nn.py 385.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
26
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
X
Xin Pan 已提交
27
from ..imperative import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
X
Xin Pan 已提交
35
from ..imperative import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
S
sneaxiy 已提交
186
    'py_func',
187
    'psroi_pool',
H
heqiaozhi 已提交
188
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
189
    'huber_loss',
Z
zhaozhehao 已提交
190
    'tree_conv',
C
ceci3 已提交
191
    'npair_loss',
Y
Yu Yang 已提交
192 193
]

J
jerrywgz 已提交
194 195
kIgnoreIndex = -100

Y
Yu Yang 已提交
196 197 198 199 200 201 202

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
203
       is_test=False,
204
       name=None):
Y
Yu Yang 已提交
205
    """
206
    **Fully Connected Layer**
Y
Yu Yang 已提交
207

208
    This function creates a fully connected layer in the network. It can take
209
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
210
    Args in detail). It creates a variable called weights for each input tensor,
211 212 213 214
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
215
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
216 217
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
218

219 220 221 222 223 224 225
    When the input is single tensor:

    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
226 227 228

    .. math::

229
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
230 231 232

    In the above equation:

233 234 235
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
236
    * :math:`b`: The bias parameter created by this layer (if needed).
237
    * :math:`Act`: The activation function.
C
caoying03 已提交
238
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
258
    Args:
R
ranqiu 已提交
259 260 261 262 263 264 265 266 267 268
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
269
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
270 271 272 273
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
274 275
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
276
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
277
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
278
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
279

280
    Returns:
F
fengjiayi 已提交
281
        Variable: The transformation result.
282 283

    Raises:
C
caoying03 已提交
284
        ValueError: If rank of the input tensor is less than 2.
285 286 287 288

    Examples:
        .. code-block:: python

289
          # when input is single tensor
F
fengjiayi 已提交
290
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
291
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
292 293 294 295 296

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
297
    """
C
caoying03 已提交
298

C
caoying03 已提交
299
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
300 301 302 303

    dtype = helper.input_dtype()

    mul_results = []
304 305
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
306 307 308
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
309

Y
Yu Yang 已提交
310
        w = helper.create_parameter(
311
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
312
        tmp = helper.create_variable_for_type_inference(dtype)
313
        helper.append_op(
314 315 316
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
317
            outputs={"Out": tmp},
M
mozga-intel 已提交
318 319
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
320 321 322 323
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
324
    else:
X
Xin Pan 已提交
325
        pre_bias = helper.create_variable_for_type_inference(dtype)
326
        helper.append_op(
327 328 329
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
330
            attrs={"use_mkldnn": False})
331 332 333 334
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
335 336


337 338 339
def embedding(input,
              size,
              is_sparse=False,
340
              is_distributed=False,
341 342 343
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
344
    """
345 346
    **Embedding Layer**

347
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
348 349
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
350 351 352

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
353 354

    Args:
355 356 357 358 359
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
360
        is_distributed(bool): Whether to run lookup table from remote parameter server.
361 362
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
363
            with zeros whenever lookup encounters it in :attr:`input`. If
364
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
365 366
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
367
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
368

369 370 371
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
372

373 374
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
375

C
chengduoZH 已提交
376
          dict_size = len(dataset.ids)
377
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
378
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
379 380 381
    """

    helper = LayerHelper('embedding', **locals())
382
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
383 384
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
385 386
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
387
    tmp = helper.create_variable_for_type_inference(dtype)
388 389
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
390 391 392 393 394
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
395 396 397
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
398
            'remote_prefetch': remote_prefetch,
399 400
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
401 402 403
    return tmp


W
wopeizl 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
420

W
wopeizl 已提交
421 422 423 424 425 426 427 428 429 430 431
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
432

W
wopeizl 已提交
433 434 435 436
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
437

W
wopeizl 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
524 525


P
phlrain 已提交
526 527 528 529 530 531
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
532
         dropout_prob=0.0,
P
phlrain 已提交
533 534 535 536 537
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
538
    """
P
phlrain 已提交
539
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
540 541

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
542
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
543 544
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
545
    .. math::
M
minqiyang 已提交
546 547 548 549 550 551 552

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
553
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
554 555 556 557

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
558 559

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
560 561 562 563 564 565
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
566 567 568
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
569
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
570

M
minqiyang 已提交
571
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
572 573 574 575 576
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
577
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
578 579 580 581 582
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
583
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
584 585
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
586 587
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
588 589 590 591 592 593
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
594
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
595

L
liuhongyu 已提交
596 597

    Returns:
M
minqiyang 已提交
598 599
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
600
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
601

H
haowang101779990 已提交
602 603 604 605
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
606
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
607 608
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
609
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
625
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
626 627 628 629 630 631
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
632 633 634
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
694 695 696 697 698 699 700 701 702 703
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
704
                  proj_activation='tanh',
705
                  dtype='float32',
X
xuezhong 已提交
706 707 708 709 710
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
711 712 713
    """
    **Dynamic LSTMP Layer**

714 715 716 717 718 719
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
720 721 722 723 724

    The formula is as follows:

    .. math::

725
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
726

727
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
728

729
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
730

731
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
732

733
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
734

735
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
736

737
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
738

Y
Yibing Liu 已提交
739 740 741 742 743 744
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
745
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
746
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
747
          bias vector).
Y
Yibing Liu 已提交
748 749 750
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
751
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
752
    * :math:`h`: The hidden state.
753
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
754 755
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
756
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
757
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
758
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
759 760
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
761 762 763 764

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
765

Y
Yibing Liu 已提交
766 767 768 769 770 771 772 773 774 775 776 777
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
778
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
779 780
                               hidden-hidden weight and projection weight.

781 782
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
783 784
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
785 786
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
787
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
788 789 790 791 792

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
793
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
794 795 796 797 798 799
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
800
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
801 802 803
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
804
                                - The shape is (1 x 7D).
C
chengduo 已提交
805 806 807 808 809

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
810 811 812 813 814 815 816 817 818
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
819
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
820 821
                              default "tanh".
        proj_activation(str): The activation for projection output.
822
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
823
                              default "tanh".
Y
Yibing Liu 已提交
824
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
825 826
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
827 828 829 830 831 832 833 834 835 836 837
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
838 839

    Returns:
840 841 842 843
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
844 845

    Examples:
846

Y
Yibing Liu 已提交
847 848
        .. code-block:: python

849 850 851 852
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
853
            hidden_dim, proj_dim = 512, 256
854
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
855
                                     act=None, bias_attr=None)
856 857 858
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
859 860 861 862
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
863
    """
864

C
chengduo 已提交
865
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
866
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
867
    size = size // 4
Y
Yibing Liu 已提交
868 869 870 871 872 873 874 875 876 877
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
878 879 880 881 882 883
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
899

X
xuezhong 已提交
900 901 902 903 904
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
905 906
    helper.append_op(
        type='lstmp',
907
        inputs=inputs,
Y
Yibing Liu 已提交
908 909 910 911 912 913 914 915 916
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
917 918
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
919 920 921 922 923 924 925 926 927
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
928 929 930 931 932 933 934
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
935 936
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
937
    """
938
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
939

940 941 942
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
943

G
guosheng 已提交
944 945 946 947 948 949 950 951 952
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
953

G
guosheng 已提交
954
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
955

Q
Qiao Longfei 已提交
956 957 958

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
959 960 961 962 963 964 965 966 967 968 969 970
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
971
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
972 973
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
974 975 976 977
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
978
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
979 980

    Args:
981 982
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
983
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
984
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
985 986
            is the hidden size.
        size(int): The dimension of the gru cell.
987
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
988 989
            hidden-hidden weight matrix. Note:

990
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
991
              :math:`D` is the hidden size.
992
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
993
              The first part are weights of the update gate and reset gate with
994
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
995
              candidate hidden state with shape :math:`(D \\times D)`.
996 997 998 999 1000

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1001
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1002
            the bias in the update gate, reset gate and candidate calculations.
1003 1004 1005
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1006 1007
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1008
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1009 1010 1011
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1012
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1013
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1014 1015 1016 1017
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1018 1019

    Returns:
G
guosheng 已提交
1020
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1021
            and sequence length is the same with the input.
1022

G
guosheng 已提交
1023
    Examples:
1024

G
guosheng 已提交
1025 1026
        .. code-block:: python

1027 1028 1029 1030
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1031
            hidden_dim = 512
1032
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1033
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1043
    batch_size = input.shape[0]
G
guosheng 已提交
1044
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1045
    if h_0:
G
guosheng 已提交
1046
        assert h_0.shape == (
Y
Yancey 已提交
1047 1048 1049
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1050

X
Xin Pan 已提交
1051 1052 1053 1054
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1068 1069
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1070 1071 1072 1073
        })
    return hidden


Y
Yu Yang 已提交
1074 1075 1076
def gru_unit(input,
             hidden,
             size,
1077 1078
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1079
             activation='tanh',
Q
Qiao Longfei 已提交
1080 1081
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1082
    """
1083 1084 1085
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1086
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1087
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1088

1089 1090
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1091

1092
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1093

1094
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1111 1112

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1113 1114 1115
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1116 1117
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1118 1119
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1120 1121 1122
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1123 1124 1125

    Args:
        input (Variable): The fc transformed input value of current step.
1126
        hidden (Variable): The hidden value of gru unit from previous step.
1127
        size (integer): The input dimension value.
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1142
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1143
            the bias in the update gate, reset gate and candidate calculations.
1144 1145 1146
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1147 1148
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1149 1150 1151 1152
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1153

1154 1155 1156 1157 1158 1159
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1160

1161
             # assuming we have x_t_data and prev_hidden of size=10
1162
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1163 1164
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1177
    size = size // 3
Y
Yu Yang 已提交
1178 1179

    # create weight
1180 1181
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1182

X
Xin Pan 已提交
1183 1184 1185
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1186
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1187
    # create bias
1188
    if helper.bias_attr:
Y
Yu Yang 已提交
1189 1190 1191
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1192
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1193 1194 1195

    helper.append_op(
        type='gru_unit',
1196
        inputs=inputs,
Y
Yu Yang 已提交
1197 1198 1199 1200 1201 1202
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1203 1204
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1205 1206 1207 1208 1209
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1210
@templatedoc()
1211
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1212 1213 1214 1215 1216 1217 1218
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1219
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1220 1221 1222 1223
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1224 1225 1226
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1227 1228

    """
Y
Yu Yang 已提交
1229 1230 1231 1232 1233 1234
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1235 1236 1237 1238 1239 1240 1241 1242
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1258 1259 1260 1261
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1262

W
wopeizl 已提交
1263 1264
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1265

W
wopeizl 已提交
1266
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1267

W
wopeizl 已提交
1268
        label(${label_type}): ${label_comment}
1269

W
wopeizl 已提交
1270 1271
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1272

W
wopeizl 已提交
1273 1274
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1275

W
wopeizl 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1286
                "Transition": transition,
W
wopeizl 已提交
1287 1288
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1289

W
wopeizl 已提交
1290
    return viterbi_path
Y
Yu Yang 已提交
1291 1292


Y
yi.wu 已提交
1293
@templatedoc()
F
fengjiayi 已提交
1294
def cos_sim(X, Y):
Y
Yu Yang 已提交
1295
    """
Y
yi.wu 已提交
1296 1297 1298
    ${comment}

    Args:
1299 1300
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1301

Y
yi.wu 已提交
1302
    Returns:
1303
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1304
    """
F
fengjiayi 已提交
1305
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1306 1307 1308
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1319 1320 1321 1322 1323
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1324
            dropout_implementation="downgrade_in_infer"):
1325 1326 1327 1328 1329
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1330
    training. The dropout operator randomly sets (according to the given dropout
1331 1332 1333
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1334 1335
    dropout op can be removed from the program to make the program more efficient.

1336
    Args:
1337 1338
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1339 1340 1341 1342 1343 1344 1345
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1346 1347
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1348
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1349 1350 1351 1352 1353 1354

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1355
                                        2. upscale_in_train, upscale the outcome at training time
1356

H
haowang101779990 已提交
1357 1358
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1359

H
haowang101779990 已提交
1360 1361
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1362

M
minqiyang 已提交
1363

1364
    Returns:
1365
        Variable: A tensor variable is the shape with `x`.
1366 1367

    Examples:
1368

1369 1370
        .. code-block:: python

1371 1372
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1373 1374
    """

F
fengjiayi 已提交
1375
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1376 1377 1378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1379 1380 1381 1382

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1383 1384 1385 1386 1387
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1388 1389 1390 1391
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1392 1393
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1394
        })
1395 1396 1397
    return out


J
jerrywgz 已提交
1398
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1399
    """
Y
Yibing Liu 已提交
1400 1401
    **Cross Entropy Layer**

1402 1403 1404
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1405 1406

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1407
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1408

Y
Yibing Liu 已提交
1409
        .. math::
Y
yangyaming 已提交
1410

Y
Yibing Liu 已提交
1411 1412 1413
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1414 1415
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1416 1417 1418 1419 1420

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1421
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1422 1423 1424
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1425 1426
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1427
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1428

Y
Yibing Liu 已提交
1429
    Args:
Y
yangyaming 已提交
1430
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1431 1432 1433 1434
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1435
        label (Variable|list): the ground truth which is a 2-D tensor. When
1436 1437 1438 1439
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1440
        soft_label (bool): a flag indicating whether to
1441
                                           interpretate the given labels as soft
1442
                                           labels. Default: `False`.
M
minqiyang 已提交
1443 1444
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1445
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1446 1447 1448 1449 1450

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1451 1452 1453
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1454

H
haowang101779990 已提交
1455 1456
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1457

H
haowang101779990 已提交
1458 1459
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1460 1461 1462 1463 1464 1465

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1466
    """
S
sneaxiy 已提交
1467 1468
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1469
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1470
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1471 1472 1473 1474 1475
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1476 1477
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1478 1479 1480
    return out


S
sneaxiy 已提交
1481 1482 1483 1484
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1485
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1486 1487 1488 1489 1490
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1491
                 'MatchX': [match_x],
S
sneaxiy 已提交
1492 1493 1494 1495 1496
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1497
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1498 1499 1500
    """
    Bayesian Personalized Ranking Loss Operator.

1501
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1502 1503 1504 1505 1506 1507
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1508 1509 1510 1511 1512 1513
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1514 1515
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1516 1517 1518
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1519 1520 1521
    Examples:
        .. code-block:: python

1522
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1523
    """
1524 1525 1526 1527 1528 1529

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1530
                'Label': [label]},
1531 1532 1533 1534
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1535
def square_error_cost(input, label):
Y
Yu Yang 已提交
1536
    """
1537 1538
    **Square error cost layer**

1539 1540
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1555 1556
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1557 1558

    Returns:
G
guosheng 已提交
1559
        Variable: The tensor variable storing the element-wise squared error \
1560
                  difference of input and label.
1561 1562 1563 1564 1565 1566 1567 1568

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1569
    """
F
fengjiayi 已提交
1570
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1571
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1578
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1579
    helper.append_op(
F
fengjiayi 已提交
1580 1581
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1582 1583 1584
    return square_out


Y
yi.wu 已提交
1585
@templatedoc()
Y
Yu Yang 已提交
1586 1587 1588 1589
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1590
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1591
    """
Y
yi.wu 已提交
1592
    **Chunk Evaluator**
Y
yi.wu 已提交
1593

Y
yangyaming 已提交
1594
    This function computes and outputs the precision, recall and
1595
    F1-score of chunk detection.
Y
yi.wu 已提交
1596

M
minqiyang 已提交
1597
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1598
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1599 1600 1601 1602 1603 1604

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1605

Y
yi.wu 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1631

Y
yi.wu 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1656
    Args:
1657 1658 1659 1660 1661
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1662

Y
yi.wu 已提交
1663
    Returns:
Y
update  
yi.wu 已提交
1664 1665 1666
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1667

Y
yi.wu 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1680
    """
F
fengjiayi 已提交
1681
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1682 1683

    # prepare output
X
Xin Pan 已提交
1684 1685 1686 1687 1688 1689 1690
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1691 1692 1693 1694 1695 1696 1697 1698

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1699 1700 1701 1702
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1703 1704 1705
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1706 1707
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1708
        })
1709 1710
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1711 1712


1713
@templatedoc()
Y
Yu Yang 已提交
1714 1715 1716 1717 1718 1719 1720
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1721 1722
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1723 1724 1725 1726
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1727 1728 1729 1730 1731 1732 1733

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1747

1748 1749
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1750 1751 1752 1753 1754 1755 1756
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1757
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1768
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1769 1770 1771 1772 1773 1774
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1775
def sequence_softmax(input, use_cudnn=False, name=None):
1776 1777 1778
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1779
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1796 1797 1798
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1811 1812
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1813
    softmax_out = helper.create_variable_for_type_inference(dtype)
1814 1815 1816 1817 1818 1819 1820 1821
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1822
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1823
    """
1824
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1825
    has the same shape as the input.
Q
qiaolongfei 已提交
1826

D
dengkaipeng 已提交
1827 1828 1829
    The :attr:`axis` th dimension of the input tensor will be permuted to the last.
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the :attr:`axis` th dimension of the input
1830 1831 1832
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1833
    of the input tensor's :attr:`axis` th dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1834
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1835 1836 1837 1838 1839 1840 1841

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1842
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1843 1844 1845 1846 1847 1848 1849 1850

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1851 1852
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1853 1854
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1855
        axis (int): The index of dimension to perform softmax calculation. Default: -1.
Q
qiaolongfei 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1865
             softmax = fluid.layers.softmax(input=fc, axis=1)
Q
qiaolongfei 已提交
1866 1867

    """
1868 1869
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1870
    softmax_out = helper.create_variable_for_type_inference(dtype)
1871 1872 1873 1874
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1875 1876 1877 1878
        attrs={
            "axis": axis,
            "use_cudnn": use_cudnn
        })
1879 1880 1881
    return softmax_out


Y
Yu Yang 已提交
1882 1883 1884
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1885 1886
           stride=1,
           padding=0,
1887
           dilation=1,
Y
Yu Yang 已提交
1888 1889 1890
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1891
           use_cudnn=True,
1892 1893
           act=None,
           name=None):
Y
Yu Yang 已提交
1894
    """
C
chengduoZH 已提交
1895
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1896 1897
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1898
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1899 1900 1901 1902 1903 1904 1905
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1906 1907 1908
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1909

1910
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1911

C
chengduoZH 已提交
1912 1913
    .. math::

C
refine  
chengduoZH 已提交
1914
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1915

T
tensor-tang 已提交
1916
    Where:
C
chengduoZH 已提交
1917

1918 1919 1920 1921 1922
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1923
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1924 1925 1926

    Example:

1927 1928
        - Input:

W
weixing02 已提交
1929
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1930

W
weixing02 已提交
1931
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1932

1933
        - Output:
T
tensor-tang 已提交
1934

W
weixing02 已提交
1935
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1936

C
chengduoZH 已提交
1937
        Where
1938 1939

        .. math::
C
chengduoZH 已提交
1940

W
weixing02 已提交
1941 1942
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1943 1944

    Args:
1945
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1946
        num_filters(int): The number of filter. It is as same as the output
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1964 1965 1966 1967 1968
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1969
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1970 1971 1972 1973 1974
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1975 1976
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1977 1978
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1979
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1980
            will be named automatically. Default: None
C
chengduoZH 已提交
1981 1982

    Returns:
G
guosheng 已提交
1983
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1984 1985
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1986
    Raises:
1987 1988
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1989

C
chengduoZH 已提交
1990 1991 1992
    Examples:
        .. code-block:: python

1993 1994
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1995 1996 1997
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1998
    assert param_attr is not False, "param_attr should not be False here."
1999
    l_type = 'conv2d'
X
xzl 已提交
2000 2001
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2002
        l_type = 'depthwise_conv2d'
2003 2004 2005 2006

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2007 2008 2009 2010 2011
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2012
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2013

C
chengduoZH 已提交
2014 2015 2016
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2017
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2018

C
chengduoZH 已提交
2019 2020
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2021 2022

    input_shape = input.shape
M
minqiyang 已提交
2023
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2024 2025

    def _get_default_param_initializer():
C
chengduo 已提交
2026 2027
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2028 2029 2030 2031 2032 2033 2034 2035
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2036
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2052
    helper.append_op(
2053
        type=l_type,
Y
Yu Yang 已提交
2054 2055 2056 2057 2058
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2059 2060 2061
        attrs={
            'strides': stride,
            'paddings': padding,
2062
            'dilations': dilation,
C
chengduoZH 已提交
2063
            'groups': groups,
2064
            'use_cudnn': use_cudnn,
2065
            'use_mkldnn': False,
2066
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2067
        })
Y
Yu Yang 已提交
2068 2069 2070 2071 2072 2073

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2091 2092 2093 2094 2095 2096
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2106 2107
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2108 2109 2110
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2111
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2137
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2138 2139
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2140
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2141 2142
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2143
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2144 2145
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2146
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2147 2148 2149 2150 2151 2152
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2163 2164
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2165 2166
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2167
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2168
            will be named automatically. Default: None.
C
chengduoZH 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2181 2182
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2183 2184 2185
    """

    l_type = 'conv3d'
C
chengduo 已提交
2186
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2197
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2211 2212 2213
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2214 2215 2216 2217 2218 2219 2220 2221
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2222
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2237
            'use_mkldnn': False
C
chengduoZH 已提交
2238 2239
        })

2240
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2241 2242 2243 2244

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2245
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2246
    """
Y
yangyaming 已提交
2247 2248 2249
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2261
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2262 2263 2264 2265 2266
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2267
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2268 2269 2270 2271 2272 2273 2274

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2275 2276
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2277

L
Luo Tao 已提交
2278 2279
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2280
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2281
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2282
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2283 2284 2285 2286 2287 2288 2289

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2290

Y
yangyaming 已提交
2291
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2292 2293 2294 2295 2296
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2297 2298
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2299
    """
F
fengjiayi 已提交
2300
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2301
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2302 2303
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2304 2305 2306 2307 2308 2309

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2310 2311
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2312

Y
yangyaming 已提交
2313 2314 2315 2316 2317
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2318 2319 2320
    return pool_out


C
add doc  
chengduoZH 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2340
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2341 2342 2343 2344 2345
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2346
def sequence_first_step(input):
L
Luo Tao 已提交
2347
    """
L
Luo Tao 已提交
2348
    This function gets the first step of sequence.
L
Luo Tao 已提交
2349 2350 2351 2352

    .. code-block:: text

       x is a 1-level LoDTensor:
2353
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2354 2355 2356 2357 2358
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2359
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2360
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2361

L
Luo Tao 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2371

Y
yangyaming 已提交
2372
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2373 2374 2375
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2376 2377 2378
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2379
def sequence_last_step(input):
L
Luo Tao 已提交
2380
    """
L
Luo Tao 已提交
2381
    This function gets the last step of sequence.
L
Luo Tao 已提交
2382 2383 2384 2385

    .. code-block:: text

       x is a 1-level LoDTensor:
2386
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2387 2388 2389 2390 2391
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2392
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2393
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2394

L
Luo Tao 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2404

Y
yangyaming 已提交
2405
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2406 2407 2408
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2409 2410 2411
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2412 2413 2414 2415
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2416
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2417 2418 2419 2420 2421
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2422

H
haowang101779990 已提交
2423
              - Case:
Y
Yibing Liu 已提交
2424

2425
            Given the input Variable **input**:
2426

2427 2428 2429
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2430

2431
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2432

2433
            the output Variable will be
2434

2435 2436 2437
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2438

M
minqiyang 已提交
2439
    Note:
H
haowang101779990 已提交
2440
          The first dimension size of **input**, **offset** and **length**
2441
          should be equal. The **offset** should start from 0.
2442

Y
Yibing Liu 已提交
2443
    Args:
2444
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2445
                         sequences.
Y
Yibing Liu 已提交
2446 2447 2448 2449 2450 2451
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2452
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2463
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2464 2465 2466 2467
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2468
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2483
@templatedoc()
Y
Yu Yang 已提交
2484
def pool2d(input,
C
chengduoZH 已提交
2485 2486
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2487 2488
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2489
           global_pooling=False,
C
chengduoZH 已提交
2490
           use_cudnn=True,
2491
           ceil_mode=False,
2492 2493
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2494
    """
F
fengjiayi 已提交
2495
    ${comment}
2496 2497

    Args:
2498 2499 2500
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2501
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2502
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2503 2504
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2505
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2506 2507 2508 2509 2510 2511
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2512 2513 2514
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2515
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2516
                        layer will be named automatically.
2517
        exclusive (bool): Whether to exclude padding points in average pooling
2518
                          mode, default is true
F
fengjiayi 已提交
2519

2520
    Returns:
F
fengjiayi 已提交
2521
        Variable: The pooling result.
F
fengjiayi 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2534
          pool2d = fluid.layers.pool2d(
2535 2536 2537 2538
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2539
                            global_pooling=False)
Y
Yu Yang 已提交
2540 2541 2542 2543 2544
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2545

C
chengduoZH 已提交
2546 2547 2548 2549 2550
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2551 2552 2553 2554
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2555 2556
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2557

C
Add doc  
chengduoZH 已提交
2558
    l_type = 'pool2d'
2559 2560

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2561
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2562
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2563 2564

    helper.append_op(
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2576 2577
            "use_mkldnn": False,
            "exclusive": exclusive,
2578 2579 2580 2581 2582
        })

    return pool_out


D
dengkaipeng 已提交
2583
@templatedoc()
2584 2585 2586 2587 2588 2589 2590 2591
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2592 2593
           name=None,
           exclusive=True):
2594
    """
2595
    ${comment}
2596 2597

    Args:
D
dengkaipeng 已提交
2598 2599 2600 2601 2602
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2603 2604 2605 2606 2607
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2608 2609 2610 2611 2612 2613 2614
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2615
        exclusive (bool): Whether to exclude padding points in average pooling
2616
                          mode, default is true
2617

2618
    Returns:
2619
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2633 2634 2635 2636 2637
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2638

C
chengduoZH 已提交
2639 2640 2641 2642 2643
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2644 2645 2646
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2647

C
chengduoZH 已提交
2648 2649
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2650

2651 2652
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2653
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2654
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2655 2656

    helper.append_op(
2657
        type=l_type,
Y
Yu Yang 已提交
2658 2659 2660 2661 2662 2663 2664
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2665
            "paddings": pool_padding,
2666
            "use_cudnn": use_cudnn,
2667
            "ceil_mode": ceil_mode,
2668 2669
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2670 2671 2672 2673 2674
        })

    return pool_out


2675 2676 2677 2678 2679 2680 2681
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2682 2683 2684 2685 2686 2687 2688
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2703 2704 2705 2706 2707 2708 2709 2710 2711

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2712 2713
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2728
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2729
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2730
          # of input data into m * n grids averagely and performs poolings in each
2731 2732
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2733
          #
2734 2735 2736 2737 2738 2739 2740 2741
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2742 2743
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2744
          pool_out = fluid.layers.adaptive_pool2d(
2745 2746
                            input=data,
                            pool_size=[3, 3],
2747
                            pool_type='avg')
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2758
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2784
    return (pool_out, mask) if require_index else pool_out
2785 2786 2787 2788 2789 2790 2791 2792 2793


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2794 2795 2796 2797 2798 2799 2800
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2801

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2819 2820 2821

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2822 2823 2824
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2825
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2826
            it must contain three integers, (Depth, Height, Width).
2827
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2828 2829
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2844 2845
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2846
          # of input data into l * m * n grids averagely and performs poolings in each
2847 2848
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2849
          #
2850 2851 2852 2853 2854 2855 2856 2857 2858
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2859
          #                 output[:, :, i, j, k] =
2860 2861
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2862 2863
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2864
          pool_out, mask = fluid.layers.adaptive_pool3d(
2865
                            input=data,
D
dengkaipeng 已提交
2866
                            pool_size=[3, 3, 3],
2867
                            pool_type='avg')
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2878
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2904
    return (pool_out, mask) if require_index else pool_out
2905 2906


Y
Yu Yang 已提交
2907 2908 2909 2910 2911 2912 2913
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2914
               data_layout='NCHW',
Y
Yang Yang 已提交
2915
               in_place=False,
2916 2917
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2918
               moving_variance_name=None,
2919
               do_model_average_for_mean_and_var=False,
2920 2921
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2922
    """
Q
qiaolongfei 已提交
2923 2924 2925 2926
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2927

Q
qiaolongfei 已提交
2928
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2929

Q
qiaolongfei 已提交
2930 2931
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2932 2933 2934
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2961
    Args:
Q
qingqing01 已提交
2962
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2963
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2973 2974 2975 2976 2977 2978 2979 2980
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2981
        data_layout(string, default NCHW): NCHW|NHWC
2982
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2983 2984 2985 2986
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2987
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2988
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2989 2990 2991 2992 2993
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2994 2995

    Returns:
Q
qiaolongfei 已提交
2996
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2997 2998 2999 3000 3001 3002 3003

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3004
    """
C
chengduo 已提交
3005
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3006 3007 3008
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3009 3010 3011 3012
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3031
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3032

3033 3034
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3035 3036 3037
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3038
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3039
        shape=param_shape,
W
Wu Yi 已提交
3040
        dtype=dtype)
3041 3042 3043 3044 3045 3046
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3047
            trainable=False,
W
wanghaoshuang 已提交
3048
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3049
        shape=param_shape,
W
Wu Yi 已提交
3050
        dtype=dtype)
3051
    variance.stop_gradient = True
Y
Yu Yang 已提交
3052 3053 3054 3055 3056 3057

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3058 3059 3060 3061
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3062

X
Xin Pan 已提交
3063 3064
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3082 3083 3084 3085
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3086
            "data_layout": data_layout,
X
Xin Pan 已提交
3087
            "use_mkldnn": False,
3088 3089
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3090
        })
Y
Yu Yang 已提交
3091 3092 3093 3094

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3214
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3215 3216 3217 3218

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3219
@templatedoc()
G
guosheng 已提交
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3230
    ${comment}
G
guosheng 已提交
3231 3232 3233

    The formula is as follows:

Y
yuyang18 已提交
3234
    ..  math::
G
guosheng 已提交
3235 3236 3237 3238 3239 3240 3241

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3242 3243 3244 3245 3246 3247 3248 3249
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3250

G
guosheng 已提交
3251 3252
    Args:
        input(Variable): The input tensor variable.
3253
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3254
            normalization. Default True.
3255
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3256 3257
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3258
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3259
            Default 1.
3260
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3261
            division by zero. Default 1e-05.
G
guosheng 已提交
3262
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3263 3264
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3265 3266
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3267
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3268 3269
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3270
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3271
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3272
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3273 3274 3275
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3276 3277

    Returns:
Y
yuyang18 已提交
3278
        ${y_comment}
G
guosheng 已提交
3279 3280 3281

    Examples:

Y
yuyang18 已提交
3282 3283 3284
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3300
    if shift:
G
guosheng 已提交
3301 3302 3303 3304 3305 3306
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3307 3308 3309 3310 3311
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3339
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3387 3388
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3406
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3407 3408 3409
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3410
    This layer calculates the spectral normalization value of weight parameters of
3411
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3412
    Parameters. Calculations are showed as follows.
3413

D
dengkaipeng 已提交
3414 3415 3416
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3417
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3430
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3431 3432 3433 3434

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3435

D
dengkaipeng 已提交
3436
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3437 3438
                

D
dengkaipeng 已提交
3439 3440 3441 3442
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3443 3444 3445
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3446 3447 3448
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3449
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3450 3451 3452 3453 3454 3455 3456 3457

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3458
    dtype = weight.dtype
D
dengkaipeng 已提交
3459 3460 3461

    # create intput and parameters
    inputs = {'Weight': weight}
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3480 3481

    # create output
3482
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3483 3484

    helper.append_op(
3485
        type="spectral_norm",
D
Dun 已提交
3486
        inputs=inputs,
3487 3488 3489 3490 3491 3492
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3493

3494
    return out
D
Dun 已提交
3495 3496


Y
Yu Yang 已提交
3497 3498 3499 3500
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3501 3502 3503
                     padding=0,
                     stride=1,
                     dilation=1,
3504
                     groups=None,
C
caoying03 已提交
3505
                     param_attr=None,
3506
                     bias_attr=None,
C
chengduoZH 已提交
3507
                     use_cudnn=True,
3508
                     act=None,
C
caoying03 已提交
3509
                     name=None):
Y
Yu Yang 已提交
3510
    """
3511 3512 3513 3514 3515 3516 3517 3518
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3519 3520
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3521 3522 3523
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3524 3525 3526 3527 3528

    For each input :math:`X`, the equation is:

    .. math::

3529
        Out = \sigma (W \\ast X + b)
3530

3531
    Where:
3532 3533 3534

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3535 3536 3537 3538
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3539

3540 3541 3542 3543
    Example:

        - Input:

3544
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3545

3546
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3547 3548 3549

        - Output:

3550
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3551 3552

        Where
Y
Yu Yang 已提交
3553

3554 3555
        .. math::

3556 3557
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3558 3559
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3560 3561

    Args:
3562 3563 3564 3565
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3566 3567 3568 3569
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3598
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3599 3600 3601
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3602
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3603
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3604 3605

    Returns:
3606
        Variable: The tensor variable storing the convolution transpose result.
3607 3608

    Raises:
3609 3610
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3611 3612 3613 3614

    Examples:
       .. code-block:: python

3615 3616
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3617
    """
C
chengduo 已提交
3618
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3619 3620 3621 3622 3623 3624 3625 3626
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3627 3628 3629
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3630 3631 3632
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3633

C
chengduoZH 已提交
3634 3635
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3636

Y
Yu Yang 已提交
3637 3638 3639 3640 3641
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3642

Y
Yu Yang 已提交
3643 3644
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3645

C
chengduoZH 已提交
3646
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3647
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3648
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3649
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3650
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3651 3652 3653
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3654

3655 3656 3657 3658 3659 3660 3661
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3662
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3663
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3664

Y
Yu Yang 已提交
3665 3666 3667
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3668
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3669
    helper.append_op(
3670
        type=op_type,
Y
Yu Yang 已提交
3671 3672
        inputs={'Input': [input],
                'Filter': [img_filter]},
3673
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3674
        attrs={
3675
            'output_size': output_size,
3676 3677 3678 3679 3680
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3681 3682
        })

3683 3684 3685
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3686 3687


3688
def conv3d_transpose(input,
Y
Yu Yang 已提交
3689 3690 3691
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3692 3693 3694
                     padding=0,
                     stride=1,
                     dilation=1,
3695
                     groups=None,
C
caoying03 已提交
3696
                     param_attr=None,
3697
                     bias_attr=None,
C
chengduoZH 已提交
3698
                     use_cudnn=True,
3699
                     act=None,
C
caoying03 已提交
3700
                     name=None):
Y
Yu Yang 已提交
3701
    """
3702
    **Convlution3D transpose layer**
3703

3704
    The convolution3D transpose layer calculates the output based on the input,
3705
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3706 3707 3708 3709 3710 3711
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3712 3713 3714
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3715 3716 3717 3718 3719

    For each input :math:`X`, the equation is:

    .. math::

3720
        Out = \sigma (W \\ast X + b)
3721 3722 3723

    In the above equation:

3724 3725
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3726 3727 3728 3729
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3730

3731 3732 3733 3734
    Example:

        - Input:

3735
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3736

3737
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3738 3739 3740

        - Output:

3741
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3742 3743

        Where
Y
Yu Yang 已提交
3744

3745 3746
        .. math::

3747 3748 3749
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3750 3751

    Args:
3752
        input(Variable): The input image with [N, C, D, H, W] format.
3753 3754 3755
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3756
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3757 3758
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3759
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3760 3761 3762
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3763 3764
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3765
        stride(int|tuple): The stride size. If stride is a tuple, it must
3766 3767
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3768
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3769 3770 3771
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3772 3773 3774 3775 3776
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3786 3787
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3788 3789
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3790 3791
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3792 3793

    Returns:
3794
        Variable: The tensor variable storing the convolution transpose result.
3795 3796

    Raises:
3797 3798
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3799 3800 3801 3802

    Examples:
       .. code-block:: python

3803 3804
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3805
    """
C
chengduo 已提交
3806
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3807 3808
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3809
    if not isinstance(input, Variable):
3810
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3811 3812
    input_channel = input.shape[1]

3813 3814 3815
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3816

C
chengduoZH 已提交
3817 3818 3819
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3820 3821 3822 3823 3824 3825
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3826 3827 3828
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3829

3830
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3831
                         padding[0] - 1) // dilation[0] + 1
3832
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3833
                         padding[1] - 1) // dilation[1] + 1
3834
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3835
                         padding[2] - 1) // dilation[2] + 1
3836
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3837
    else:
3838 3839
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3840

3841
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3842
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3843 3844 3845
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3846
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3847
    helper.append_op(
3848
        type=l_type,
Y
Yu Yang 已提交
3849 3850
        inputs={'Input': [input],
                'Filter': [img_filter]},
3851
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3852 3853 3854 3855
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3856
            'groups': groups,
C
chengduoZH 已提交
3857 3858
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3859

3860 3861
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3862
    return out
Y
yangyaming 已提交
3863 3864


Y
yangyaming 已提交
3865
def sequence_expand(x, y, ref_level=-1, name=None):
3866
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3867 3868 3869 3870
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3871 3872 3873 3874 3875

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3876
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3877
                x.data = [[a], [b], [c], [d]]
3878 3879 3880
                x.dims = [4, 1]

            y is a LoDTensor:
3881 3882
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3883

Y
yangyaming 已提交
3884
            ref_level: 0
3885

Y
yangyaming 已提交
3886
            then output is a 1-level LoDTensor:
3887
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3888
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3889 3890 3891 3892
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3893
                x.data = [[a], [b], [c]]
3894 3895 3896
                x.dims = [3, 1]

            y is a LoDTensor:
3897
                y.lod = [[2, 0, 3]]
3898

Y
yangyaming 已提交
3899
            ref_level: -1
3900

Y
yangyaming 已提交
3901 3902 3903
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3904 3905 3906
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3907 3908
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3909
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3910
                        will be named automatically.
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3921
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3922
    """
Y
yangyaming 已提交
3923
    helper = LayerHelper('sequence_expand', input=x, **locals())
3924
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3925
    tmp = helper.create_variable_for_type_inference(dtype)
3926
    helper.append_op(
Y
yangyaming 已提交
3927 3928 3929 3930 3931
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3932
    return tmp
3933 3934


C
chengduo 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3991
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3992 3993 3994 3995 3996 3997 3998 3999
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4000
@templatedoc()
4001
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4002 4003 4004 4005 4006
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4007 4008 4009
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4010
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4011 4012 4013 4014
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4015 4016 4017
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4018

F
fengjiayi 已提交
4019
    Returns:
M
minqiyang 已提交
4020
        Variable: The padded sequence batch and the original lengths before
4021
                  padding. All sequences has the same length.
M
minqiyang 已提交
4022

F
fengjiayi 已提交
4023 4024 4025 4026 4027 4028 4029
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4030
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4031
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4032 4033 4034 4035 4036
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4037 4038
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4039 4040 4041 4042

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4043 4044 4045 4046 4047 4048
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4049 4050
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4051
        attrs={'padded_length': maxlen})
4052
    return out, length
F
fengjiayi 已提交
4053 4054


4055
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4056
    """
4057
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4058

4059 4060
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4061 4062 4063 4064 4065 4066 4067 4068 4069
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4070 4071 4072
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4073
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4074 4075 4076 4077 4078 4079

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4080
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4081 4082 4083 4084 4085 4086

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4087 4088
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4103
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4115 4116 4117 4118 4119 4120 4121
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4122
                is_accumulated=True,
4123 4124
                name=None,
                return_parent_idx=False):
4125
    """
4126 4127
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4128 4129 4130

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4131 4132

    This layer does the search in beams for one time step. Specifically, it
4133 4134 4135
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4147 4148 4149 4150

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4151

4152
    Args:
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4176 4177
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4178 4179
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4180 4181 4182 4183
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4184

4185
    Returns:
4186 4187 4188 4189
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4190 4191 4192 4193

    Examples:
        .. code-block:: python

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4211
    helper = LayerHelper('beam_search', **locals())
4212 4213 4214 4215 4216 4217
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4218

X
Xin Pan 已提交
4219 4220 4221
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4222 4223 4224 4225 4226
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4227 4228 4229

    helper.append_op(
        type='beam_search',
4230
        inputs=inputs,
Q
Qiao Longfei 已提交
4231 4232 4233
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4234
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4235 4236 4237 4238 4239 4240
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4241
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4242
        })
4243 4244 4245 4246
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4247 4248


4249 4250 4251 4252 4253 4254 4255
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4256

4257 4258 4259 4260 4261 4262 4263 4264 4265
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4266

4267 4268 4269 4270 4271 4272
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4273

4274 4275
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4276

4277 4278 4279 4280 4281 4282
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4283 4284
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4300 4301 4302 4303
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4304
              param_attr=None,
C
caoying03 已提交
4305 4306
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4307 4308 4309 4310
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4311
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4312

4313
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4314

4315
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4316

4317
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4318 4319 4320

            h_t & = o_t tanh(c_t)

4321 4322 4323 4324 4325 4326
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4327 4328 4329

        .. math::

4330
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4331 4332 4333 4334 4335 4336 4337 4338

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4339
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4340 4341

    Args:
Y
yangyaming 已提交
4342 4343 4344 4345 4346 4347
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4348
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4361 4362
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4363 4364

    Returns:
Y
yangyaming 已提交
4365
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4366 4367

    Raises:
4368 4369 4370 4371
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4372 4373 4374 4375 4376 4377

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4378
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4379
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4380
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4397
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4398 4399 4400 4401
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4402 4403
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4404 4405 4406
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4407
    size = cell_t_prev.shape[1]
4408
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4409 4410
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4411
                param_attr=param_attr,
4412
                bias_attr=bias_attr)
Y
yangyaming 已提交
4413
    dtype = x_t.dtype
X
Xin Pan 已提交
4414 4415
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4425
    return h, c
G
guosheng 已提交
4426 4427


C
caoying03 已提交
4428
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4429
    """
Y
yangyaming 已提交
4430
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4431 4432 4433

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4434
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4435 4436
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4437 4438
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4439
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4440
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4441
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4442 4443
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4444 4445 4446

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4447

G
guosheng 已提交
4448 4449 4450 4451 4452 4453
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4454
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4455 4456 4457 4458
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4459 4460 4461 4462

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4463
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4464 4465 4466
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4467 4468
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4469
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4470 4471
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4472 4473 4474 4475 4476
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4477
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4478 4479 4480 4481
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4482 4483


C
caoying03 已提交
4484
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4485
    """
Y
Yibing Liu 已提交
4486
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4487 4488 4489

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4490 4491 4492
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4493
            must be in the range :math:`[-rank(input), rank(input))`. If
4494
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4495
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4496 4497
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4498
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4499
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4500
                       will be named automatically.
G
guosheng 已提交
4501 4502

    Returns:
Y
Yibing Liu 已提交
4503
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4504

G
guosheng 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4515 4516
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4517 4518 4519 4520 4521 4522 4523

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4524 4525
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4526
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4527 4528
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4529 4530 4531 4532 4533
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4534
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4535 4536 4537 4538
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4539 4540


C
caoying03 已提交
4541
def reduce_max(input, dim=None, keep_dim=False, name=None):
4542
    """
Y
yangyaming 已提交
4543
    Computes the maximum of tensor elements over the given dimension.
4544 4545 4546

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4547
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4548 4549 4550
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4551
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4552 4553
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4554
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4555 4556
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4557 4558 4559

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4560

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4572 4573 4574 4575 4576 4577 4578

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4579 4580
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4581
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4582 4583
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4584 4585 4586 4587 4588
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4589
            'dim': dim if dim != None else [0],
4590 4591 4592 4593 4594 4595
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4596
def reduce_min(input, dim=None, keep_dim=False, name=None):
4597
    """
Y
yangyaming 已提交
4598
    Computes the minimum of tensor elements over the given dimension.
4599 4600 4601

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4602
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4603 4604 4605
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4606
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4607 4608
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4609
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4610 4611
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4612 4613 4614

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4615

4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4627 4628 4629 4630 4631 4632 4633

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4634 4635
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4636
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4637 4638
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4639 4640 4641 4642 4643
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4644
            'dim': dim if dim != None else [0],
4645 4646 4647 4648
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4649 4650


4651 4652 4653 4654 4655 4656
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4657
        dim (list|int|None): The dimensions along which the product is performed. If
4658 4659
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4660 4661
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4662 4663 4664
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4665
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4666
            layer will be named automatically.
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4681
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4682
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4683 4684 4685 4686 4687 4688 4689

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4690 4691
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4692
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4693 4694
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4695 4696 4697 4698 4699
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4700
            'dim': dim if dim != None else [0],
4701 4702 4703 4704 4705 4706
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4707
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4708
    """
C
caoying03 已提交
4709
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4710 4711 4712

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4713 4714 4715 4716 4717
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4718
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4719
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4720
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4721 4722
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4723 4724

    Returns:
D
dzhwinter 已提交
4725
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4735 4736
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4752
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4775
    .. math::
4776 4777

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4778 4779 4780 4781 4782

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4783
        x(Variable|list): The input tensor to l2_normalize layer.
4784
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4785 4786
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4787
        epsilon(float): The epsilon value is used to avoid division by zero, \
4788
            the defalut value is 1e-10.
4789
        name(str|None): A name for this layer(optional). If set None, the layer \
4790
            will be named automatically.
C
caoying03 已提交
4791 4792

    Returns:
4793
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4794 4795

    Examples:
4796

C
caoying03 已提交
4797 4798
        .. code-block:: python

4799 4800 4801 4802
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4803 4804
    """

F
fengjiayi 已提交
4805 4806
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4807 4808
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4809 4810
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4811
    helper.append_op(
4812 4813 4814 4815
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4816
        attrs={
4817 4818
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4819 4820
        })
    return out
4821 4822


S
sneaxiy 已提交
4823
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4824
    """
Y
ying 已提交
4825 4826 4827 4828
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4829

C
chengduoZH 已提交
4830
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4831
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4832

4833 4834 4835 4836 4837
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4838
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4839

C
chengduoZH 已提交
4840
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4841
      performs in the following way.
G
guosheng 已提交
4842

4843
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4844
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4845
        last two dimensions and a batched matrix multiply supporting broadcast
4846
        applies on the two tensors.
G
guosheng 已提交
4847

Y
ying 已提交
4848 4849
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4850
    removed after matrix multiplication.
G
guosheng 已提交
4851 4852 4853

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4854 4855 4856
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4857
        alpha (float): The scale of output. Default 1.0.
4858
        name(str|None): A name for this layer(optional). If set None, the layer
4859
            will be named automatically.
G
guosheng 已提交
4860 4861

    Returns:
4862
        Variable: The product Tensor variable.
G
guosheng 已提交
4863

G
guosheng 已提交
4864 4865 4866
    Examples:
        .. code-block:: python

4867
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4868 4869
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4870

4871 4872
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4873

4874 4875
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4876

4877 4878
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4879 4880 4881 4882

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4883 4884
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4885

Y
ying 已提交
4886
            # x: [M], y: [N]
4887
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4888
    """
Y
ying 已提交
4889 4890 4891 4892 4893 4894 4895

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4896
            y_shape = y_shape + [1]
Y
ying 已提交
4897 4898 4899 4900 4901 4902 4903

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4904 4905
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4906

C
chengduo 已提交
4907
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4908 4909
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
C
chengduo 已提交
4910 4911
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4912 4913 4914

    __check_input(x, y)

4915
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4916
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4917
    helper.append_op(
4918 4919 4920 4921
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4922 4923 4924
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4925
            'alpha': float(alpha),
S
sneaxiy 已提交
4926
        })
4927
    return out
4928 4929


4930
def topk(input, k, name=None):
Q
qingqing01 已提交
4931 4932 4933 4934
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4935
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4936 4937 4938 4939 4940 4941
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4963 4964 4965
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4966
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4967
                 of input.
4968
        name(str|None): A name for this layer(optional). If set None, the layer
4969
                       will be named automatically.
F
fengjiayi 已提交
4970
                       Default: None
Q
qingqing01 已提交
4971 4972

    Returns:
4973 4974 4975
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4976
        within the last dimension of input.
Q
qingqing01 已提交
4977

F
fengjiayi 已提交
4978 4979
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4980 4981 4982 4983 4984 4985 4986

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4987 4988
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4989 4990 4991 4992 4993 4994
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4995 4996
    helper.append_op(
        type="top_k",
W
whs 已提交
4997
        inputs=inputs,
Q
qingqing01 已提交
4998 4999
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5000
        attrs=attrs)
Q
qingqing01 已提交
5001 5002 5003 5004 5005
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5006
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5007
    """
Y
ying 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5017

Y
ying 已提交
5018
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5019

5020
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5021 5022
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5023
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5024

5025
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5026 5027
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5028

5029 5030 5031
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5032
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5033
                          the length of reference string.
5034
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5035
                                     calculating edit distance.
5036
        name (str): The name of this layer. It is optional.
5037

W
wanghaoshuang 已提交
5038
    Returns:
W
wanghaoshuang 已提交
5039
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5040 5041 5042 5043

    Examples:
        .. code-block:: python

T
tink2123 已提交
5044 5045
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5046
            cost = fluid.layers.edit_distance(input=x,label=y)
5047
    """
5048
    helper = LayerHelper("edit_distance", **locals())
5049

5050
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5051
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5052 5053
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5054 5055 5056 5057 5058

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5059
            attrs={"tokens": ignored_tokens})
5060 5061 5062 5063 5064
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5065
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5066
            attrs={"tokens": ignored_tokens})
5067 5068
        label = erased_label

5069
    # edit distance op
X
Xin Pan 已提交
5070 5071
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5072 5073 5074 5075
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5076 5077
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5078 5079
        attrs={"normalized": normalized})

5080
    return edit_distance_out, sequence_num
5081 5082 5083 5084 5085


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5086

Y
ying 已提交
5087 5088 5089 5090
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5108
        input.lod = [[4, 4]]
M
minqiyang 已提交
5109

W
whs 已提交
5110
        Computation:
5111

W
whs 已提交
5112 5113 5114 5115 5116 5117
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5118 5119 5120 5121 5122

        output.data = [[2],
                       [1],
                       [3]]

5123
        output.lod = [[2, 1]]
5124

W
whs 已提交
5125

5126 5127
    Args:

Y
ying 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5137
        name (str): The name of this layer. It is optional.
5138 5139

    Returns:
H
haowang101779990 已提交
5140 5141 5142
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5143
                  LoD [[]] and dims [1, 1].
5144 5145 5146 5147 5148

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5149

5150
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5151
    """
5152
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5153
    _, topk_indices = topk(input, k=1)
5154 5155

    # ctc align op
X
Xin Pan 已提交
5156
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5157 5158 5159
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5160
        outputs={"Output": [ctc_out]},
5161 5162
        attrs={"merge_repeated": True,
               "blank": blank})
5163
    return ctc_out
5164 5165


W
Wu Yi 已提交
5166
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5167
    """
5168 5169
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5170
    to compute Connectionist Temporal Classification (CTC) loss.
5171 5172
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5173 5174 5175
    input tensor.

    Args:
5176
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5177 5178 5179 5180
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5181
       label (Variable): The ground truth of variable-length sequence,
5182 5183 5184
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5185 5186
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5187 5188 5189
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5190
         follewed by a mean_op.
W
Wu Yi 已提交
5191
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5192 5193

    Returns:
5194 5195
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5196 5197

    Examples:
5198

W
wanghaoshuang 已提交
5199
        .. code-block:: python
5200

5201 5202 5203
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5204 5205

    """
F
fengjiayi 已提交
5206
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5207 5208
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5209 5210 5211 5212 5213 5214
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5215 5216 5217 5218 5219
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5220
    return loss_out
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5236 5237 5238
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5239 5240 5241 5242 5243
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5244

5245
            out.lod  = [[0, 1, 3]]
5246 5247 5248 5249

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5250 5251 5252 5253 5254 5255 5256
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5257 5258 5259

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5260 5261

    Returns:
5262

5263 5264 5265 5266 5267
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5268
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5269
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5270 5271
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5272
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5273 5274 5275 5276 5277 5278
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5279 5280


5281 5282 5283 5284
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5285 5286 5287 5288 5289 5290
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5291
        num_neg_samples=None,
5292 5293 5294
        name=None,
        sampler="uniform",
        custom_dist=None,
5295 5296
        seed=0,
        is_sparse=False):
5297 5298 5299 5300 5301 5302 5303
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5304 5305
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5306
            sample is 1.0.
C
chengduo 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5316
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5317 5318
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5319 5320 5321
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5322
        custom_dist (float[]): A float[] with size=num_total_classes.
5323 5324 5325 5326
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5327
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5328

5329
    Returns:
Y
Yibing Liu 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5357 5358 5359 5360 5361 5362 5363 5364 5365

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5366

5367
    """
Y
Yang Yu 已提交
5368 5369 5370
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5371 5372

    dim = input.shape[1]
Y
Yang Yu 已提交
5373 5374 5375 5376 5377 5378
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5379
    inputs = {}
C
chengduo 已提交
5380 5381 5382 5383 5384 5385 5386
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5387 5388 5389
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5390

5391 5392 5393 5394
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5395 5396 5397 5398 5399 5400 5401

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5402 5403 5404 5405 5406 5407 5408 5409 5410
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5411
            if normal_prob - 1.0 > 0:
5412
                bigs.append((i, normal_prob))
5413
            elif 1.0 - normal_prob > 0:
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5429
            if big_left - 1.0 > 0:
5430
                bigs.append((big_idx, big_left))
5431
            elif 1.0 - big_left > 0:
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5461 5462 5463 5464
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5465 5466 5467 5468 5469
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5470 5471 5472 5473
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5474

Y
Yang Yu 已提交
5475 5476
    attrs = {
        'num_total_classes': int(num_total_classes),
5477 5478
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5479
        'sampler': sampler,
5480 5481
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5482
    }
Y
Yang Yu 已提交
5483 5484 5485

    helper.append_op(
        type='nce',
C
chengduo 已提交
5486
        inputs=inputs,
Y
Yang Yu 已提交
5487 5488 5489 5490 5491 5492
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5493
    return cost / (num_neg_samples + 1)
5494 5495


C
chengduo 已提交
5496 5497
def hsigmoid(input,
             label,
5498
             num_classes,
C
chengduo 已提交
5499 5500
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5501
             name=None,
5502 5503 5504
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5505
             is_sparse=False):
W
weixing02 已提交
5506 5507
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5508
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5509
    complete binary tree, or you can use is_custom to pass your own tree to
5510
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5511 5512 5513 5514 5515 5516
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5517
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5518
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5519

5520 5521
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5522 5523 5524 5525
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5526
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5527
       related to the same batch of inputs.
5528

W
weixing02 已提交
5529
    Args:
M
minqiyang 已提交
5530
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5531 5532 5533 5534
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5535 5536
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5537
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5549
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5550
            it should be in leaf -> root order
M
minqiyang 已提交
5551 5552 5553
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5554
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5555
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5556
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5557
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5558
             of W and input will be sparse.
W
weixing02 已提交
5559 5560

    Returns:
J
JiabinYang 已提交
5561
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5562 5563 5564 5565 5566

    Examples:

        .. code-block:: python

G
guosheng 已提交
5567 5568 5569
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5570 5571 5572 5573
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5574 5575
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5576
    dim = input.shape[1]
5577
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5578 5579 5580
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5581 5582 5583 5584
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5585 5586
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5587 5588 5589
    else:
        pass

J
JiabinYang 已提交
5590
    weights = None
5591 5592 5593 5594
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5595
    if not is_custom:
J
JiabinYang 已提交
5596 5597 5598 5599 5600 5601 5602 5603
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5604
            shape=[num_classes, dim],
J
JiabinYang 已提交
5605 5606
            is_bias=False,
            dtype=input.dtype)
5607 5608 5609
    inputs = {
        "X": input,
        "W": weights,
5610
        "PathTable": path_table,
5611
        "PathCode": path_code,
5612 5613
        "Label": label
    }
W
weixing02 已提交
5614
    if helper.bias_attr:
5615
        if not is_custom:
J
JiabinYang 已提交
5616 5617
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5618
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5619 5620 5621 5622 5623 5624
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5625
                shape=[num_classes, 1],
J
JiabinYang 已提交
5626 5627 5628
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5629 5630
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5631
        inputs=inputs,
W
weixing02 已提交
5632
        outputs={"Out": out,
5633 5634 5635 5636 5637 5638 5639
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5640 5641 5642
    return out


Y
fix ci.  
ying 已提交
5643
def transpose(x, perm, name=None):
Y
ying 已提交
5644 5645 5646 5647 5648 5649 5650
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5651 5652 5653
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5654 5655 5656 5657 5658 5659 5660

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5661
            # use append_batch_size=False to avoid prepending extra
5662
            # batch size in shape
5663
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5664
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5665
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5666 5667
    """

Y
fix ci.  
ying 已提交
5668
    if len(perm) != len(x.shape):
Y
ying 已提交
5669 5670 5671
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5672 5673 5674 5675 5676 5677
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5678 5679

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5680 5681
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5682
    helper.append_op(
5683
        type='transpose2',
Y
fix ci.  
ying 已提交
5684
        inputs={'X': [x]},
5685 5686
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5687 5688
        attrs={'axis': perm})
    return out
5689 5690


5691 5692 5693 5694 5695 5696 5697
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5698
    """
5699 5700 5701 5702 5703 5704 5705
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5734 5735 5736 5737 5738 5739 5740 5741 5742
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5743 5744 5745
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5746 5747 5748 5749 5750
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5778 5779 5780
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5793
            output.dims = {8, 8}
5794

5795
            output.lod = [[4, 4]]
5796

T
Tink_Y 已提交
5797
    Examples:
5798 5799 5800

        .. code-block:: python

5801 5802
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5803 5804

    """
W
wanghaoshuang 已提交
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5815 5816 5817 5818 5819 5820 5821
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5822
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5823
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5824
    helper.append_op(
5825
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5826
    return out
5827 5828


Y
yuyang18 已提交
5829
@templatedoc()
5830
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5831 5832
    """
    ${comment}
5833 5834

    Args:
Y
yuyang18 已提交
5835
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5836 5837
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5838 5839 5840 5841 5842
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5843
        ${out_comment}.
5844 5845

    Examples:
Y
yuyang18 已提交
5846 5847 5848 5849
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5850 5851 5852 5853 5854 5855
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5856
    out = helper.create_variable_for_type_inference(dtype)
5857 5858 5859 5860 5861
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5862
    return helper.append_activation(out)
5863 5864


Y
yuyang18 已提交
5865
@templatedoc()
5866 5867
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5868 5869 5870 5871 5872 5873 5874
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5875 5876

    Args:
Y
yuyang18 已提交
5877 5878
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5879 5880

    Returns:
Y
yuyang18 已提交
5881
        ${out_comment}.
5882 5883
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5884 5885 5886 5887 5888

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5889
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5890 5891 5892 5893 5894 5895
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5896 5897


5898 5899 5900
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5901
                               ignore_index=kIgnoreIndex,
5902
                               numeric_stable_mode=True,
5903
                               return_softmax=False):
5904 5905
    """
    **Softmax With Cross Entropy Operator.**
5906

5907 5908 5909 5910
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5911

5912 5913 5914
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5915

5916 5917 5918
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5919

5920
    The equation is as follows:
5921

5922
    1) Hard label (one-hot label, so every sample has exactly one class)
5923

5924 5925 5926 5927
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5928

5929 5930 5931
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5932

5933 5934 5935 5936
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5937 5938 5939
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5940

H
haowang101779990 已提交
5941
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5942

H
haowang101779990 已提交
5943
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5944

H
haowang101779990 已提交
5945
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5946 5947 5948

    and then cross entropy loss is calculated by softmax and label.

5949 5950 5951 5952 5953 5954 5955 5956
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5957 5958
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5959
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5960 5961 5962
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5963 5964 5965
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5966
                                    stable algorithm. Default: True
5967
        return_softmax (bool): A flag indicating whether to return the softmax
5968
                               along with the cross entropy loss. Default: False
5969

5970
    Returns:
H
haowang101779990 已提交
5971 5972 5973 5974 5975
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5976 5977 5978 5979 5980 5981 5982

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5983 5984
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5985 5986
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5987 5988
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5989 5990 5991 5992 5993 5994
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5995 5996 5997 5998 5999
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6000 6001 6002 6003

    if return_softmax:
        return loss, softmax

6004 6005 6006
    return loss


6007 6008 6009
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6010
                                       num_true=1,
6011
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6012 6013 6014
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6015
                                       seed=0):
X
xuezhong 已提交
6016 6017 6018 6019 6020
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6021
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6022 6023 6024 6025 6026 6027 6028 6029
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6030
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6031 6032 6033 6034 6035 6036 6037 6038
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6039
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6051
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6052 6053 6054 6055 6056
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6057
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6058
            logits.
X
xuezhong 已提交
6059 6060 6061 6062 6063
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6064 6065 6066
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6087 6088
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6089 6090 6091 6092 6093

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6094
            'Labels': label,
X
xuezhong 已提交
6095 6096
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6097 6098 6099 6100
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6101
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6102 6103 6104
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6105
            'use_customized_samples': use_customized_samples,
6106
            'uniq': True,
X
xuezhong 已提交
6107 6108 6109 6110
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6111 6112
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6113 6114 6115 6116 6117 6118
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6119 6120
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6121
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6122
                'Label': sampled_softlabel},
X
xuezhong 已提交
6123 6124 6125
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6126
            'soft_label': True,
X
xuezhong 已提交
6127 6128 6129
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6130
    return loss / num_true
X
xuezhong 已提交
6131 6132


6133 6134
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6135 6136
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6137
    For each instance, it computes the smooth L1 loss element by element first
6138
    and then sums all the losses. So the shape of ouput Variable is
6139
    [batch_size, 1].
6140

6141 6142
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6143
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6144
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6145
            L1 loss op with same shape as :attr:`x`.
6146
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6147 6148
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6149
            by this tensor element by element.
6150
        outside_weight (Variable|None): A tensor with rank at least 2. This
6151 6152
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6153
            element by element.
6154
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6155 6156
           scalar with default value 1.0.

6157
    Returns:
6158
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6159 6160 6161 6162 6163

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6164 6165
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6166
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6167
            out = fluid.layers.smooth_l1(x=fc, y=label)
6168
    """
6169

6170
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6171 6172
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6185 6186 6187 6188


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6189
    This layer creates the one-hot representations for input indices.
6190 6191

    Args:
Y
Yibing Liu 已提交
6192 6193
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6194 6195

    Returns:
Y
Yibing Liu 已提交
6196
        Variable: The one-hot representations of input.
6197 6198

    Examples:
C
caoying03 已提交
6199
        .. code-block:: python
6200

Y
Yibing Liu 已提交
6201 6202
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6203 6204
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6205
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6206 6207 6208 6209 6210 6211
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6212 6213


Y
Yu Yang 已提交
6214
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6215
    """
Y
yi.wu 已提交
6216 6217 6218
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6219 6220 6221 6222 6223 6224

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6225 6226
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6227 6228 6229 6230 6231 6232

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6233 6234
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6235 6236
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6237 6238 6239 6240 6241
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6242
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6243
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6244 6245
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6246
            outputs={'Out': [counter]},
M
minqiyang 已提交
6247 6248
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6249 6250 6251
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6252 6253


6254
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6255
    """
C
caoying03 已提交
6256 6257
    Gives a new shape to the input Tensor without changing its data.

6258 6259 6260 6261 6262
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6263

6264
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6265

6266 6267 6268 6269
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6270
    2. 0 means the actual dimension value is going to be copied from the
6271 6272 6273 6274
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6275 6276

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6277
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6278
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6279

6280
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6281 6282
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6283 6284
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6285
    dimensions.
C
caoying03 已提交
6286

6287
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6288 6289 6290 6291
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6292 6293

    Args:
6294
        x(variable): The input tensor.
C
caoying03 已提交
6295 6296
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6297 6298 6299 6300 6301
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6302 6303
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6304 6305 6306
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6307
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6308
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6309

6310
    Returns:
G
guosheng 已提交
6311 6312 6313 6314
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6315

X
Xin Pan 已提交
6316 6317 6318
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6319 6320
    Examples:
        .. code-block:: python
G
guosheng 已提交
6321

6322
            data = fluid.layers.data(
6323
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6324
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6325
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6326 6327 6328
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6329
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6330 6331 6332 6333 6334
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6335

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6351
    helper = LayerHelper("reshape2", **locals())
6352 6353
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6354
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6355
    helper.append_op(
6356
        type="reshape2",
X
Xin Pan 已提交
6357
        inputs=inputs,
D
dzhwinter 已提交
6358
        attrs={"shape": shape},
6359 6360
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6361

D
dzhwinter 已提交
6362
    return helper.append_activation(out)
6363

6364

6365
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6366
    """
M
minqiyang 已提交
6367 6368 6369
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6370
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6371

H
haowang101779990 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6393

Y
Yibing Liu 已提交
6394
    Args:
6395
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6396
        axes (list): List of integers, indicating the dimensions to be squeezed.
6397
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6398 6399 6400 6401 6402 6403 6404 6405

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6406
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6407
    """
6408 6409
    assert not _in_imperative_mode(), (
        "squeeze layer is not supported in imperative mode yet.")
Y
Yibing Liu 已提交
6410
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6411 6412
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6413
    helper.append_op(
6414
        type="squeeze2",
6415
        inputs={"X": input},
Y
Yibing Liu 已提交
6416
        attrs={"axes": axes},
6417 6418
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6419

6420 6421 6422
    return out


6423
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6424
    """
M
minqiyang 已提交
6425 6426 6427
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6428

M
minqiyang 已提交
6429
    For example:
H
haowang101779990 已提交
6430 6431 6432

    .. code-block:: text

M
minqiyang 已提交
6433
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6434
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6435

Y
Yibing Liu 已提交
6436
    Args:
6437
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6438
        axes (list): List of integers, indicating the dimensions to be inserted.
6439
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6440 6441 6442 6443 6444 6445 6446 6447

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6448
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6449 6450
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6451 6452
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6453
    helper.append_op(
6454
        type="unsqueeze2",
6455
        inputs={"X": input},
Y
Yibing Liu 已提交
6456
        attrs={"axes": axes},
6457 6458
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6459

6460 6461
    return out

6462

Y
yangyaming 已提交
6463
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6464
    """
Y
Yibing Liu 已提交
6465
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6466 6467 6468 6469
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6470
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6471 6472 6473 6474 6475 6476

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6477
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6478 6479 6480
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6481
            target_lod: [4, 2]
Y
yangyaming 已提交
6482 6483

            then we get a 1-level LoDTensor:
6484
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6485 6486 6487 6488 6489 6490
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6491
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6492 6493 6494 6495
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6496
                y.data = [[2, 4]]
Y
yangyaming 已提交
6497 6498 6499
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6500
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6501 6502 6503 6504 6505 6506
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6507
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6508 6509 6510 6511
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6512
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6513 6514 6515 6516
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6517
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6518 6519 6520 6521 6522
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6523
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6524
                           from :attr:`y`.
Y
yangyaming 已提交
6525
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6526
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6527 6528

    Returns:
Y
Yibing Liu 已提交
6529
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6530 6531

    Raises:
Y
Yibing Liu 已提交
6532
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6542
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6568
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6597 6598
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6611 6612 6613
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6627 6628 6629 6630


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6631
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6632
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6633

G
guosheng 已提交
6634 6635 6636 6637
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6660
                         The length of :attr:paddings must be
G
guosheng 已提交
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6671

G
guosheng 已提交
6672 6673 6674 6675 6676 6677
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6678
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6679 6680 6681 6682 6683 6684 6685
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6686 6687


C
chengduo 已提交
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6719 6720
		And
            pad_value = -1,
C
chengduo 已提交
6721

T
Tink_Y 已提交
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6757
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6758 6759 6760 6761 6762 6763 6764 6765 6766
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6767 6768 6769 6770 6771 6772 6773
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6774 6775
    called label-smoothing regularization (LSR).

6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6799
                              be :math:`(1, class\_num)`.
6800 6801
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6802
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6822
    smooth_label = helper.create_variable_for_type_inference(dtype)
6823 6824 6825 6826 6827 6828 6829
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6830 6831


W
wopeizl 已提交
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6868 6869


J
jerrywgz 已提交
6870 6871 6872 6873 6874 6875
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6876 6877
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6894 6895 6896
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6897 6898 6899 6900 6901 6902
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6903
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6944 6945
        .. code-block:: python

W
whs 已提交
6946 6947 6948 6949
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6950
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6951 6952 6953 6954 6955 6956
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6957 6958


6959 6960 6961 6962
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6963
                 resample='BILINEAR',
6964 6965
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6966
                 align_mode=1):
6967
    """
Q
qiaolongfei 已提交
6968
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6969

6970
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6971 6972 6973
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6974

6975
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6976

6977
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6978

6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6989
    Align_corners and align_mode are optinal parameters,the calculation method 
6990 6991 6992 6993
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6994
    .. code-block:: text
6995

T
Tink_Y 已提交
6996
        For scale:
6997
          
T
Tink_Y 已提交
6998
            if align_corners = True && out_size > 1 :
6999

T
Tink_Y 已提交
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7011

T
Tink_Y 已提交
7012 7013
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7014

T
Tink_Y 已提交
7015 7016
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7017

T
Tink_Y 已提交
7018 7019
          else:
              align_corners = True
7020

T
Tink_Y 已提交
7021 7022
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7023

T
Tink_Y 已提交
7024 7025
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7026

T
Tink_Y 已提交
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7037

T
Tink_Y 已提交
7038 7039 7040 7041
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7042

T
Tink_Y 已提交
7043 7044
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7045 7046 7047 7048 7049 7050 7051 7052 7053

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7054
    Args:
7055
        input (Variable): The input tensor of image resize layer,
7056 7057
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7058
        out_shape(list|tuple|Variable|None): Output shape of image resize
7059 7060
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7061
        scale(float|None): The multiplier for the input height or width.
7062 7063 7064
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7065 7066
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7067
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7068
                       currently.
7069
                       Default: 'BILINEAR'
7070 7071 7072
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7073
                                :attr:`out_shape` and :attr:`scale` specifying
7074 7075 7076 7077 7078 7079 7080
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7081 7082
                                constructing stage.
                                Default: None
7083 7084 7085 7086
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7087
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7088 7089
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7090 7091

    Returns:
Q
update  
qiaolongfei 已提交
7092 7093
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7094

7095 7096 7097
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7098
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7099 7100 7101
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7102 7103
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7104

7105 7106 7107
    Examples:
        .. code-block:: python

7108
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7109
    """
7110 7111 7112 7113
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7114 7115
    if resample not in resample_methods:
        raise ValueError(
7116
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7117
        )
7118
    resample_type = resample_methods[resample]
7119 7120 7121 7122 7123 7124

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7125
    if out_shape is None and scale is None:
7126
        raise ValueError("One of out_shape and scale must not be None.")
7127
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7128
    dtype = helper.input_dtype()
7129 7130 7131 7132

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7133 7134 7135
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7136
    if out_shape is not None:
7137 7138 7139 7140
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7141
            inputs['OutSize'] = out_shape
7142 7143 7144 7145 7146 7147 7148 7149
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7150 7151 7152 7153
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7154 7155 7156 7157 7158
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7159
    out = helper.create_variable_for_type_inference(dtype)
7160
    helper.append_op(
7161
        type='{}_interp'.format(resample_type),
7162
        inputs=inputs,
7163
        outputs={"Out": out},
7164 7165 7166 7167 7168 7169 7170
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7171
    return out
F
stash  
fengjiayi 已提交
7172 7173


7174
@templatedoc(op_type="bilinear_interp")
7175 7176 7177 7178
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7179 7180
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7181
                    align_mode=1):
7182
    """
7183 7184
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7185 7186
    in priority order.

7187 7188 7189 7190
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7191 7192
    again in the other direction.

7193
    For details of bilinear interpolation, please refer to Wikipedia:
7194
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7195

T
tink2123 已提交
7196
    Align_corners and align_mode are optinal parameters,the calculation 
7197 7198 7199 7200
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7201
    .. code-block:: text
7202

T
Tink_Y 已提交
7203
        For scale:
7204
          
T
Tink_Y 已提交
7205
            if align_corners = True && out_size > 1 :
7206

T
Tink_Y 已提交
7207 7208 7209 7210 7211
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7212

T
Tink_Y 已提交
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7223 7224


T
Tink_Y 已提交
7225
          else:
T
tink2123 已提交
7226

T
Tink_Y 已提交
7227 7228
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7229

T
Tink_Y 已提交
7230 7231
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7232 7233 7234



Y
yuyang18 已提交
7235 7236 7237 7238
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7239

Y
yuyang18 已提交
7240 7241 7242 7243 7244
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7245 7246 7247
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7248
                                :attr:`out_shape` and :attr:`scale` specifying
7249 7250 7251 7252 7253 7254 7255
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7256 7257
                                constructing stage.
                                Default: None
7258 7259
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7260 7261 7262

    Returns:
        ${out_comment}.
7263 7264 7265 7266 7267

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7268 7269
    """

7270 7271
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7272 7273


7274
@templatedoc(op_type="nearest_interp")
7275 7276 7277 7278
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7279 7280
                   actual_shape=None,
                   align_corners=True):
7281
    """
7282
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7283 7284
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7285 7286
    out_shape and scale in priority order.

7287 7288
    Example:

T
Tink_Y 已提交
7289 7290 7291 7292 7293
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7294

T
Tink_Y 已提交
7295 7296 7297 7298 7299 7300 7301 7302
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7303
          
T
Tink_Y 已提交
7304 7305
          if:
              align_corners = False
7306

T
Tink_Y 已提交
7307 7308
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7309

T
Tink_Y 已提交
7310 7311
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7312

T
Tink_Y 已提交
7313 7314
          else:
              align_corners = True
7315

T
Tink_Y 已提交
7316 7317
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7318

T
Tink_Y 已提交
7319 7320
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7321 7322


7323
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7324
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7325 7326 7327 7328 7329

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7330

Y
yuyang18 已提交
7331 7332 7333 7334 7335
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7336 7337 7338
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7339
                                :attr:`out_shape` and :attr:`scale` specifying
7340 7341 7342 7343 7344 7345 7346
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7347 7348
                                constructing stage.
                                Default: None
7349
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7350 7351 7352

    Returns:
        ${out_comment}.
7353 7354 7355 7356 7357

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7358 7359
    """

7360 7361
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7362 7363 7364 7365


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7366 7367 7368
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7369 7370 7371 7372 7373 7374 7375
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7376
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7377

7378
    Returns:
Q
update  
qiaolongfei 已提交
7379
        Variable: The output is a 4-D tensor of the shape
7380
        (num_batches, channls, out_h, out_w).
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7391 7392 7393
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7394 7395 7396
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7397 7398
def gather(input, index):
    """
Q
qiaolongfei 已提交
7399 7400
    **Gather Layer**

7401
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7402 7403 7404 7405
    of X indexed by `index` and concatenate them together.

    .. math::

7406
        Out = X[Index]
W
whs 已提交
7407 7408 7409 7410 7411 7412 7413


    .. code-block:: text


                Given:

7414 7415
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7426
        input (Variable): The source input with rank>=1.
W
whs 已提交
7427 7428 7429 7430 7431 7432
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7433

W
whs 已提交
7434 7435 7436 7437 7438 7439
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7440
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7441 7442 7443 7444 7445 7446 7447 7448
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7480
    out = helper.create_variable_for_type_inference(dtype)
7481 7482 7483 7484 7485 7486 7487 7488 7489
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7490 7491 7492 7493 7494 7495 7496 7497 7498
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7499

Q
Qingsheng Li 已提交
7500
    Given the following input:
H
haowang101779990 已提交
7501

Q
Qingsheng Li 已提交
7502
    .. code-block:: text
H
haowang101779990 已提交
7503

Q
Qingsheng Li 已提交
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7516

Q
Qingsheng Li 已提交
7517
    .. code-block:: text
H
haowang101779990 已提交
7518

Q
Qingsheng Li 已提交
7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7534
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7545
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7546 7547 7548 7549 7550 7551 7552 7553 7554
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7568

7569 7570 7571
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7572
    """
F
stash  
fengjiayi 已提交
7573
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7574
    dtype = x.dtype
X
Xin Pan 已提交
7575
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7576
    if seed is None:
7577
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7578
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7579
    if isinstance(seed, int):
F
fengjiayi 已提交
7580 7581 7582 7583 7584
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7585 7586 7587 7588
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7589
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7590 7591
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7592 7593
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7594
    return out
W
whs 已提交
7595 7596


7597
def log(x, name=None):
W
wanghaoshuang 已提交
7598 7599 7600 7601 7602
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7603
        Out = \\ln(x)
W
wanghaoshuang 已提交
7604 7605

    Args:
7606
        x (Variable): Input tensor.
7607 7608
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7609 7610 7611 7612 7613 7614 7615 7616

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7617
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7618 7619
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7620
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7621
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7622
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7623 7624 7625
    return out


7626
def relu(x, name=None):
W
wanghaoshuang 已提交
7627 7628
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7629
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7630 7631 7632 7633
    the tensor elementwise.

    .. math::

7634
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7635 7636

    Args:
7637
        x (Variable): The input tensor.
7638 7639
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7640 7641 7642 7643 7644 7645 7646 7647

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7648
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7649 7650
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7651
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7652
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7653 7654
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7655
    return out
7656 7657


C
chengduo 已提交
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7699 7700 7701
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7702 7703 7704 7705
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7706
    .. math::
7707

H
haowang101779990 已提交
7708
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7709

7710
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7711 7712 7713 7714 7715
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7716
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7717
                           Its shape should be the same as input.
7718
        num_classes (int): The possible number of labels.
W
whs 已提交
7719 7720

    Returns:
M
minqiyang 已提交
7721 7722
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7723
                     Three variables:
M
minqiyang 已提交
7724

H
haowang101779990 已提交
7725 7726 7727
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7728 7729 7730 7731

    Examples:

        .. code-block:: python
7732

W
whs 已提交
7733 7734 7735 7736
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7737 7738 7739
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7740 7741
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7742 7743
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7744
        outputs={
W
whs 已提交
7745 7746 7747
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7748 7749 7750
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7819
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7820 7821 7822 7823 7824

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7825
            isinstance(shape, Variable)):
7826 7827 7828 7829 7830
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7831
    out = helper.create_variable_for_type_inference(x.dtype)
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7849 7850


W
whs 已提交
7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7868

W
whs 已提交
7869
              out_shape = [2, 3, 5, 5]
7870

W
whs 已提交
7871
          Step 1:
7872

W
whs 已提交
7873 7874 7875
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7876

W
whs 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7922
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7923
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7936

W
whs 已提交
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7948
            isinstance(out_shape, Variable)):
W
whs 已提交
7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7970 7971
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7972

7973 7974
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7975
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7976 7977 7978
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7979

7980 7981
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7982

H
haowang101779990 已提交
7983 7984
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7985 7986
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7987

H
haowang101779990 已提交
7988 7989 7990 7991 7992 7993 7994 7995
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7996 7997 7998

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8033
    out = helper.create_variable_for_type_inference("float32")
8034 8035 8036 8037 8038 8039 8040 8041

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8042 8043


M
minqiyang 已提交
8044 8045
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8046
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8047
    which compares left score and right score passed in.
M
minqiyang 已提交
8048
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8049 8050 8051

    .. math::

H
haowang101779990 已提交
8052
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8053 8054

    Args:
M
minqiyang 已提交
8055
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8056 8057
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8058
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8059 8060
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8061

M
minqiyang 已提交
8062
    Returns:
M
minqiyang 已提交
8063
       Variable: The ranking loss.
H
haowang101779990 已提交
8064

M
minqiyang 已提交
8065
    Raises:
M
minqiyang 已提交
8066
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8067

M
minqiyang 已提交
8068
    Examples:
H
haowang101779990 已提交
8069

M
minqiyang 已提交
8070
        .. code-block:: python
H
haowang101779990 已提交
8071

M
minqiyang 已提交
8072 8073 8074 8075 8076
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8077
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8078 8079 8080 8081 8082 8083
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8084 8085
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8109
        .. code-block:: text
W
whs 已提交
8110

T
Tink_Y 已提交
8111
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8112

T
Tink_Y 已提交
8113 8114
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8115

T
Tink_Y 已提交
8116
	      Case 0:
M
minqiyang 已提交
8117

T
Tink_Y 已提交
8118 8119 8120
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8121

T
Tink_Y 已提交
8122 8123 8124
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8125

T
Tink_Y 已提交
8126
	      Case 1:
M
minqiyang 已提交
8127

T
Tink_Y 已提交
8128 8129
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8130

T
Tink_Y 已提交
8131 8132 8133
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8134

T
Tink_Y 已提交
8135
	      Case 2:
M
minqiyang 已提交
8136

T
Tink_Y 已提交
8137 8138
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8139

T
Tink_Y 已提交
8140 8141 8142
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8143 8144


W
whs 已提交
8145 8146
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8147
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8171
    out = helper.create_variable_for_type_inference(dtype)
8172 8173 8174 8175 8176 8177 8178 8179 8180
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8181
    helper.append_op(
8182
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8183 8184 8185 8186

    return out


8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8199 8200 8201 8202 8203

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8204 8205
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8206 8207
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8208
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8229 8230 8231 8232 8233

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8234 8235
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8236 8237
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8238
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8259 8260 8261 8262 8263

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8264 8265
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8266 8267
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8268
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8290 8291 8292 8293 8294

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8295
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8296
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8297 8298
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8299
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8322 8323 8324 8325 8326

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8327 8328
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8329 8330
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8331
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8353 8354 8355 8356 8357

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8358 8359
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8360 8361
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8362
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8363 8364 8365 8366 8367 8368 8369 8370
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8371 8372 8373 8374
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8375 8376
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8377 8378 8379

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8380
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8381
          weight (alpha).
J
jerrywgz 已提交
8382
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8383 8384 8385
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8386
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8387
          will be named automatically.
J
jerrywgz 已提交
8388 8389 8390 8391 8392 8393 8394 8395

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8396
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8410
        attr=helper.param_attr,
J
jerrywgz 已提交
8411 8412 8413 8414
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8415
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8416 8417 8418 8419 8420 8421 8422 8423 8424
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8435
    Returns:
8436
        output(${out_type}): ${out_comment}
8437 8438 8439

    Examples:

8440
    .. code-block:: python
8441

H
haowang101779990 已提交
8442 8443
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8444 8445
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8446
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8465
    Returns:
8466
        output(${out_type}): ${out_comment}
8467 8468 8469 8470 8471

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8472 8473
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8474 8475
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8476
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8494
    Returns:
8495
        output(${out_type}): ${out_comment}
8496 8497 8498 8499 8500

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8501 8502
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8503 8504
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8505
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8506 8507 8508 8509 8510 8511 8512 8513
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8514 8515 8516 8517
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8518

H
haowang101779990 已提交
8519
    For Example:
M
minqiyang 已提交
8520

H
haowang101779990 已提交
8521
    .. code-block:: text
8522

H
haowang101779990 已提交
8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8544 8545 8546

    Args:
        x (Variable): A tensor of rank >= axis.
8547 8548
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8549 8550 8551 8552 8553 8554 8555 8556
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8557 8558 8559
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8560 8561 8562 8563
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8564
        ValueError: If axis is not in range [0, rank(x)].
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8581 8582
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8583
    helper.append_op(
8584
        type='flatten2',
8585
        inputs={"X": x},
8586 8587
        outputs={'Out': out,
                 'XShape': x_shape},
8588 8589
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8590 8591


C
chenweihang 已提交
8592
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8593
    """
C
chenweihang 已提交
8594
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8595
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8596 8597
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8598

H
haowang101779990 已提交
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8616 8617

    Args:
C
chenweihang 已提交
8618 8619 8620
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8632 8633
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8634 8635 8636 8637 8638 8639
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8640
    return out
8641

8642

S
sneaxiy 已提交
8643 8644 8645 8646 8647 8648 8649 8650 8651
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8652

S
sneaxiy 已提交
8653
    .. math::
8654

S
sneaxiy 已提交
8655 8656 8657
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8658
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8659 8660 8661 8662
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8663 8664 8665
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8666 8667
    Returns:
        Variable: The output sequence mask.
8668

S
sneaxiy 已提交
8669 8670
    """

Q
qingqing01 已提交
8671
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8672
    if name is None:
X
Xin Pan 已提交
8673
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8674
    else:
X
Xin Pan 已提交
8675
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8676

Q
qingqing01 已提交
8677 8678 8679
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8680 8681
        outputs={'Y': out},
        attrs={
8682
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8683 8684 8685
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8686 8687


X
Xin Pan 已提交
8688
def stack(x, axis=0):
S
sneaxiy 已提交
8689 8690 8691 8692
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8693 8694 8695 8696 8697 8698 8699

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8700
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8701
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8702

C
chengduozh 已提交
8703 8704
    For Example:

C
chengduozh 已提交
8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8743
    Args:
8744
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8745
        axis (int|None): The axis along which all inputs are stacked.
8746

S
sneaxiy 已提交
8747 8748
    Returns:
        Variable: The stacked variable.
8749

S
sneaxiy 已提交
8750 8751
    """

X
Xin Pan 已提交
8752 8753 8754 8755 8756 8757
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8758
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8759
    helper.append_op(
S
sneaxiy 已提交
8760 8761
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8762

X
Xin Pan 已提交
8763
    return out
D
dzhwinter 已提交
8764 8765 8766 8767 8768 8769 8770


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8771

D
dzhwinter 已提交
8772 8773 8774
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8775
    raised.
D
dzhwinter 已提交
8776 8777

    Args:
M
minqiyang 已提交
8778
        x (Variable): Input variable.
D
dzhwinter 已提交
8779 8780
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8781

D
dzhwinter 已提交
8782 8783
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8784

D
dzhwinter 已提交
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8795
    for _ in range(num):
X
Xin Pan 已提交
8796
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8797 8798 8799 8800 8801 8802 8803 8804

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8817

W
whs 已提交
8818 8819 8820 8821
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8822

W
whs 已提交
8823
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8824

W
whs 已提交
8825
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8826

W
whs 已提交
8827 8828 8829 8830
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8831

W
whs 已提交
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8848
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8849 8850 8851 8852 8853 8854
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8855 8856


G
fix  
gongweibao 已提交
8857 8858 8859
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8860
@templatedoc()
G
fix  
gongweibao 已提交
8861 8862 8863 8864 8865 8866 8867 8868 8869
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8870
    ${comment}
G
fix  
gongweibao 已提交
8871 8872

    Args:
G
gongweibao 已提交
8873 8874 8875
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8876
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8877 8878 8879
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8880 8881
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8882
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8883

8884 8885 8886 8887 8888
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8889 8890 8891
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8892
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8909 8910


G
gongweibao 已提交
8911
@templatedoc()
X
Xin Pan 已提交
8912
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8913
    """
G
gongweibao 已提交
8914
    ${comment}
G
fix  
gongweibao 已提交
8915 8916

    Args:
G
gongweibao 已提交
8917 8918 8919 8920
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8921 8922 8923
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8924
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8925

8926 8927 8928 8929
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8930 8931 8932
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8933
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8934 8935 8936 8937 8938 8939 8940 8941 8942 8943
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8944
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8945 8946 8947 8948 8949
        })

    return out


G
gongweibao 已提交
8950
@templatedoc()
G
fix  
gongweibao 已提交
8951
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8952
    """
G
gongweibao 已提交
8953
    ${comment}
G
fix  
gongweibao 已提交
8954 8955

    Args:
G
gongweibao 已提交
8956 8957 8958 8959
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8960
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8961 8962

    Returns:
G
gongweibao 已提交
8963
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8964

8965 8966 8967 8968 8969 8970 8971 8972 8973 8974
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8975 8976 8977
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8978
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8990
@templatedoc()
G
fix  
gongweibao 已提交
8991 8992 8993 8994 8995 8996 8997 8998 8999
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9000
    ${comment}
G
fix  
gongweibao 已提交
9001 9002

    Args:
G
gongweibao 已提交
9003 9004
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9005
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9006 9007 9008 9009
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9010
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9011 9012

    Returns:
G
gongweibao 已提交
9013
        out (Variable): ${out_comment}
9014 9015 9016 9017 9018 9019 9020 9021

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9022 9023 9024
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9025
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9044
@templatedoc()
X
Xin Pan 已提交
9045
def sum(x):
G
fix  
gongweibao 已提交
9046
    """
G
gongweibao 已提交
9047
    ${comment}
G
fix  
gongweibao 已提交
9048 9049

    Args:
G
gongweibao 已提交
9050
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9051 9052

    Returns:
G
gongweibao 已提交
9053
        out (Variable): ${out_comment}
9054 9055 9056 9057 9058 9059

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9060 9061 9062
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9063 9064
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9065 9066 9067 9068
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9069
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9070 9071 9072 9073

    return out


G
gongweibao 已提交
9074
@templatedoc()
G
fix  
gongweibao 已提交
9075 9076
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9077
    ${comment}
G
fix  
gongweibao 已提交
9078 9079

    Args:
G
gongweibao 已提交
9080 9081 9082 9083
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9084 9085

    Returns:
G
gongweibao 已提交
9086
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9087

9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9099 9100 9101
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9102 9103
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9117 9118
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9119
    Get the shape of the input.
G
fix  
gongweibao 已提交
9120 9121

    Args:
C
chengduozh 已提交
9122
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9123 9124

    Returns:
C
fix doc  
chengduozh 已提交
9125
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9126

9127 9128 9129 9130 9131 9132
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9133 9134 9135
    """

    helper = LayerHelper('shape', **locals())
9136
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9137
    helper.append_op(
G
fix  
gongweibao 已提交
9138
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9139 9140

    return out
G
merge  
gongweibao 已提交
9141 9142


S
sneaxiy 已提交
9143 9144 9145 9146
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
9147 9148 9149 9150
    if _in_imperative_mode():
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9151 9152 9153 9154
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9155 9156
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9157
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9158 9159 9160
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9161

S
sneaxiy 已提交
9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9173
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9174 9175 9176 9177 9178 9179 9180 9181
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9182
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9183
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9184 9185 9186 9187 9188 9189

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9190
    if name is None:
X
Xin Pan 已提交
9191
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9192 9193 9194
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9195 9196 9197 9198 9199 9200 9201 9202 9203 9204

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9205
    return helper.append_activation(out)
S
sneaxiy 已提交
9206 9207


X
Xin Pan 已提交
9208
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9209 9210 9211
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9212
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9213 9214 9215
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9216
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9217 9218 9219
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9220
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9221 9222 9223
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9224
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9225 9226 9227
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9228
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9229 9230 9231
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9232
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9244 9245
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9246
        ])
M
minqiyang 已提交
9247 9248


9249
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9250 9251
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9252 9253
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9254 9255 9256

    if out is None:
        if name is None:
X
Xin Pan 已提交
9257
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9273
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9285 9286 9287 9288 9289 9290 9291 9292 9293

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9294 9295 9296 9297 9298 9299 9300
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9301
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9313 9314 9315 9316 9317 9318 9319 9320 9321

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9322 9323 9324 9325 9326 9327 9328
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9329
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9341 9342 9343 9344 9345 9346 9347 9348 9349

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9350 9351 9352 9353 9354 9355 9356
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9357
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9368 9369 9370 9371 9372 9373 9374

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9375 9376 9377 9378
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9394 9395 9396 9397 9398 9399 9400

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9401 9402 9403 9404 9405
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9406 9407 9408 9409
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9433 9434 9435 9436 9437 9438 9439

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9440 9441 9442 9443 9444
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9445 9446 9447 9448
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9449 9450 9451 9452 9453 9454 9455 9456

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9475
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9528
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9529 9530 9531 9532 9533 9534 9535 9536 9537
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9538 9539
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9540 9541 9542 9543 9544 9545
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9546 9547 9548
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9549 9550
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9551 9552 9553 9554 9555 9556
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9557
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9558
        name(basestring|None): Name of the output.
9559 9560
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9561 9562 9563

    Returns:
        out(${out_type}): ${out_comment}
9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9578 9579 9580 9581 9582
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9583
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9584 9585 9586 9587 9588 9589 9590 9591
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9592 9593
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9614
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9615 9616 9617 9618 9619 9620 9621 9622 9623 9624
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9625 9626


J
JiabinYang 已提交
9627
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9628
    """
J
JiabinYang 已提交
9629
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9630 9631 9632

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9633
    The attr blocksize indicates the input block size.
9634 9635

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9636
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9637 9638

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9639
    (but keeping all data)
J
JiabinYang 已提交
9640

J
JiabinYang 已提交
9641
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9642
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9643 9644 9645 9646 9647
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9648
    Args:
J
JiabinYang 已提交
9649
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9650
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9651 9652

    Returns:
J
JiabinYang 已提交
9653
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9654 9655

    Raises:
J
JiabinYang 已提交
9656
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9657 9658 9659 9660 9661 9662

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9663
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9664
                x=data, blocksize=2)
J
JiabinYang 已提交
9665 9666
    """

J
JiabinYang 已提交
9667
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9668

J
JiabinYang 已提交
9669 9670
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9671 9672

    if name is None:
J
JiabinYang 已提交
9673 9674
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9675 9676 9677 9678 9679
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9680
        type="space_to_depth",
J
JiabinYang 已提交
9681
        inputs={"X": x},
J
JiabinYang 已提交
9682
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9683
        outputs={"Out": out})
J
JiabinYang 已提交
9684 9685
    return out

J
JiabinYang 已提交
9686

S
sneaxiy 已提交
9687 9688
@templatedoc()
def sequence_reverse(x, name=None):
9689
    """
S
sneaxiy 已提交
9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9701
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9702 9703 9704 9705 9706 9707 9708 9709 9710 9711
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9712 9713


9714 9715 9716 9717 9718 9719
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9720

9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9740
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9753 9754


B
barrierye 已提交
9755
def similarity_focus(input, axis, indexes, name=None):
9756
    """
B
barrierye 已提交
9757
    SimilarityFocus Operator
B
barrierye 已提交
9758 9759

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9760

9761 9762 9763
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9764
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9765 9766 9767 9768 9769 9770 9771
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9772
       each index.
B
barrierye 已提交
9773 9774 9775 9776
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9826
    Args:
9827
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9828
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9829
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9830
            1, 2 or 3.
B
barrierye 已提交
9831
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9832 9833

    Returns:
H
haowang101779990 已提交
9834 9835
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9836

B
barrierye 已提交
9837 9838
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9839

B
barrierye 已提交
9840
            data = fluid.layers.data(
B
barrierye 已提交
9841 9842
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9843

B
barrierye 已提交
9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9856 9857 9858 9859 9860
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9861 9862 9863 9864 9865 9866 9867
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9868 9869


M
minqiyang 已提交
9870 9871
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9872 9873
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9874 9875
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9914
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9915
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9916 9917 9918 9919 9920 9921

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9922

M
minqiyang 已提交
9923 9924 9925
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9926 9927
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9928 9929
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9930 9931 9932 9933 9934 9935 9936
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9937 9938


D
dengkaipeng 已提交
9939
@templatedoc()
9940 9941
def grid_sampler(x, grid, name=None):
    """
9942
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9943
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9944 9945 9946 9947
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9948
    interpolation value of 4 nearest corner points.
9949

H
haowang101779990 已提交
9950
    .. code-block:: text
9951

H
haowang101779990 已提交
9952 9953
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9954

H
haowang101779990 已提交
9955 9956
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9957

H
haowang101779990 已提交
9958 9959 9960
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9961

H
haowang101779990 已提交
9962 9963 9964 9965 9966 9967 9968 9969 9970
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9971

H
haowang101779990 已提交
9972 9973 9974 9975
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9976

H
haowang101779990 已提交
9977 9978 9979 9980
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9981

H
haowang101779990 已提交
9982 9983 9984 9985
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9986

H
haowang101779990 已提交
9987 9988
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9989 9990

    Args:
9991 9992 9993
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9994 9995

    Returns:
H
haowang101779990 已提交
9996
        Variable: Output of shape [N, C, H, W] data samples input X
9997 9998
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9999 10000 10001 10002 10003 10004 10005 10006
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10007

D
dengkaipeng 已提交
10008 10009 10010 10011 10012 10013 10014 10015 10016
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10017
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10018 10019
    ipts = {'X': x, 'Grid': grid}

10020
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10021 10022 10023
    return out


G
gmcather 已提交
10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10090
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10091 10092 10093 10094 10095 10096 10097
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10098

H
heqiaozhi 已提交
10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10113 10114 10115 10116
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10117
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10118 10119
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10120
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10121 10122

    .. math::
H
haowang101779990 已提交
10123 10124 10125
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10126 10127

    Where:
H
haowang101779990 已提交
10128 10129
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10144

G
gmcather 已提交
10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10161 10162 10163 10164 10165 10166 10167 10168 10169 10170


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10171
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10172

Q
Qiao Longfei 已提交
10173
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10174 10175 10176
    For example:

    .. math::
H
haowang101779990 已提交
10177
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10178

Q
Qiao Longfei 已提交
10179
    In this formula:
10180 10181
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10182
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10183
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10184 10185 10186
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10187 10188
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10189 10190 10191
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10192
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10193
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10194
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10195 10196 10197 10198
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10199
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10200 10201 10202 10203

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10204
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10205 10206
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10207
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10208 10209 10210 10211

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10212
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10253 10254


S
shippingwang 已提交
10255
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10256 10257
    """
    **Shuffle Channel Operator**
10258

S
shippingwang 已提交
10259 10260 10261 10262 10263 10264
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10265
    
S
shippingwang 已提交
10266
    .. code-block:: text
10267

S
shippingwang 已提交
10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10296
    Args: 
S
shippingwang 已提交
10297 10298
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10299 10300

    Returns:
S
shippingwang 已提交
10301 10302
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10303 10304

    Raises:
S
shippingwang 已提交
10305
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10306 10307 10308

    Examples:
        .. code-block:: python
10309 10310

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10311
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10312 10313 10314
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10315
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10316 10317 10318 10319 10320 10321 10322 10323 10324

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10325
    return out
S
Add  
shippingwang 已提交
10326 10327


S
sneaxiy 已提交
10328
class PyFuncRegistry(object):
S
sneaxiy 已提交
10329 10330 10331
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10332
        if func is None or not callable(func):
S
sneaxiy 已提交
10333 10334 10335
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10336
        # find named args using reflection
S
sneaxiy 已提交
10337 10338 10339 10340 10341 10342 10343
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10344 10345 10346
        '''
        Why record self here?

M
minqiyang 已提交
10347 10348
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10349
           to find the registered function corresponding
M
minqiyang 已提交
10350
           to :code:`idx`.
S
sneaxiy 已提交
10351

M
minqiyang 已提交
10352 10353
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10354
           whose reference count is 1 would cause
M
minqiyang 已提交
10355
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10356 10357
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10358
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10373 10374 10375 10376 10377 10378 10379 10380 10381
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10382

S
sneaxiy 已提交
10383 10384
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10385 10386

        ret = []
S
sneaxiy 已提交
10387 10388 10389
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10390 10391
                continue

S
sneaxiy 已提交
10392 10393
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10394

S
sneaxiy 已提交
10395 10396 10397
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10398

S
sneaxiy 已提交
10399
        return tuple(ret)
S
sneaxiy 已提交
10400 10401


S
sneaxiy 已提交
10402 10403 10404 10405
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10406

S
sneaxiy 已提交
10407 10408 10409 10410 10411 10412 10413 10414
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10415
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10416

S
sneaxiy 已提交
10417 10418
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10419 10420 10421 10422
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10423
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10424
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10425 10426
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10427 10428 10429 10430 10431
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10432
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10433
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10434
                                       None means no backward. Default None.
S
sneaxiy 已提交
10435
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10436
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10437 10438
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10439
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10440 10441 10442

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10443 10444

    Examples:
M
minqiyang 已提交
10445

S
sneaxiy 已提交
10446 10447 10448 10449 10450
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10451
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10452 10453
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10454
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10455 10456 10457
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10458
        >>>
S
sneaxiy 已提交
10459 10460 10461 10462 10463
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10464
        >>>     print(x)
S
sneaxiy 已提交
10465 10466 10467 10468 10469 10470
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10471
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10472 10473
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10474 10475
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10476 10477 10478 10479 10480 10481 10482 10483
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10484
    """
S
sneaxiy 已提交
10485
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10486 10487 10488
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10489
        x = [x]
S
sneaxiy 已提交
10490 10491
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10492

S
sneaxiy 已提交
10493 10494 10495
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10496
        out_list = [out]
S
sneaxiy 已提交
10497
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10498
        out_list = out
S
sneaxiy 已提交
10499 10500 10501
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10502

S
sneaxiy 已提交
10503 10504
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10505
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10506 10507

    for each_out in out_list:
S
sneaxiy 已提交
10508 10509
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10510 10511
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10512

S
sneaxiy 已提交
10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10528 10529 10530 10531

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10532 10533
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10534 10535 10536
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10537
        })
S
sneaxiy 已提交
10538
    return out
S
sneaxiy 已提交
10539 10540 10541


# For debug usage
S
sneaxiy 已提交
10542 10543 10544 10545
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10598

M
minqiyang 已提交
10599

M
minqiyang 已提交
10600
def huber_loss(input, label, delta):
10601
    """
M
minqiyang 已提交
10602 10603 10604
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10605 10606 10607 10608

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10609
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10610 10611 10612 10613

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10614
        huber\_loss = 0.5 * (label - input) * (label - input)
10615 10616 10617 10618 10619 10620 10621


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10622
        delta (float): The parameter of huber loss, which controls
10623 10624 10625
                       the range of outliers

    Returns:
M
minqiyang 已提交
10626
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10627 10628 10629 10630 10631

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10632
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10633
    """
M
minqiyang 已提交
10634
    helper = LayerHelper('huber_loss', **locals())
10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10716 10717


C
ceci3 已提交
10718
from .ops import square
C
ceci3 已提交
10719
from .control_flow import equal
C
ceci3 已提交
10720 10721


C
ceci3 已提交
10722 10723 10724
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10725

C
ceci3 已提交
10726
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10727 10728

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10729
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10730 10731 10732 10733 10734
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10735 10736
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10737 10738 10739 10740 10741 10742 10743

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10744 10745 10746 10747 10748 10749 10750 10751
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10752 10753 10754 10755 10756 10757 10758
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10759
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10760 10761
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10762 10763
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10764 10765 10766 10767
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10768 10769 10770
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10771 10772 10773
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss