score of chunk detection.
1084

Y
yi.wu 已提交
1085 1086 1087 1088 1089 1090 1091 1092
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1093

Y
yi.wu 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1119

Y
yi.wu 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

1144 1145 1146 1147 1148 1149
    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1150

1151
    Returns:
Y
update  
yi.wu 已提交
1152 1153 1154
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1155

Y
yi.wu 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1168
    """
F
fengjiayi 已提交
1169
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1170 1171 1172 1173 1174

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1175 1176 1177
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1178 1179 1180 1181 1182 1183 1184 1185

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1186 1187 1188 1189
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1190 1191 1192
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1193 1194
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1195
        })
1196 1197
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1198 1199


1200
@templatedoc()
Y
Yu Yang 已提交
1201 1202 1203 1204 1205 1206 1207
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1208
                  act=None):
Y
Yu Yang 已提交
1209 1210 1211 1212
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1223

1224 1225
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1251
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1252 1253 1254
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1255
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1298
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    """
    The input of the softmax layer is a 2-D tensor with shape N x K (N is the
    batch_size, K is the dimension of input feature). The output tensor has the
    same shape as the input tensor.

    For each row of the input tensor, the softmax operator squashes the
    K-dimensional vector of arbitrary real values to a K-dimensional vector of real
    values in the range [0, 1] that add up to 1.

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in Input(X), we have:

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1349 1350 1351
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1352 1353
           stride=1,
           padding=0,
1354
           dilation=1,
Y
Yu Yang 已提交
1355 1356 1357
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1358
           use_cudnn=True,
1359
           use_mkldnn=False,
1360 1361
           act=None,
           name=None):
Y
Yu Yang 已提交
1362
    """
C
chengduoZH 已提交
1363
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1364 1365
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1366
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1367 1368 1369 1370 1371 1372 1373
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1374 1375 1376
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1377

1378
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1379

C
chengduoZH 已提交
1380 1381
    .. math::

C
refine  
chengduoZH 已提交
1382
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1383

T
tensor-tang 已提交
1384
    Where:
C
chengduoZH 已提交
1385

1386 1387 1388 1389 1390
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1391
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1392 1393 1394

    Example:

1395 1396
        - Input:

W
weixing02 已提交
1397
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1398

W
weixing02 已提交
1399
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1400

1401
        - Output:
T
tensor-tang 已提交
1402

W
weixing02 已提交
1403
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1404

C
chengduoZH 已提交
1405
        Where
1406 1407

        .. math::
C
chengduoZH 已提交
1408

W
weixing02 已提交
1409 1410
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1411 1412

    Args:
1413
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1414
        num_filters(int): The number of filter. It is as same as the output
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1437 1438
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1439 1440 1441
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1442 1443

    Returns:
G
guosheng 已提交
1444
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1445 1446
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1447
    Raises:
1448 1449
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1450

C
chengduoZH 已提交
1451 1452 1453
    Examples:
        .. code-block:: python

1454 1455
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1456 1457 1458
    """

    num_channels = input.shape[1]
1459 1460

    l_type = 'conv2d'
X
xzl 已提交
1461 1462
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1463
        l_type = 'depthwise_conv2d'
1464 1465 1466 1467

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1468 1469 1470 1471 1472 1473 1474
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1475 1476 1477
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1478
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1479

C
chengduoZH 已提交
1480 1481
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1499
        type=l_type,
Y
Yu Yang 已提交
1500 1501 1502 1503 1504
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1505 1506 1507
        attrs={
            'strides': stride,
            'paddings': padding,
1508
            'dilations': dilation,
C
chengduoZH 已提交
1509
            'groups': groups,
1510 1511
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1512
        })
Y
Yu Yang 已提交
1513 1514 1515 1516 1517 1518

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1537 1538 1539 1540 1541 1542
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1552 1553
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1554 1555 1556
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1557
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1583
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1584 1585
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1586
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1587 1588
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1589
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1590 1591
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1592
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1619 1620
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1676
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1677 1678 1679 1680

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1681
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1682
    """
Y
yangyaming 已提交
1683 1684 1685
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1697
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1698 1699 1700 1701 1702
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1703
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1704 1705 1706 1707 1708 1709 1710

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1711 1712
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1713

L
Luo Tao 已提交
1714 1715
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1716
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1717 1718 1719 1720 1721 1722 1723 1724
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1725

Y
yangyaming 已提交
1726
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1727 1728 1729 1730 1731
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1732 1733
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1734
    """
F
fengjiayi 已提交
1735
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1747 1748 1749 1750 1751
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1752 1753 1754
    return pool_out


F
fengjiayi 已提交
1755
def sequence_first_step(input):
L
Luo Tao 已提交
1756
    """
L
Luo Tao 已提交
1757
    This function gets the first step of sequence.
L
Luo Tao 已提交
1758 1759 1760 1761

    .. code-block:: text

       x is a 1-level LoDTensor:
1762
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1763 1764 1765 1766 1767
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1768
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1769
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1770

L
Luo Tao 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1780

Y
yangyaming 已提交
1781
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1782 1783 1784
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1785 1786 1787
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1788
def sequence_last_step(input):
L
Luo Tao 已提交
1789
    """
L
Luo Tao 已提交
1790
    This function gets the last step of sequence.
L
Luo Tao 已提交
1791 1792 1793 1794

    .. code-block:: text

       x is a 1-level LoDTensor:
1795
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1796 1797 1798 1799 1800
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1801
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1802
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1803

L
Luo Tao 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1813

Y
yangyaming 已提交
1814
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1815 1816 1817
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1818 1819 1820
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1821
@templatedoc()
Y
Yu Yang 已提交
1822
def pool2d(input,
C
chengduoZH 已提交
1823 1824
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1825 1826
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1827
           global_pooling=False,
C
chengduoZH 已提交
1828
           use_cudnn=True,
1829
           ceil_mode=False,
1830
           use_mkldnn=False,
C
caoying03 已提交
1831
           name=None):
Y
Yu Yang 已提交
1832
    """
F
fengjiayi 已提交
1833
    ${comment}
1834 1835

    Args:
1836 1837 1838
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1839
                          feature, and W is the width of the feature.
1840
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1841
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1842
        pool_type: ${pooling_type_comment}
1843 1844
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1845 1846 1847 1848
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1849
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1850 1851
                        layer will be named automatically.

1852
    Returns:
F
fengjiayi 已提交
1853
        Variable: The pooling result.
F
fengjiayi 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1867 1868 1869 1870
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1871
                            global_pooling=False)
Y
Yu Yang 已提交
1872 1873 1874 1875 1876
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1877

C
chengduoZH 已提交
1878 1879 1880 1881 1882
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1883 1884 1885 1886
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1887 1888
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1889

C
Add doc  
chengduoZH 已提交
1890
    l_type = 'pool2d'
1891 1892

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1893 1894 1895 1896
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
    pooling configurations mentioned in input parameters.

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: output of pool3d layer.
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1963 1964 1965 1966
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1967
        type=l_type,
Y
Yu Yang 已提交
1968 1969 1970 1971 1972 1973 1974
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1975
            "paddings": pool_padding,
1976
            "use_cudnn": use_cudnn,
1977 1978
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1991
               data_layout='NCHW',
Y
Yang Yang 已提交
1992
               in_place=False,
1993
               use_mkldnn=False,
1994 1995
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1996
               moving_variance_name=None,
1997 1998
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1999
    """
Q
qiaolongfei 已提交
2000 2001 2002 2003
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2004

Q
qiaolongfei 已提交
2005
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2006

Q
qiaolongfei 已提交
2007 2008
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2009 2010 2011
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2024 2025

    Args:
Q
qiaolongfei 已提交
2026
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2027 2028 2029 2030
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2031 2032 2033
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2034
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2035 2036 2037 2038 2039
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2040
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2041
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2042 2043

    Returns:
Q
qiaolongfei 已提交
2044
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2045 2046 2047 2048 2049 2050 2051

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2075
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2076

2077 2078
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2079 2080 2081
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2082
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2083
        shape=param_shape,
2084 2085 2086 2087 2088 2089 2090
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2091
            trainable=False,
W
wanghaoshuang 已提交
2092
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2093
        shape=param_shape,
2094 2095
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2096 2097 2098 2099 2100 2101

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2102 2103
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2104

Y
Yang Yang 已提交
2105
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2123 2124 2125 2126
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2127 2128
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2129
        })
Y
Yu Yang 已提交
2130 2131 2132 2133

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2134
@templatedoc()
G
guosheng 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2145
    ${comment}
G
guosheng 已提交
2146 2147 2148

    The formula is as follows:

Y
yuyang18 已提交
2149
    ..  math::
G
guosheng 已提交
2150 2151 2152 2153 2154 2155 2156

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2157 2158 2159 2160 2161 2162 2163 2164
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2165

G
guosheng 已提交
2166 2167
    Args:
        input(Variable): The input tensor variable.
2168
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2169
            normalization.
2170
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2171
            normalization.
2172
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2173
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2174
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2175 2176 2177 2178 2179 2180
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2181
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2182 2183

    Returns:
Y
yuyang18 已提交
2184
        ${y_comment}
G
guosheng 已提交
2185 2186 2187

    Examples:

Y
yuyang18 已提交
2188 2189 2190
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2206
    if shift:
G
guosheng 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2231 2232 2233 2234
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2235 2236 2237
                     padding=0,
                     stride=1,
                     dilation=1,
2238
                     groups=None,
C
caoying03 已提交
2239
                     param_attr=None,
2240
                     bias_attr=None,
C
chengduoZH 已提交
2241
                     use_cudnn=True,
2242
                     act=None,
C
caoying03 已提交
2243
                     name=None):
Y
Yu Yang 已提交
2244
    """
2245 2246 2247 2248 2249 2250 2251 2252
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2253 2254
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2255 2256 2257
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2258 2259 2260 2261 2262

    For each input :math:`X`, the equation is:

    .. math::

2263
        Out = \sigma (W \\ast X + b)
2264

2265
    Where:
2266 2267 2268

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2269 2270 2271 2272
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2273

2274 2275 2276 2277
    Example:

        - Input:

2278
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2279

2280
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2281 2282 2283

        - Output:

2284
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2285 2286

        Where
Y
Yu Yang 已提交
2287

2288 2289 2290 2291
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2292 2293

    Args:
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2327 2328

    Returns:
2329
        Variable: The tensor variable storing the convolution transpose result.
2330 2331

    Raises:
2332 2333
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2334 2335 2336 2337

    Examples:
       .. code-block:: python

2338 2339
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2340
    """
2341 2342 2343 2344 2345 2346 2347 2348 2349

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2350 2351 2352
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2353 2354 2355
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2356

C
chengduoZH 已提交
2357 2358 2359
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2360 2361 2362 2363 2364 2365 2366 2367
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
2368 2369 2370 2371 2372

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2373
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2374 2375 2376
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
2377

2378 2379
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2380 2381 2382
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2383
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2384
    helper.append_op(
2385
        type=op_type,
Y
Yu Yang 已提交
2386 2387
        inputs={'Input': [input],
                'Filter': [img_filter]},
2388
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2389 2390 2391 2392
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2393
            'groups': groups,
C
chengduoZH 已提交
2394 2395
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2396

2397 2398
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2399
    return out
Y
yangyaming 已提交
2400 2401


2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
def conv3d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=0,
                     stride=1,
                     dilation=1,
                     groups=None,
                     param_attr=None,
                     bias_attr=None,
                     use_cudnn=True,
                     act=None,
                     name=None):
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2426 2427 2428
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2429 2430 2431 2432 2433

    For each input :math:`X`, the equation is:

    .. math::

2434
        Out = \sigma (W \\ast X + b)
2435 2436 2437 2438 2439

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2440 2441 2442 2443
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
2444 2445 2446 2447 2448

    Example:

        - Input:

2449
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2450

2451
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2452 2453 2454

        - Output:

2455
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

        Where

        .. math::

           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1

    Args:
        input(Variable): The input image with [N, C, D, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain three integers, (image_D, image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

2510 2511
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
    """
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv3d_transpose must be Variable")
    input_channel = input.shape[1]

    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]

        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')

    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
C
chengduoZH 已提交
2559 2560 2561
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2562
            'groups': groups,
C
chengduoZH 已提交
2563 2564
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2565

2566 2567
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2568
    return out
Y
yangyaming 已提交
2569 2570


Y
yangyaming 已提交
2571
def sequence_expand(x, y, ref_level=-1, name=None):
2572
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2573 2574 2575 2576
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2577 2578 2579 2580 2581

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2582
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2583
                x.data = [[a], [b], [c], [d]]
2584 2585 2586
                x.dims = [4, 1]

            y is a LoDTensor:
2587 2588
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2589

Y
yangyaming 已提交
2590
            ref_level: 0
2591

Y
yangyaming 已提交
2592
            then output is a 1-level LoDTensor:
2593
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2594
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2595 2596 2597 2598
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2599
                x.data = [[a], [b], [c]]
2600 2601 2602
                x.dims = [3, 1]

            y is a LoDTensor:
2603
                y.lod = [[2, 0, 3]]
2604

Y
yangyaming 已提交
2605
            ref_level: -1
2606

Y
yangyaming 已提交
2607 2608 2609
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2610 2611 2612
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2613 2614
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2615
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2616
                        will be named automatically.
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2627
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2628
    """
Y
yangyaming 已提交
2629
    helper = LayerHelper('sequence_expand', input=x, **locals())
2630 2631 2632
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2633 2634 2635 2636 2637
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2638
    return tmp
2639 2640


2641 2642 2643 2644 2645 2646 2647 2648 2649
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2650 2651
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
2652

Y
Yan Chunwei 已提交
2653 2654
    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2655
    
2656 2657 2658 2659 2660 2661 2662
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2663 2664 2665 2666 2667 2668 2669 2670 2671
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2672

2673
    Args:
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2699

2700
    Returns:
2701 2702
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2703 2704 2705 2706

    Examples:
        .. code-block:: python

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2735
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2753 2754 2755 2756 2757 2758 2759
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2760

2761 2762 2763 2764 2765 2766 2767 2768 2769
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2770

2771 2772 2773 2774 2775 2776
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2803 2804 2805 2806
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2807
              param_attr=None,
C
caoying03 已提交
2808 2809
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2810 2811 2812 2813
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2814
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2815

2816
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2817

2818
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2819

2820
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2821 2822 2823

            h_t & = o_t tanh(c_t)

2824 2825 2826 2827 2828 2829
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2830 2831 2832

        .. math::

2833
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2834 2835 2836 2837 2838 2839 2840 2841

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2842
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2843 2844

    Args:
Y
yangyaming 已提交
2845 2846 2847 2848 2849 2850
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2851
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2852 2853
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2854 2855
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2856 2857
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2858 2859

    Returns:
Y
yangyaming 已提交
2860
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2861 2862

    Raises:
2863 2864 2865 2866
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2867 2868 2869 2870 2871 2872

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2873
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2874
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2875
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2892
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2893 2894 2895 2896
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2897 2898
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2899 2900 2901
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2902
    size = cell_t_prev.shape[1]
2903
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2904 2905
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2906
                param_attr=param_attr,
2907
                bias_attr=bias_attr)
Y
yangyaming 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2920
    return h, c
G
guosheng 已提交
2921 2922


C
caoying03 已提交
2923
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2924
    """
Y
yangyaming 已提交
2925
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2926 2927 2928

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2929
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2930 2931
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2932 2933
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2934
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2935
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2936
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2937 2938
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2939 2940 2941

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2942

G
guosheng 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2954 2955 2956 2957 2958 2959 2960 2961

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2962 2963 2964
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2965 2966
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2967 2968 2969 2970 2971
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2972
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2973 2974 2975 2976
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2977 2978


C
caoying03 已提交
2979
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2980
    """
Y
Yibing Liu 已提交
2981
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2982 2983 2984

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2985 2986 2987
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2988
            must be in the range :math:`[-rank(input), rank(input))`. If
2989
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
2990
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2991 2992
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2993
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2994
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2995
                       will be named automatically.
G
guosheng 已提交
2996 2997

    Returns:
Y
Yibing Liu 已提交
2998
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2999

G
guosheng 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3010 3011
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3012 3013 3014 3015 3016 3017 3018

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3019 3020 3021
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3022 3023
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3024 3025 3026 3027 3028
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3029
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3030 3031 3032 3033
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3034 3035


C
caoying03 已提交
3036
def reduce_max(input, dim=None, keep_dim=False, name=None):
3037
    """
Y
yangyaming 已提交
3038
    Computes the maximum of tensor elements over the given dimension.
3039 3040 3041

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3042
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3043 3044 3045
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3046
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3047 3048
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3049
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3050 3051
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3052 3053 3054

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3067 3068 3069 3070 3071 3072 3073

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3074 3075 3076
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3077 3078
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3079 3080 3081 3082 3083
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3084
            'dim': dim if dim != None else [0],
3085 3086 3087 3088 3089 3090
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3091
def reduce_min(input, dim=None, keep_dim=False, name=None):
3092
    """
Y
yangyaming 已提交
3093
    Computes the minimum of tensor elements over the given dimension.
3094 3095 3096

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3097
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3098 3099 3100
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3101
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3102 3103
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3104
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3105 3106
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3107 3108 3109

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3122 3123 3124 3125 3126 3127 3128

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3129 3130 3131
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3132 3133
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3134 3135 3136 3137 3138
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3139
            'dim': dim if dim != None else [0],
3140 3141 3142 3143
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3144 3145


3146 3147 3148 3149 3150 3151
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3152
        dim (list|int|None): The dimensions along which the product is performed. If
3153 3154
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3155 3156
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3157 3158 3159
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3160
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3161
            layer will be named automatically.
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3176
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3177
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3178 3179 3180 3181 3182 3183 3184

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3185 3186 3187
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3188 3189
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3190 3191 3192 3193 3194
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3195
            'dim': dim if dim != None else [0],
3196 3197 3198 3199 3200 3201
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3202
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3203
    """
C
caoying03 已提交
3204
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3205 3206 3207

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3208 3209 3210 3211 3212
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3213
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3214
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3215
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3216 3217
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3218 3219

    Returns:
D
dzhwinter 已提交
3220
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3230 3231
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3270
    .. math::
3271 3272

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3273 3274 3275 3276 3277

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3278
        x(Variable|list): The input tensor to l2_normalize layer.
3279
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3280 3281
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3282
        epsilon(float): The epsilon value is used to avoid division by zero, \
3283
            the defalut value is 1e-10.
3284
        name(str|None): A name for this layer(optional). If set None, the layer \
3285
            will be named automatically.
C
caoying03 已提交
3286 3287

    Returns:
3288
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3289 3290

    Examples:
3291

C
caoying03 已提交
3292 3293
        .. code-block:: python

3294 3295 3296 3297
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3298 3299
    """

F
fengjiayi 已提交
3300 3301
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3302 3303
    helper = LayerHelper("l2_normalize", **locals())

3304 3305
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3306
    helper.append_op(
3307 3308 3309 3310
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3311
        attrs={
3312 3313
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3314 3315
        })
    return out
3316 3317


3318
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3319
    """
Y
ying 已提交
3320 3321 3322 3323
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3324

C
chengduoZH 已提交
3325
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3326
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3327

3328 3329 3330 3331 3332
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3333
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3334

C
chengduoZH 已提交
3335
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3336
      performs in the following way.
G
guosheng 已提交
3337

3338
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3339
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3340
        last two dimensions and a batched matrix multiply supporting broadcast
3341
        applies on the two tensors.
G
guosheng 已提交
3342

Y
ying 已提交
3343 3344
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3345
    removed after matrix multiplication.
G
guosheng 已提交
3346 3347 3348

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3349 3350 3351
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3352
        name(str|None): A name for this layer(optional). If set None, the layer
3353
            will be named automatically.
G
guosheng 已提交
3354 3355

    Returns:
3356
        Variable: The product Tensor variable.
G
guosheng 已提交
3357

G
guosheng 已提交
3358 3359 3360
    Examples:
        .. code-block:: python

3361
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3362 3363
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3364

3365 3366
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3367

3368 3369
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3370

3371 3372
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3373 3374 3375 3376

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3377 3378
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3379

Y
ying 已提交
3380
            # x: [M], y: [N]
3381
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3382
    """
Y
ying 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3395
            y_shape = y_shape + [1]
Y
ying 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3412
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3413
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3414
    helper.append_op(
3415 3416 3417 3418 3419 3420 3421
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3422 3423


3424
def topk(input, k, name=None):
Q
qingqing01 已提交
3425 3426 3427 3428
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3429
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3430 3431 3432 3433 3434 3435
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3457 3458 3459
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3460
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3461
                 of input.
3462 3463
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
F
fengjiayi 已提交
3464
                       Default: None
Q
qingqing01 已提交
3465 3466

    Returns:
3467 3468 3469
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3470
        within the last dimension of input.
Q
qingqing01 已提交
3471

F
fengjiayi 已提交
3472 3473
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3474 3475 3476 3477 3478 3479 3480

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3481
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3499
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3500
    """
Y
ying 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3510

Y
ying 已提交
3511
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3512

3513
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3514 3515
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3516
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3517

3518
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3519 3520
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3521

3522 3523 3524
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3525
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3526
                          the length of reference string.
3527
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3528
                                     calculating edit distance.
3529
        name (str): The name of this layer. It is optional.
3530

W
wanghaoshuang 已提交
3531
    Returns:
W
wanghaoshuang 已提交
3532
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3533 3534 3535 3536 3537

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3538
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3539
            cost = fluid.layers.edit_distance(input=x,label=y)
3540
    """
3541
    helper = LayerHelper("edit_distance", **locals())
3542

3543
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3544
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3545 3546 3547 3548 3549 3550 3551
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3552
            attrs={"tokens": ignored_tokens})
3553 3554 3555 3556 3557
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3558
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3559
            attrs={"tokens": ignored_tokens})
3560 3561
        label = erased_label

3562 3563
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3564
    sequence_num = helper.create_tmp_variable(dtype="int64")
3565 3566 3567 3568
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3569 3570
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3571 3572
        attrs={"normalized": normalized})

3573
    return edit_distance_out, sequence_num
3574 3575 3576 3577 3578


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3579

Y
ying 已提交
3580 3581 3582 3583
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3601
        input.lod = [[4, 4]]
3602 3603 3604 3605 3606 3607 3608

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3609
        output.lod = [[2, 1]]
3610 3611 3612

    Args:

Y
ying 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3622
        name (str): The name of this layer. It is optional.
3623 3624

    Returns:
3625
        Variable: CTC greedy decode result. If all the sequences in result were
3626
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3627 3628 3629 3630 3631

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3632

3633
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3634
    """
3635
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3636
    _, topk_indices = topk(input, k=1)
3637 3638 3639 3640 3641 3642

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3643
        outputs={"Output": [ctc_out]},
3644 3645
        attrs={"merge_repeated": True,
               "blank": blank})
3646
    return ctc_out
3647 3648


F
fengjiayi 已提交
3649
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3650
    """
3651 3652
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3653
    to compute Connectionist Temporal Classification (CTC) loss.
3654 3655
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3656 3657 3658
    input tensor.

    Args:
3659
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3660 3661 3662 3663
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3664
       label (Variable): The ground truth of variable-length sequence,
3665 3666 3667
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3668 3669
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3670 3671 3672
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3673
         follewed by a mean_op.
W
wanghaoshuang 已提交
3674 3675

    Returns:
3676 3677
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3678 3679

    Examples:
3680

W
wanghaoshuang 已提交
3681
        .. code-block:: python
3682

3683 3684 3685
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3686 3687

    """
F
fengjiayi 已提交
3688
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3715 3716 3717
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3718 3719 3720 3721 3722
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3723

3724
            out.lod  = [[0, 1, 3]]
3725 3726 3727 3728

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3729 3730 3731 3732 3733 3734 3735
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3736 3737 3738

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3739 3740

    Returns:
3741

3742 3743 3744 3745 3746
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3747
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3748
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3749 3750 3751 3752 3753 3754 3755 3756 3757
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3758 3759


3760 3761 3762 3763
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3764 3765 3766 3767 3768 3769 3770
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3771 3772 3773 3774 3775 3776 3777
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3778 3779
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3780
            sample is 1.0.
3781 3782 3783
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3784

3785
    Returns:
Y
Yibing Liu 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3813
    """
Y
Yang Yu 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3858
    return cost / (num_neg_samples + 1)
3859 3860


W
weixing02 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
def hsigmoid(input, label, num_classes=2, param_attr=None, bias_attr=None):
    """
    The hierarchical sigmoid operator is used to accelerate the training
    process of language model. This operator organizes the classes into a 
    complete binary tree, each leaf node represents a class(a word) and each internal
    node acts likea binary classifier. For each word there's a unique path from root 
    to it's leaf node, hsigmoid calculate the cost for each internal node on the path
    (include root), and sum them to get a total cost. hsigmoid can achive a acceleration 
    from N to logN, for which N represents the size of word dict. This idea is from "F. 
    Morin, Y. Bengio(AISTATS 05): Hierarchical Probabilistic Neural Network Language Model.

    Args:
        input (Variable): (Tensor) The input Tensor, which the shape is
             [N * D], which N is the size of mini-batch,D is the embded size
        label (Variable): (Tensor), The labels of training data. It's a
             1-D tensor, which the shape is [1, N]
        num_classes: (int, default 2), The number of classes, must be lager or
             equal than 2.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter 
             attribute for the bias of this layer. If it is set to None, no bias 
             will be added to the output units.

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 2],
                                dtype='float32')
            y = fluid.layers.data(name='y', shape=[1, 3],
                                dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=2)
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
W
adjust  
weixing02 已提交
3905
        raise ValueError("num_classes must be lager or equal than 2.")
W
weixing02 已提交
3906 3907 3908 3909 3910
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3911 3912 3913 3914 3915 3916 3917 3918
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3919 3920
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3921
        inputs=inputs,
W
weixing02 已提交
3922 3923 3924 3925 3926 3927
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3928
def transpose(x, perm, name=None):
Y
ying 已提交
3929 3930 3931 3932 3933 3934 3935
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3936 3937 3938
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3939 3940 3941 3942 3943 3944 3945 3946

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3947
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3948 3949
    """

Y
fix ci.  
ying 已提交
3950
    if len(perm) != len(x.shape):
Y
ying 已提交
3951 3952 3953
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3954 3955 3956 3957 3958 3959
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3960 3961

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3962
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3963 3964
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3965
        inputs={'X': [x]},
Y
ying 已提交
3966 3967 3968
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3969 3970


3971
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3972
    """
3973 3974 3975 3976 3977 3978 3979
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4008 4009 4010
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4011 4012 4013 4014 4015
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4043 4044 4045
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

4060
            output.lod = [[4, 4]]
4061

D
dzhwinter 已提交
4062
     Examples:
4063 4064 4065

        .. code-block:: python

4066 4067
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4068 4069

    """
W
wanghaoshuang 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

4081
    helper = LayerHelper('im2sequence', **locals())
4082 4083
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4084
        type='im2sequence',
4085 4086 4087
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
4088 4089 4090
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
4091 4092
        })
    return out
4093 4094


Y
yuyang18 已提交
4095
@templatedoc()
4096
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4097 4098
    """
    ${comment}
4099 4100

    Args:
Y
yuyang18 已提交
4101
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4102 4103
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4104 4105 4106 4107 4108
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4109
        ${out_comment}.
4110 4111

    Examples:
Y
yuyang18 已提交
4112 4113 4114 4115
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4128
    return helper.append_activation(out)
4129 4130


Y
yuyang18 已提交
4131
@templatedoc()
4132 4133
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4134 4135 4136 4137 4138 4139 4140
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4141 4142

    Args:
Y
yuyang18 已提交
4143 4144
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4145 4146

    Returns:
Y
yuyang18 已提交
4147
        ${out_comment}.
4148 4149
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4150 4151 4152 4153 4154 4155

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4156 4157 4158 4159 4160 4161
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4162 4163 4164 4165 4166


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4167

4168 4169 4170 4171
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4172

4173 4174 4175
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4176

4177 4178 4179
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4180

4181
    The equation is as follows:
4182

4183
    1) Hard label (one-hot label, so every sample has exactly one class)
4184

4185 4186 4187 4188
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4189

4190 4191 4192
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4193

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4215 4216
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4233 4234
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4235
    For each instance, it computes the smooth L1 loss element by element first
4236
    and then sums all the losses. So the shape of ouput Variable is
4237
    [batch_size, 1].
4238

4239 4240
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4241
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4242
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4243
            L1 loss op with same shape as :attr:`x`.
4244
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4245 4246
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4247
            by this tensor element by element.
4248
        outside_weight (Variable|None): A tensor with rank at least 2. This
4249 4250
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4251
            element by element.
4252
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4253 4254
           scalar with default value 1.0.

4255
    Returns:
4256
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4257 4258 4259 4260 4261

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4262 4263
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4264
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4265
            out = fluid.layers.smooth_l1(x=fc, y=label)
4266
    """
4267

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4283 4284 4285 4286


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4287
    This layer creates the one-hot representations for input indices.
4288 4289

    Args:
Y
Yibing Liu 已提交
4290 4291
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4292 4293

    Returns:
Y
Yibing Liu 已提交
4294
        Variable: The one-hot representations of input.
4295 4296

    Examples:
C
caoying03 已提交
4297 4298
        .. code-block:: python

Y
Yibing Liu 已提交
4299 4300
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4301 4302 4303 4304 4305 4306 4307 4308 4309
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4310 4311


Y
Yu Yang 已提交
4312
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4313
    """
Y
yi.wu 已提交
4314 4315 4316
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4317 4318 4319 4320 4321 4322

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4323 4324
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4325 4326 4327 4328 4329 4330

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4331 4332
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4333 4334
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4335 4336 4337 4338 4339
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4340
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
4341 4342 4343
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4344 4345
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4346 4347 4348
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4349 4350


4351
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4352
    """
C
caoying03 已提交
4353 4354
    Gives a new shape to the input Tensor without changing its data.

4355 4356 4357 4358 4359
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4360

4361
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4362

4363 4364 4365 4366
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4367
    2. 0 means the actual dimension value is going to be copied from the
4368 4369 4370 4371
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4372 4373

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4374
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4375
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4376

4377
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4378 4379
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4380 4381
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4382
    dimensions.
C
caoying03 已提交
4383

4384
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4385 4386 4387 4388
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4389 4390

    Args:
4391
        x(variable): The input tensor.
C
caoying03 已提交
4392 4393
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4394 4395 4396 4397 4398
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4399
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4400 4401 4402 4403
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4404
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4405

4406 4407
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4408

X
Xin Pan 已提交
4409 4410 4411
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4412 4413
    Examples:
        .. code-block:: python
G
guosheng 已提交
4414

4415
            data = fluid.layers.data(
4416
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4417
            reshaped = fluid.layers.reshape(
4418
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4419 4420 4421 4422
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4423 4424 4425 4426 4427
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4428

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4444 4445 4446 4447
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4448
        inputs=inputs,
C
caoying03 已提交
4449 4450 4451 4452 4453
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4454 4455


Y
yangyaming 已提交
4456
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4457
    """
Y
Yibing Liu 已提交
4458
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4459 4460 4461 4462
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4463
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4464 4465 4466 4467 4468 4469

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4470
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4471 4472 4473
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4474
            target_lod: [4, 2]
Y
yangyaming 已提交
4475 4476

            then we get a 1-level LoDTensor:
4477
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4478 4479 4480 4481 4482 4483
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4484
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4485 4486 4487 4488
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4489
                y.data = [[2, 4]]
Y
yangyaming 已提交
4490 4491 4492
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4493
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4494 4495 4496 4497 4498 4499
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4500
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4501 4502 4503 4504
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4505
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4506 4507 4508 4509
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4510
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4511 4512 4513 4514 4515
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4516
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4517
                           from :attr:`y`.
Y
yangyaming 已提交
4518
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4519
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4520 4521

    Returns:
Y
Yibing Liu 已提交
4522
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4523 4524

    Raises:
Y
Yibing Liu 已提交
4525
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4561
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4590 4591
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4619 4620 4621 4622


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4623
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4624
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4625

G
guosheng 已提交
4626 4627 4628 4629
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4652
                         The length of :attr:paddings must be
G
guosheng 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4663

G
guosheng 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4678 4679 4680 4681 4682 4683 4684 4685 4686


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4687 4688
    called label-smoothing regularization (LSR).

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4712
                              be :math:`(1, class\_num)`.
4713 4714
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4715
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4743 4744


Y
yi.wu 已提交
4745
@templatedoc()
4746 4747
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4748
    ${comment}
4749 4750

    Args:
Y
yi.wu 已提交
4751 4752
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4753 4754 4755
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4756 4757

    Returns:
Y
update  
yi.wu 已提交
4758
        Variable: ${out_comment}.
4759 4760

    Examples:
4761 4762
        .. code-block:: python

4763
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4809 4810
        .. code-block:: python

W
whs 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4822 4823


4824 4825 4826 4827 4828
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4829
    """
Q
qiaolongfei 已提交
4830
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4831

4832
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4833
    and the resizing only applies on the last two dimensions(hight and width).
F
stash  
fengjiayi 已提交
4834

4835
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4836

4837
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4838

4839
    Args:
4840
        input (Variable): The input tensor of image resize layer,
4841 4842
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4843
        out_shape(list|tuple|Variable|None): Output shape of image resize
4844 4845
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4846
        scale(float|None): The multiplier for the input height or width.
4847 4848 4849
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4850 4851
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4852 4853
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4854 4855

    Returns:
Q
update  
qiaolongfei 已提交
4856 4857
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4858

4859 4860 4861
    Examples:
        .. code-block:: python

4862
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4863
    """
4864 4865 4866 4867
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4868 4869
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4870 4871
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4872 4873 4874 4875

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4876 4877 4878
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4879
    if out_shape is not None:
B
baiyf 已提交
4880 4881 4882
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4883 4884 4885 4886 4887 4888
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4889 4890 4891 4892
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4893 4894
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4895
        type=resample_methods[resample],
4896
        inputs=inputs,
4897 4898 4899 4900
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4901 4902


Y
yuyang18 已提交
4903
@templatedoc(op_type="bilinear_interp")
4904 4905
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4906 4907 4908 4909 4910 4911
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4912

Y
yuyang18 已提交
4913 4914 4915 4916 4917 4918 4919 4920
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4921 4922 4923 4924 4925 4926 4927
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4928 4929 4930
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4931 4932 4933 4934 4935 4936 4937
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4938
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4939

4940
    Returns:
Q
update  
qiaolongfei 已提交
4941
        Variable: The output is a 4-D tensor of the shape
4942
        (num_batches, channls, out_h, out_w).
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4953 4954 4955
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4956 4957 4958
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4959 4960
def gather(input, index):
    """
Q
qiaolongfei 已提交
4961 4962
    **Gather Layer**

4963
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4964 4965 4966 4967
    of X indexed by `index` and concatenate them together.

    .. math::

4968
        Out = X[Index]
W
whs 已提交
4969 4970 4971 4972 4973 4974 4975


    .. code-block:: text


                Given:

4976 4977
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
4988
        input (Variable): The source input with rank>=1.
W
whs 已提交
4989 4990 4991 4992 4993 4994
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4995

W
whs 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

5025 5026 5027
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5028
    """
F
stash  
fengjiayi 已提交
5029
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5030
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5031
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5032 5033
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5034
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5035
    if isinstance(seed, int):
F
fengjiayi 已提交
5036 5037 5038 5039 5040
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5041 5042 5043 5044
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5045
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5046 5047
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5048 5049
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5050
    return out
W
whs 已提交
5051 5052


5053
def log(x):
W
wanghaoshuang 已提交
5054 5055 5056 5057 5058
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5059
        Out = \\ln(x)
W
wanghaoshuang 已提交
5060 5061

    Args:
5062
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5063 5064 5065 5066 5067 5068 5069 5070

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5071
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5072 5073
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5074
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5075
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5076
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5077 5078 5079
    return out


5080
def relu(x):
W
wanghaoshuang 已提交
5081 5082
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5083
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5084 5085 5086 5087
    the tensor elementwise.

    .. math::

5088
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5089 5090

    Args:
5091
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5092 5093 5094 5095 5096 5097 5098 5099

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5100
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5101 5102
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5103
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5104
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5105
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
F
stash  
fengjiayi 已提交
5106
    return out
W
whs 已提交
5107 5108 5109 5110 5111


def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5112 5113 5114 5115
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5116 5117
    .. math::

5118
        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5119

5120
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5121 5122 5123 5124 5125
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5126
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5127
                           Its shape should be the same as input.
5128
        num_classes (int): The possible number of labels.
W
whs 已提交
5129 5130 5131 5132

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5133
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

    Examples:

        .. code-block:: python

            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5148 5149
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5150
        outputs={
W
whs 已提交
5151 5152 5153
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5154 5155 5156
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out