nn.py 266.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
157
    'affine_channel',
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
167
       is_test=False,
168
       name=None):
Y
Yu Yang 已提交
169
    """
170
    **Fully Connected Layer**
Y
Yu Yang 已提交
171

172 173 174 175 176 177 178 179
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
180
    to the output as well.
C
caoying03 已提交
181

C
caoying03 已提交
182
    This process can be formulated as follows:
183 184 185

    .. math::

186
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
187 188 189

    In the above equation:

C
caoying03 已提交
190 191 192 193
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
194
    * :math:`Act`: The activation function.
C
caoying03 已提交
195
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
196 197

    Args:
R
ranqiu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
213 214
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
215
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
216
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
217
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
218

219
    Returns:
F
fengjiayi 已提交
220
        Variable: The transformation result.
221 222

    Raises:
C
caoying03 已提交
223
        ValueError: If rank of the input tensor is less than 2.
224 225 226 227

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
228
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
229
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
230
    """
C
caoying03 已提交
231

C
caoying03 已提交
232
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
233 234 235 236

    dtype = helper.input_dtype()

    mul_results = []
237 238
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
239 240 241
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
242

Y
Yu Yang 已提交
243
        w = helper.create_parameter(
244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
245
        tmp = helper.create_variable_for_type_inference(dtype)
246
        helper.append_op(
247 248 249
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
250
            outputs={"Out": tmp},
M
mozga-intel 已提交
251 252
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
253 254 255 256
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
257
    else:
X
Xin Pan 已提交
258
        pre_bias = helper.create_variable_for_type_inference(dtype)
259
        helper.append_op(
260 261 262
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
263
            attrs={"use_mkldnn": False})
264 265 266 267
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
268 269


270 271 272
def embedding(input,
              size,
              is_sparse=False,
273
              is_distributed=False,
274 275 276
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
277
    """
278 279
    **Embedding Layer**

280
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
281 282
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
283 284 285

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
286 287

    Args:
288 289 290 291 292
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
293
        is_distributed(bool): Whether to run lookup table from remote parameter server.
294 295
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
296
            with zeros whenever lookup encounters it in :attr:`input`. If
297
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
298 299
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
300
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
301

302 303 304
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
305

306 307
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
308

C
chengduoZH 已提交
309
          dict_size = len(dataset.ids)
310
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
311
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
317
    tmp = helper.create_variable_for_type_inference(dtype)
318 319
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
320 321 322 323 324
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
325 326 327 328 329
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
330 331 332
    return tmp


Y
yi.wu 已提交
333
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
334 335
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
336 337
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
338 339 340 341 342 343 344
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
345 346
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
347
    """
Y
yi.wu 已提交
348
    ${comment}
Y
Yibing Liu 已提交
349 350

    Args:
Y
yi.wu 已提交
351 352
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
353 354 355 356 357 358
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
359
        param_attr(ParamAttr|None): The parameter attribute for the learnable
360
                               hidden-hidden weights.
Y
Yibing Liu 已提交
361 362 363

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
364 365
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
366 367 368 369 370

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
371
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
372 373 374
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
375

376
                              1. `use_peepholes = False`
Y
yi.wu 已提交
377 378
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
379
                              2. `use_peepholes = True`
Y
yi.wu 已提交
380
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
381
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
382
                                 - The shape is (1 x 7D).
C
chengduo 已提交
383 384 385 386 387

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
388 389 390 391 392 393 394 395
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
396 397

    Returns:
Y
Yibing Liu 已提交
398 399
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
400

Y
Yibing Liu 已提交
401
    Examples:
Y
Yibing Liu 已提交
402 403
        .. code-block:: python

Y
Yibing Liu 已提交
404 405
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
406
                                           bias_attr=False)
Y
Yibing Liu 已提交
407 408
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
409
    """
C
chengduo 已提交
410
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
411
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
412
    size = size // 4
Y
Yu Yang 已提交
413 414 415 416 417 418 419 420
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
421 422 423 424
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
425 426 427 428 429 430 431 432 433 434
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
435 436 437

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
438
        inputs=inputs,
Y
Yu Yang 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
455 456 457 458 459 460 461 462 463 464 465
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
466 467
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
468 469 470
    """
    **Dynamic LSTMP Layer**

471 472 473 474 475 476
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
477 478 479 480 481

    The formula is as follows:

    .. math::

482
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
483

484
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
485

486
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
487

488
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
489

490
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
491

492
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
493

494
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
495

Y
Yibing Liu 已提交
496 497 498 499 500 501
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
502
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
503
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
504
          bias vector).
Y
Yibing Liu 已提交
505 506 507
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
508
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
509
    * :math:`h`: The hidden state.
510
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
511 512
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
513
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
514
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
515
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
516 517
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
518 519 520 521

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
522

Y
Yibing Liu 已提交
523 524 525 526 527 528 529 530 531 532 533 534
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
535
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
536 537
                               hidden-hidden weight and projection weight.

538 539
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
540 541
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
542 543
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
544
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
545 546 547 548 549

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
550
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
551 552 553 554 555 556
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
557
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
558 559 560
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
561
                                - The shape is (1 x 7D).
C
chengduo 已提交
562 563 564 565 566

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
567 568 569 570 571 572 573 574 575
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
576
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
577 578
                              default "tanh".
        proj_activation(str): The activation for projection output.
579
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
580 581
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
582 583
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
584 585

    Returns:
586 587 588 589
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
590 591

    Examples:
592

Y
Yibing Liu 已提交
593 594
        .. code-block:: python

595 596 597 598
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
599
            hidden_dim, proj_dim = 512, 256
600
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
601
                                     act=None, bias_attr=None)
602 603 604
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
605 606 607 608
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
609
    """
610

C
chengduo 已提交
611
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
612
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
613
    size = size // 4
Y
Yibing Liu 已提交
614 615 616 617 618 619 620 621 622 623
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
624 625 626 627 628 629
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
658 659 660 661 662 663 664 665 666
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
667
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
668

669
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
670
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
671

G
guosheng 已提交
672 673 674 675 676 677 678 679 680
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
681

G
guosheng 已提交
682
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
683

G
guosheng 已提交
684
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
685 686
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
687 688 689 690
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
691
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
692 693

    Args:
694 695
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
696
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
697
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
698 699
            is the hidden size.
        size(int): The dimension of the gru cell.
700
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
701 702
            hidden-hidden weight matrix. Note:

703
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
704
              :math:`D` is the hidden size.
705
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
706
              The first part are weights of the update gate and reset gate with
707
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
708
              candidate hidden state with shape :math:`(D \\times D)`.
709
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
710
            hidden-hidden bias.
711
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
712 713 714
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
715
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
716
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
717 718 719 720
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
721 722

    Returns:
G
guosheng 已提交
723
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
724
            and sequence length is the same with the input.
725

G
guosheng 已提交
726
    Examples:
727

G
guosheng 已提交
728 729
        .. code-block:: python

730 731 732 733
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
734
            hidden_dim = 512
735
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
736 737 738 739 740 741 742 743 744 745
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
746
    batch_size = input.shape[0]
G
guosheng 已提交
747 748 749
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
750 751 752
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
753

X
Xin Pan 已提交
754 755 756 757
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
776 777 778
def gru_unit(input,
             hidden,
             size,
779 780
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
781
             activation='tanh',
782
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
783
    """
784
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
785

786 787
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
788

789
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
790

791
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
792

793
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
794 795

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
796 797 798
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
799 800
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

801 802
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
803 804 805
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
806 807 808 809 810

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
811 812
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
813 814 815 816
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
817

818 819 820 821 822 823
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
824

825
             # assuming we have x_t_data and prev_hidden of size=10
826
             x_t = fluid.layers.fc(input=x_t_data, size=30)
827 828
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
829 830 831 832 833 834 835 836 837 838 839 840

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
841
    size = size // 3
Y
Yu Yang 已提交
842 843

    # create weight
844 845
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
846

X
Xin Pan 已提交
847 848 849
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
850
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
851
    # create bias
852
    if helper.bias_attr:
Y
Yu Yang 已提交
853 854 855
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
856
        inputs['Bias'] = bias
Y
Yu Yang 已提交
857 858 859

    helper.append_op(
        type='gru_unit',
860
        inputs=inputs,
Y
Yu Yang 已提交
861 862 863 864 865 866
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
867 868
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
869 870 871 872 873
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
874
@templatedoc()
875
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
876 877 878 879 880 881 882
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
883
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
884 885 886 887
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
888 889 890
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
891 892

    """
Y
Yu Yang 已提交
893 894 895 896 897 898
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
899 900 901 902 903 904 905 906
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
922
@templatedoc()
923
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
924 925 926 927 928
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
929

Y
yuyang18 已提交
930
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
931

Y
yuyang18 已提交
932 933 934
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
935
        Variable: ${viterbi_path_comment}
936

Y
yi.wu 已提交
937 938 939 940 941
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
942
    """
Y
Yu Yang 已提交
943 944
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
945 946
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
947 948 949 950 951 952 953 954 955 956
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
957
@templatedoc()
F
fengjiayi 已提交
958
def cos_sim(X, Y):
Y
Yu Yang 已提交
959
    """
Y
yi.wu 已提交
960 961 962
    ${comment}

    Args:
963 964
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
965

Y
yi.wu 已提交
966
    Returns:
967
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
968
    """
F
fengjiayi 已提交
969
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
970 971 972
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
973 974 975 976 977 978 979 980 981 982
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
983 984 985 986 987 988
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
            dropout_implementation=False):
989 990 991 992 993
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
994
    training. The dropout operator randomly sets (according to the given dropout
995 996 997 998
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
999 1000
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1001 1002 1003 1004 1005 1006 1007
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1008 1009 1010 1011 1012 1013 1014 1015
        dropout_implementation(bool): A Flag indicating whether divide (1-dropout_prob). 
                                      When it's True, all the units will divide (1-dropout_prob)
                                      after set some units to zero in the train program.
                                      And do nothing in the inference program.
                                      The dropout op can be removed in the inference program.
                                      The inference program will be more efficient
                                      When it's False, same as original

1016 1017

    Returns:
1018
        Variable: A tensor variable is the shape with `x`.
1019 1020

    Examples:
1021

1022 1023
        .. code-block:: python

1024 1025
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1026 1027
    """

F
fengjiayi 已提交
1028
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1029 1030 1031
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1032 1033 1034 1035

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1036 1037 1038 1039 1040
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1041 1042 1043 1044
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1045 1046
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1047
        })
1048 1049 1050
    return out


1051
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1052
    """
Y
Yibing Liu 已提交
1053 1054
    **Cross Entropy Layer**

1055 1056 1057
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1058 1059

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1060
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1061

Y
Yibing Liu 已提交
1062
        .. math::
Y
yangyaming 已提交
1063

Y
Yibing Liu 已提交
1064 1065 1066
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1067 1068
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1069 1070 1071 1072 1073

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1074
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1075 1076 1077
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1078 1079
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1080
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1081

Y
Yibing Liu 已提交
1082
    Args:
Y
yangyaming 已提交
1083
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1084 1085 1086 1087
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1088
        label (Variable|list): the ground truth which is a 2-D tensor. When
1089 1090 1091 1092
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1093
        soft_label (bool): a flag indicating whether to
1094
                                           interpretate the given labels as soft
1095
                                           labels. Default: `False`.
M
minqiyang 已提交
1096 1097
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1098
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1099 1100 1101 1102 1103

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1104 1105 1106 1107 1108
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1109 1110 1111 1112 1113 1114

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1115
    """
F
fengjiayi 已提交
1116
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1117
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1118 1119 1120 1121 1122
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1123 1124
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1125 1126 1127
    return out


F
fengjiayi 已提交
1128
def square_error_cost(input, label):
Y
Yu Yang 已提交
1129
    """
1130 1131
    **Square error cost layer**

1132 1133
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1148 1149
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1150 1151

    Returns:
G
guosheng 已提交
1152
        Variable: The tensor variable storing the element-wise squared error \
1153
                  difference of input and label.
1154 1155 1156 1157 1158 1159 1160 1161

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1162
    """
F
fengjiayi 已提交
1163
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1164
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1165 1166 1167 1168 1169 1170
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1171
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1172
    helper.append_op(
F
fengjiayi 已提交
1173 1174
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1175 1176 1177
    return square_out


Y
yi.wu 已提交
1178
@templatedoc()
Y
Yu Yang 已提交
1179 1180 1181 1182
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1183
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1184
    """
Y
yi.wu 已提交
1185
    **Chunk Evaluator**
Y
yi.wu 已提交
1186

Y
yangyaming 已提交
1187
    This function computes and outputs the precision, recall and
1188
    F1-score of chunk detection.
Y
yi.wu 已提交
1189

Y
yi.wu 已提交
1190 1191 1192 1193 1194 1195 1196 1197
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1198

Y
yi.wu 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1224

Y
yi.wu 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1249
    Args:
1250 1251 1252 1253 1254
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1255

Y
yi.wu 已提交
1256
    Returns:
Y
update  
yi.wu 已提交
1257 1258 1259
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1260

Y
yi.wu 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1273
    """
F
fengjiayi 已提交
1274
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1275 1276

    # prepare output
X
Xin Pan 已提交
1277 1278 1279 1280 1281 1282 1283
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1284 1285 1286 1287 1288 1289 1290 1291

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1292 1293 1294 1295
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1296 1297 1298
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1299 1300
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1301
        })
1302 1303
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1304 1305


1306
@templatedoc()
Y
Yu Yang 已提交
1307 1308 1309 1310 1311 1312 1313
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1314 1315
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1316 1317 1318 1319
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1320 1321 1322 1323 1324 1325 1326

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1340

1341 1342
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1343 1344 1345 1346 1347 1348 1349
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1350
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1361
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1362 1363 1364 1365 1366 1367
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1368
def sequence_softmax(input, use_cudnn=False, name=None):
1369 1370 1371
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1372
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1389 1390 1391
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1404 1405
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1406
    softmax_out = helper.create_variable_for_type_inference(dtype)
1407 1408 1409 1410 1411 1412 1413 1414
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1415
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1416
    """
1417
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1418
    has the same shape as the input.
Q
qiaolongfei 已提交
1419

1420 1421 1422 1423 1424 1425
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1426
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1427 1428 1429 1430 1431 1432 1433

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1434
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1435 1436 1437 1438 1439 1440 1441 1442

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1443 1444 1445
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1458 1459
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1460
    softmax_out = helper.create_variable_for_type_inference(dtype)
1461 1462 1463 1464 1465 1466 1467 1468
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1469 1470 1471
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1472 1473
           stride=1,
           padding=0,
1474
           dilation=1,
Y
Yu Yang 已提交
1475 1476 1477
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1478
           use_cudnn=True,
1479 1480
           act=None,
           name=None):
Y
Yu Yang 已提交
1481
    """
C
chengduoZH 已提交
1482
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1483 1484
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1485
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1486 1487 1488 1489 1490 1491 1492
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1493 1494 1495
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1496

1497
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1498

C
chengduoZH 已提交
1499 1500
    .. math::

C
refine  
chengduoZH 已提交
1501
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1502

T
tensor-tang 已提交
1503
    Where:
C
chengduoZH 已提交
1504

1505 1506 1507 1508 1509
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1510
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1511 1512 1513

    Example:

1514 1515
        - Input:

W
weixing02 已提交
1516
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1517

W
weixing02 已提交
1518
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1519

1520
        - Output:
T
tensor-tang 已提交
1521

W
weixing02 已提交
1522
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1523

C
chengduoZH 已提交
1524
        Where
1525 1526

        .. math::
C
chengduoZH 已提交
1527

W
weixing02 已提交
1528 1529
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1530 1531

    Args:
1532
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1533
        num_filters(int): The number of filter. It is as same as the output
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1562 1563
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1564 1565
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1566
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1567
            will be named automatically. Default: None
C
chengduoZH 已提交
1568 1569

    Returns:
G
guosheng 已提交
1570
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1571 1572
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1573
    Raises:
1574 1575
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1576

C
chengduoZH 已提交
1577 1578 1579
    Examples:
        .. code-block:: python

1580 1581
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1582 1583 1584
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1585
    assert param_attr is not False, "param_attr should not be False here."
1586
    l_type = 'conv2d'
X
xzl 已提交
1587 1588
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1589
        l_type = 'depthwise_conv2d'
1590 1591 1592 1593

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1594 1595 1596 1597 1598
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1599
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1600

C
chengduoZH 已提交
1601 1602 1603
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1604
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1605

C
chengduoZH 已提交
1606 1607
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1608 1609

    input_shape = input.shape
M
minqiyang 已提交
1610
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1611 1612

    def _get_default_param_initializer():
C
chengduo 已提交
1613 1614
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1615 1616 1617 1618 1619 1620 1621 1622
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1623
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1624 1625

    helper.append_op(
1626
        type=l_type,
Y
Yu Yang 已提交
1627 1628 1629 1630 1631
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1632 1633 1634
        attrs={
            'strides': stride,
            'paddings': padding,
1635
            'dilations': dilation,
C
chengduoZH 已提交
1636
            'groups': groups,
1637
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1638
            'use_mkldnn': False
C
chengduoZH 已提交
1639
        })
Y
Yu Yang 已提交
1640 1641 1642 1643 1644 1645

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1663 1664 1665 1666 1667 1668
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1678 1679
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1680 1681 1682
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1683
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1709
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1710 1711
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1712
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1713 1714
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1715
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1716 1717
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1718
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1719 1720 1721 1722 1723 1724
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1735 1736
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1737 1738
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1739
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1740
            will be named automatically. Default: None.
C
chengduoZH 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1753 1754
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1755 1756 1757
    """

    l_type = 'conv3d'
C
chengduo 已提交
1758
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1769
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1783 1784 1785
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1786 1787 1788 1789 1790 1791 1792 1793
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1794
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1809
            'use_mkldnn': False
C
chengduoZH 已提交
1810 1811
        })

1812
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1813 1814 1815 1816

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1817
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1818
    """
Y
yangyaming 已提交
1819 1820 1821
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1833
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1834 1835 1836 1837 1838
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1839
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1840 1841 1842 1843 1844 1845 1846

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1847 1848
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1849

L
Luo Tao 已提交
1850 1851
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1852
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1853 1854 1855 1856 1857 1858 1859 1860
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1861

Y
yangyaming 已提交
1862
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1863 1864 1865 1866 1867
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1868 1869
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1870
    """
F
fengjiayi 已提交
1871
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1872
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1873 1874
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880 1881 1882

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1883 1884 1885 1886 1887
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1888 1889 1890
    return pool_out


C
add doc  
chengduoZH 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1910
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1911 1912 1913 1914 1915
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1916
def sequence_first_step(input):
L
Luo Tao 已提交
1917
    """
L
Luo Tao 已提交
1918
    This function gets the first step of sequence.
L
Luo Tao 已提交
1919 1920 1921 1922

    .. code-block:: text

       x is a 1-level LoDTensor:
1923
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1924 1925 1926 1927 1928
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1929
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1930
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1931

L
Luo Tao 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1941

Y
yangyaming 已提交
1942
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1943 1944 1945
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1946 1947 1948
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1949
def sequence_last_step(input):
L
Luo Tao 已提交
1950
    """
L
Luo Tao 已提交
1951
    This function gets the last step of sequence.
L
Luo Tao 已提交
1952 1953 1954 1955

    .. code-block:: text

       x is a 1-level LoDTensor:
1956
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1957 1958 1959 1960 1961
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1962
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1963
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1964

L
Luo Tao 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1974

Y
yangyaming 已提交
1975
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1976 1977 1978
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1979 1980 1981
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1995 1996 1997 1998 1999
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2000

2001
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2002

2003 2004 2005 2006 2007
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
2008
	
2009 2010
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
2011 2012 2013
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
2014
                         sequences.
Y
Yibing Liu 已提交
2015 2016 2017 2018 2019 2020
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2021
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2037
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2052
@templatedoc()
Y
Yu Yang 已提交
2053
def pool2d(input,
C
chengduoZH 已提交
2054 2055
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2056 2057
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2058
           global_pooling=False,
C
chengduoZH 已提交
2059
           use_cudnn=True,
2060
           ceil_mode=False,
C
caoying03 已提交
2061
           name=None):
Y
Yu Yang 已提交
2062
    """
F
fengjiayi 已提交
2063
    ${comment}
2064 2065

    Args:
2066 2067 2068
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2069
                          feature, and W is the width of the feature.
2070
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2071
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2072
        pool_type: ${pooling_type_comment}
2073 2074
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2075 2076 2077
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2078
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2079 2080
                        layer will be named automatically.

2081
    Returns:
F
fengjiayi 已提交
2082
        Variable: The pooling result.
F
fengjiayi 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2096 2097 2098 2099
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2100
                            global_pooling=False)
Y
Yu Yang 已提交
2101 2102 2103 2104 2105
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2106

C
chengduoZH 已提交
2107 2108 2109 2110 2111
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2112 2113 2114 2115
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2116 2117
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2118

C
Add doc  
chengduoZH 已提交
2119
    l_type = 'pool2d'
2120 2121

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2122
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2123
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2124 2125

    helper.append_op(
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2137
            "use_mkldnn": False
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2154
    pooling configurations mentioned in input parameters.
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2167

2168
    Returns:
2169
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2170 2171 2172 2173 2174
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2175

C
chengduoZH 已提交
2176 2177 2178 2179 2180
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2181 2182 2183
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2184

C
chengduoZH 已提交
2185 2186
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2187

2188 2189
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2190
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2191
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2192 2193

    helper.append_op(
2194
        type=l_type,
Y
Yu Yang 已提交
2195 2196 2197 2198 2199 2200 2201
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2202
            "paddings": pool_padding,
2203
            "use_cudnn": use_cudnn,
2204
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2205
            "use_mkldnn": False
Y
Yu Yang 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2218
               data_layout='NCHW',
Y
Yang Yang 已提交
2219
               in_place=False,
2220 2221
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2222
               moving_variance_name=None,
2223 2224
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2225
    """
Q
qiaolongfei 已提交
2226 2227 2228 2229
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2230

Q
qiaolongfei 已提交
2231
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2232

Q
qiaolongfei 已提交
2233 2234
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2235 2236 2237
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2250 2251

    Args:
Q
qiaolongfei 已提交
2252
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2253 2254 2255 2256
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2257 2258 2259 2260 2261 2262 2263 2264
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2265
        data_layout(string, default NCHW): NCHW|NHWC
2266
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2267 2268 2269 2270
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2271
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2272
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2273 2274

    Returns:
Q
qiaolongfei 已提交
2275
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2276 2277 2278 2279 2280 2281 2282

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2283
    """
C
chengduo 已提交
2284
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2307
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2308

2309 2310
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2311 2312 2313
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2314
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2315
        shape=param_shape,
2316 2317 2318 2319 2320 2321 2322
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2323
            trainable=False,
W
wanghaoshuang 已提交
2324
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2325
        shape=param_shape,
2326 2327
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2328 2329 2330 2331 2332 2333

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2334 2335 2336 2337
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2338

X
Xin Pan 已提交
2339 2340
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2358 2359 2360 2361
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2362
            "use_mkldnn": False,
2363
            "fuse_with_relu": fuse_with_relu
2364
        })
Y
Yu Yang 已提交
2365 2366 2367 2368

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2369
@templatedoc()
G
guosheng 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2380
    ${comment}
G
guosheng 已提交
2381 2382 2383

    The formula is as follows:

Y
yuyang18 已提交
2384
    ..  math::
G
guosheng 已提交
2385 2386 2387 2388 2389 2390 2391

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2392 2393 2394 2395 2396 2397 2398 2399
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2400

G
guosheng 已提交
2401 2402
    Args:
        input(Variable): The input tensor variable.
2403
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2404
            normalization. Default True.
2405
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2406 2407
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2408
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2409
            Default 1.
2410
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2411
            division by zero. Default 1e-05.
G
guosheng 已提交
2412
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2413 2414 2415 2416
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2417
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2418 2419 2420 2421
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2422
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2423 2424 2425
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2426 2427

    Returns:
Y
yuyang18 已提交
2428
        ${y_comment}
G
guosheng 已提交
2429 2430 2431

    Examples:

Y
yuyang18 已提交
2432 2433 2434
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2450
    if shift:
G
guosheng 已提交
2451 2452 2453 2454 2455 2456
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2457 2458 2459 2460 2461
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2477 2478 2479 2480
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2481 2482 2483
                     padding=0,
                     stride=1,
                     dilation=1,
2484
                     groups=None,
C
caoying03 已提交
2485
                     param_attr=None,
2486
                     bias_attr=None,
C
chengduoZH 已提交
2487
                     use_cudnn=True,
2488
                     act=None,
C
caoying03 已提交
2489
                     name=None):
Y
Yu Yang 已提交
2490
    """
2491 2492 2493 2494 2495 2496 2497 2498
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2499 2500
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2501 2502 2503
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2504 2505 2506 2507 2508

    For each input :math:`X`, the equation is:

    .. math::

2509
        Out = \sigma (W \\ast X + b)
2510

2511
    Where:
2512 2513 2514

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2515 2516 2517 2518
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2519

2520 2521 2522 2523
    Example:

        - Input:

2524
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2525

2526
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2527 2528 2529

        - Output:

2530
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2531 2532

        Where
Y
Yu Yang 已提交
2533

2534 2535
        .. math::

2536 2537 2538 2539
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2540 2541

    Args:
2542 2543 2544 2545
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2546 2547 2548 2549
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2578
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2579 2580 2581
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2582
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2583
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2584 2585

    Returns:
2586
        Variable: The tensor variable storing the convolution transpose result.
2587 2588

    Raises:
2589 2590
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2591 2592 2593 2594

    Examples:
       .. code-block:: python

2595 2596
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2597
    """
C
chengduo 已提交
2598
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2599 2600 2601 2602 2603 2604 2605 2606
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2607 2608 2609
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2610 2611 2612
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2613

C
chengduoZH 已提交
2614 2615
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2616

Y
Yu Yang 已提交
2617 2618 2619 2620 2621
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2622

Y
Yu Yang 已提交
2623 2624
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2625

C
chengduoZH 已提交
2626
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2627
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2628
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2629
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2630
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2631 2632 2633
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2634

2635 2636 2637 2638 2639 2640 2641
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2642
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2643
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2644

Y
Yu Yang 已提交
2645 2646 2647
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2648
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2649
    helper.append_op(
2650
        type=op_type,
Y
Yu Yang 已提交
2651 2652
        inputs={'Input': [input],
                'Filter': [img_filter]},
2653
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2654
        attrs={
2655
            'output_size': output_size,
2656 2657 2658 2659 2660
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2661 2662
        })

2663 2664 2665
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2666 2667


2668
def conv3d_transpose(input,
Y
Yu Yang 已提交
2669 2670 2671
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2672 2673 2674
                     padding=0,
                     stride=1,
                     dilation=1,
2675
                     groups=None,
C
caoying03 已提交
2676
                     param_attr=None,
2677
                     bias_attr=None,
C
chengduoZH 已提交
2678
                     use_cudnn=True,
2679
                     act=None,
C
caoying03 已提交
2680
                     name=None):
Y
Yu Yang 已提交
2681
    """
2682
    **Convlution3D transpose layer**
2683

2684
    The convolution3D transpose layer calculates the output based on the input,
2685
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2686 2687 2688 2689 2690 2691
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2692 2693 2694
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2695 2696 2697 2698 2699

    For each input :math:`X`, the equation is:

    .. math::

2700
        Out = \sigma (W \\ast X + b)
2701 2702 2703

    In the above equation:

2704 2705
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2706 2707 2708 2709
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2710

2711 2712 2713 2714
    Example:

        - Input:

2715
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2716

2717
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2718 2719 2720

        - Output:

2721
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2722 2723

        Where
Y
Yu Yang 已提交
2724

2725 2726
        .. math::

2727 2728 2729
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2730 2731

    Args:
2732
        input(Variable): The input image with [N, C, D, H, W] format.
2733 2734 2735
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2736
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2737 2738
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2739
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2740 2741 2742
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2743 2744
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2745
        stride(int|tuple): The stride size. If stride is a tuple, it must
2746 2747
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2748
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2749 2750 2751
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2752 2753 2754 2755 2756
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2766 2767
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2768 2769
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2770 2771
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2772 2773

    Returns:
2774
        Variable: The tensor variable storing the convolution transpose result.
2775 2776

    Raises:
2777 2778
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2779 2780 2781 2782

    Examples:
       .. code-block:: python

2783 2784
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2785
    """
C
chengduo 已提交
2786
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2787 2788
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2789
    if not isinstance(input, Variable):
2790
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2791 2792
    input_channel = input.shape[1]

2793 2794 2795
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2796

C
chengduoZH 已提交
2797 2798 2799
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2800 2801 2802 2803 2804 2805
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2806 2807 2808
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2809

2810
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2811
                         padding[0] - 1) // dilation[0] + 1
2812
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2813
                         padding[1] - 1) // dilation[1] + 1
2814
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2815
                         padding[2] - 1) // dilation[2] + 1
2816
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2817
    else:
2818 2819
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2820

2821
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2822
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2823 2824 2825
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2826
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2827
    helper.append_op(
2828
        type=l_type,
Y
Yu Yang 已提交
2829 2830
        inputs={'Input': [input],
                'Filter': [img_filter]},
2831
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2832 2833 2834 2835
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2836
            'groups': groups,
C
chengduoZH 已提交
2837 2838
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2839

2840 2841
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2842
    return out
Y
yangyaming 已提交
2843 2844


Y
yangyaming 已提交
2845
def sequence_expand(x, y, ref_level=-1, name=None):
2846
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2847 2848 2849 2850
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2851 2852 2853 2854 2855

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2856
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2857
                x.data = [[a], [b], [c], [d]]
2858 2859 2860
                x.dims = [4, 1]

            y is a LoDTensor:
2861 2862
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2863

Y
yangyaming 已提交
2864
            ref_level: 0
2865

Y
yangyaming 已提交
2866
            then output is a 1-level LoDTensor:
2867
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2868
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2869 2870 2871 2872
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2873
                x.data = [[a], [b], [c]]
2874 2875 2876
                x.dims = [3, 1]

            y is a LoDTensor:
2877
                y.lod = [[2, 0, 3]]
2878

Y
yangyaming 已提交
2879
            ref_level: -1
2880

Y
yangyaming 已提交
2881 2882 2883
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2884 2885 2886
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2887 2888
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2889
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2890
                        will be named automatically.
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2901
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2902
    """
Y
yangyaming 已提交
2903
    helper = LayerHelper('sequence_expand', input=x, **locals())
2904
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2905
    tmp = helper.create_variable_for_type_inference(dtype)
2906
    helper.append_op(
Y
yangyaming 已提交
2907 2908 2909 2910 2911
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2912
    return tmp
2913 2914


C
chengduo 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2971
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2972 2973 2974 2975 2976 2977 2978 2979
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2980
@templatedoc()
2981
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2982 2983 2984 2985 2986
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2987 2988 2989
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2990
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2991 2992 2993 2994
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2995 2996 2997
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2998

F
fengjiayi 已提交
2999
    Returns:
M
minqiyang 已提交
3000
        Variable: The padded sequence batch and the original lengths before
3001
                  padding. All sequences has the same length.
M
minqiyang 已提交
3002

F
fengjiayi 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3016 3017
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3018 3019 3020 3021

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3022 3023 3024 3025 3026 3027
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3028 3029
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3030
        attrs={'padded_length': maxlen})
3031
    return out, length
F
fengjiayi 已提交
3032 3033


3034
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3035
    """
3036
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
3052
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3053 3054 3055 3056 3057 3058

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3059
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
3060 3061 3062 3063 3064 3065

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3066 3067
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3082
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3094 3095 3096 3097 3098 3099 3100 3101 3102
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3103 3104
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3105 3106 3107

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3108 3109

    This layer does the search in beams for one time step. Specifically, it
3110 3111 3112 3113 3114 3115
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3116

3117 3118 3119 3120 3121 3122 3123 3124
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3125

3126
    Args:
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3152

3153
    Returns:
3154 3155
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3156 3157 3158 3159

    Examples:
        .. code-block:: python

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3177 3178 3179 3180
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3181 3182 3183
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3184 3185 3186 3187 3188

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3189
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3207 3208 3209 3210 3211 3212 3213
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3224

3225 3226 3227 3228 3229 3230
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3231

3232 3233 3234 3235 3236 3237 3238 3239
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3240 3241
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3257 3258 3259 3260
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3261
              param_attr=None,
C
caoying03 已提交
3262 3263
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3264 3265 3266 3267
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3268
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3269

3270
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3271

3272
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3273

3274
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3275 3276 3277

            h_t & = o_t tanh(c_t)

3278 3279 3280 3281 3282 3283
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3284 3285 3286

        .. math::

3287
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3288 3289 3290 3291 3292 3293 3294 3295

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3296
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3297 3298

    Args:
Y
yangyaming 已提交
3299 3300 3301 3302 3303 3304
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3305
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3318 3319
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3320 3321

    Returns:
Y
yangyaming 已提交
3322
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3323 3324

    Raises:
3325 3326 3327 3328
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3329 3330 3331 3332 3333 3334

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3335
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3336
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3337
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3354
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3355 3356 3357 3358
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3359 3360
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3361 3362 3363
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3364
    size = cell_t_prev.shape[1]
3365
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3366 3367
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3368
                param_attr=param_attr,
3369
                bias_attr=bias_attr)
Y
yangyaming 已提交
3370
    dtype = x_t.dtype
X
Xin Pan 已提交
3371 3372
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3382
    return h, c
G
guosheng 已提交
3383 3384


C
caoying03 已提交
3385
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3386
    """
Y
yangyaming 已提交
3387
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3388 3389 3390

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3391
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3392 3393
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3394 3395
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3396
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3397
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3398
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3399 3400
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3401 3402 3403

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3404

G
guosheng 已提交
3405 3406 3407 3408 3409 3410
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3411
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3412 3413 3414 3415
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3416 3417 3418 3419

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3420
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3421 3422 3423
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3424 3425
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3426
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3427 3428
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3429 3430 3431 3432 3433
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3434
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3435 3436 3437 3438
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3439 3440


C
caoying03 已提交
3441
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3442
    """
Y
Yibing Liu 已提交
3443
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3444 3445 3446

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3447 3448 3449
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3450
            must be in the range :math:`[-rank(input), rank(input))`. If
3451
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3452
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3453 3454
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3455
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3456
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3457
                       will be named automatically.
G
guosheng 已提交
3458 3459

    Returns:
Y
Yibing Liu 已提交
3460
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3461

G
guosheng 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3472 3473
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3474 3475 3476 3477 3478 3479 3480

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3481 3482
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3483
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3484 3485
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3486 3487 3488 3489 3490
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3491
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3492 3493 3494 3495
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3496 3497


C
caoying03 已提交
3498
def reduce_max(input, dim=None, keep_dim=False, name=None):
3499
    """
Y
yangyaming 已提交
3500
    Computes the maximum of tensor elements over the given dimension.
3501 3502 3503

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3504
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3505 3506 3507
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3508
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3509 3510
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3511
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3512 3513
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3514 3515 3516

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3529 3530 3531 3532 3533 3534 3535

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3536 3537
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3538
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3539 3540
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3541 3542 3543 3544 3545
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3546
            'dim': dim if dim != None else [0],
3547 3548 3549 3550 3551 3552
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3553
def reduce_min(input, dim=None, keep_dim=False, name=None):
3554
    """
Y
yangyaming 已提交
3555
    Computes the minimum of tensor elements over the given dimension.
3556 3557 3558

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3559
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3560 3561 3562
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3563
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3564 3565
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3566
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3567 3568
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3569 3570 3571

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3584 3585 3586 3587 3588 3589 3590

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3591 3592
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3593
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3594 3595
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3596 3597 3598 3599 3600
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3601
            'dim': dim if dim != None else [0],
3602 3603 3604 3605
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3606 3607


3608 3609 3610 3611 3612 3613
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3614
        dim (list|int|None): The dimensions along which the product is performed. If
3615 3616
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3617 3618
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3619 3620 3621
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3622
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3623
            layer will be named automatically.
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3638
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3639
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3640 3641 3642 3643 3644 3645 3646

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3647 3648
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3649
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3650 3651
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3652 3653 3654 3655 3656
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3657
            'dim': dim if dim != None else [0],
3658 3659 3660 3661 3662 3663
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3664
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3665
    """
C
caoying03 已提交
3666
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3667 3668 3669

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3670 3671 3672 3673 3674
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3675
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3676
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3677
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3678 3679
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3680 3681

    Returns:
D
dzhwinter 已提交
3682
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3692 3693
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3709
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3732
    .. math::
3733 3734

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3735 3736 3737 3738 3739

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3740
        x(Variable|list): The input tensor to l2_normalize layer.
3741
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3742 3743
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3744
        epsilon(float): The epsilon value is used to avoid division by zero, \
3745
            the defalut value is 1e-10.
3746
        name(str|None): A name for this layer(optional). If set None, the layer \
3747
            will be named automatically.
C
caoying03 已提交
3748 3749

    Returns:
3750
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3751 3752

    Examples:
3753

C
caoying03 已提交
3754 3755
        .. code-block:: python

3756 3757 3758 3759
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3760 3761
    """

F
fengjiayi 已提交
3762 3763
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3764 3765
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3766 3767
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3768
    helper.append_op(
3769 3770 3771 3772
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3773
        attrs={
3774 3775
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3776 3777
        })
    return out
3778 3779


S
sneaxiy 已提交
3780
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3781
    """
Y
ying 已提交
3782 3783 3784 3785
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3786

C
chengduoZH 已提交
3787
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3788
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3789

3790 3791 3792 3793 3794
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3795
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3796

C
chengduoZH 已提交
3797
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3798
      performs in the following way.
G
guosheng 已提交
3799

3800
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3801
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3802
        last two dimensions and a batched matrix multiply supporting broadcast
3803
        applies on the two tensors.
G
guosheng 已提交
3804

Y
ying 已提交
3805 3806
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3807
    removed after matrix multiplication.
G
guosheng 已提交
3808 3809 3810

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3811 3812 3813
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3814
        alpha (float): The scale of output. Default 1.0.
3815
        name(str|None): A name for this layer(optional). If set None, the layer
3816
            will be named automatically.
G
guosheng 已提交
3817 3818

    Returns:
3819
        Variable: The product Tensor variable.
G
guosheng 已提交
3820

G
guosheng 已提交
3821 3822 3823
    Examples:
        .. code-block:: python

3824
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3825 3826
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3827

3828 3829
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3830

3831 3832
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3833

3834 3835
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3836 3837 3838 3839

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3840 3841
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3842

Y
ying 已提交
3843
            # x: [M], y: [N]
3844
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3845
    """
Y
ying 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3858
            y_shape = y_shape + [1]
Y
ying 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3875
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3876
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3877
    helper.append_op(
3878 3879 3880 3881
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3882 3883 3884
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3885
            'alpha': float(alpha),
S
sneaxiy 已提交
3886
        })
3887
    return out
3888 3889


3890
def topk(input, k, name=None):
Q
qingqing01 已提交
3891 3892 3893 3894
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3895
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3896 3897 3898 3899 3900 3901
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3923 3924 3925
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3926
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3927
                 of input.
3928
        name(str|None): A name for this layer(optional). If set None, the layer
3929
                       will be named automatically.
F
fengjiayi 已提交
3930
                       Default: None
Q
qingqing01 已提交
3931 3932

    Returns:
3933 3934 3935
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3936
        within the last dimension of input.
Q
qingqing01 已提交
3937

F
fengjiayi 已提交
3938 3939
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3940 3941 3942 3943 3944 3945 3946

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3947 3948
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3960
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3961
    """
Y
ying 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3971

Y
ying 已提交
3972
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3973

3974
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3975 3976
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3977
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3978

3979
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3980 3981
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3982

3983 3984 3985
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3986
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3987
                          the length of reference string.
3988
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3989
                                     calculating edit distance.
3990
        name (str): The name of this layer. It is optional.
3991

W
wanghaoshuang 已提交
3992
    Returns:
W
wanghaoshuang 已提交
3993
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3994 3995 3996 3997 3998

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3999
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4000
            cost = fluid.layers.edit_distance(input=x,label=y)
4001
    """
4002
    helper = LayerHelper("edit_distance", **locals())
4003

4004
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4005
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4006 4007
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4008 4009 4010 4011 4012

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4013
            attrs={"tokens": ignored_tokens})
4014 4015 4016 4017 4018
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4019
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4020
            attrs={"tokens": ignored_tokens})
4021 4022
        label = erased_label

4023
    # edit distance op
X
Xin Pan 已提交
4024 4025
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4026 4027 4028 4029
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4030 4031
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4032 4033
        attrs={"normalized": normalized})

4034
    return edit_distance_out, sequence_num
4035 4036 4037 4038 4039


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4040

Y
ying 已提交
4041 4042 4043 4044
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4062
        input.lod = [[4, 4]]
4063 4064 4065 4066 4067 4068 4069

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4070
        output.lod = [[2, 1]]
4071 4072 4073

    Args:

Y
ying 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4083
        name (str): The name of this layer. It is optional.
4084 4085

    Returns:
4086
        Variable: CTC greedy decode result. If all the sequences in result were
4087
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4088 4089 4090 4091 4092

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4093

4094
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4095
    """
4096
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4097
    _, topk_indices = topk(input, k=1)
4098 4099

    # ctc align op
X
Xin Pan 已提交
4100
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4101 4102 4103
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4104
        outputs={"Output": [ctc_out]},
4105 4106
        attrs={"merge_repeated": True,
               "blank": blank})
4107
    return ctc_out
4108 4109


F
fengjiayi 已提交
4110
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4111
    """
4112 4113
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4114
    to compute Connectionist Temporal Classification (CTC) loss.
4115 4116
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4117 4118 4119
    input tensor.

    Args:
4120
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4121 4122 4123 4124
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4125
       label (Variable): The ground truth of variable-length sequence,
4126 4127 4128
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4129 4130
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4131 4132 4133
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4134
         follewed by a mean_op.
W
wanghaoshuang 已提交
4135 4136

    Returns:
4137 4138
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4139 4140

    Examples:
4141

W
wanghaoshuang 已提交
4142
        .. code-block:: python
4143

4144 4145 4146
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4147 4148

    """
F
fengjiayi 已提交
4149
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4150 4151
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4176 4177 4178
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4179 4180 4181 4182 4183
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4184

4185
            out.lod  = [[0, 1, 3]]
4186 4187 4188 4189

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4190 4191 4192 4193 4194 4195 4196
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4197 4198 4199

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4200 4201

    Returns:
4202

4203 4204 4205 4206 4207
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4208
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4209
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4210 4211
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4212
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4213 4214 4215 4216 4217 4218
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4219 4220


4221 4222 4223 4224
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4225 4226 4227 4228 4229 4230
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4231 4232
        num_neg_samples=None,
        name=None):
4233 4234 4235 4236 4237 4238 4239
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4240 4241
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4242
            sample is 1.0.
C
chengduo 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4252
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4253 4254
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4255

4256
    Returns:
Y
Yibing Liu 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4284
    """
Y
Yang Yu 已提交
4285 4286 4287
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4288 4289

    dim = input.shape[1]
Y
Yang Yu 已提交
4290 4291 4292 4293 4294 4295
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4309 4310 4311
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4312

Y
Yang Yu 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4322 4323 4324

    helper.append_op(
        type='nce',
C
chengduo 已提交
4325
        inputs=inputs,
Y
Yang Yu 已提交
4326 4327 4328 4329 4330 4331
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4332
    return cost / (num_neg_samples + 1)
4333 4334


C
chengduo 已提交
4335 4336 4337 4338 4339 4340
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4341 4342
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4343
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4353

W
weixing02 已提交
4354
    Args:
M
minqiyang 已提交
4355
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4356 4357 4358 4359 4360
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4372 4373 4374 4375 4376 4377 4378 4379

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4380 4381 4382
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4383 4384 4385 4386
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4387 4388
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4389 4390
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4391
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4392 4393 4394 4395 4396
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4397 4398 4399 4400 4401 4402 4403 4404
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4405 4406
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4407
        inputs=inputs,
W
weixing02 已提交
4408 4409 4410 4411 4412 4413
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4414
def transpose(x, perm, name=None):
Y
ying 已提交
4415 4416 4417 4418 4419 4420 4421
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4422 4423 4424
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4425 4426 4427 4428 4429 4430 4431 4432

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4433
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4434 4435
    """

Y
fix ci.  
ying 已提交
4436
    if len(perm) != len(x.shape):
Y
ying 已提交
4437 4438 4439
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4440 4441 4442 4443 4444 4445
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4446 4447

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4448 4449
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4450
    helper.append_op(
4451
        type='transpose2',
Y
fix ci.  
ying 已提交
4452
        inputs={'X': [x]},
4453 4454
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4455 4456
        attrs={'axis': perm})
    return out
4457 4458


4459 4460 4461 4462 4463 4464 4465
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4466
    """
4467 4468 4469 4470 4471 4472 4473
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4502 4503 4504 4505 4506 4507 4508 4509 4510
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4511 4512 4513
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4514 4515 4516 4517 4518
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4546 4547 4548
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4561
            output.dims = {8, 8}
4562

4563
            output.lod = [[4, 4]]
4564

D
dzhwinter 已提交
4565
     Examples:
4566 4567 4568

        .. code-block:: python

4569 4570
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4571 4572

    """
W
wanghaoshuang 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4583 4584 4585 4586 4587 4588 4589
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4590
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4591
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4592
    helper.append_op(
4593
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4594
    return out
4595 4596


Y
yuyang18 已提交
4597
@templatedoc()
4598
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4599 4600
    """
    ${comment}
4601 4602

    Args:
Y
yuyang18 已提交
4603
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4604 4605
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4606 4607 4608 4609 4610
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4611
        ${out_comment}.
4612 4613

    Examples:
Y
yuyang18 已提交
4614 4615 4616 4617
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4618 4619 4620 4621 4622 4623
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4624
    out = helper.create_variable_for_type_inference(dtype)
4625 4626 4627 4628 4629
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4630
    return helper.append_activation(out)
4631 4632


Y
yuyang18 已提交
4633
@templatedoc()
4634 4635
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4636 4637 4638 4639 4640 4641 4642
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4643 4644

    Args:
Y
yuyang18 已提交
4645 4646
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4647 4648

    Returns:
Y
yuyang18 已提交
4649
        ${out_comment}.
4650 4651
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4652 4653 4654 4655 4656

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4657
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4658 4659 4660 4661 4662 4663
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4664 4665


4666 4667 4668 4669
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4670 4671
    """
    **Softmax With Cross Entropy Operator.**
4672

4673 4674 4675 4676
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4677

4678 4679 4680
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4681

4682 4683 4684
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4685

4686
    The equation is as follows:
4687

4688
    1) Hard label (one-hot label, so every sample has exactly one class)
4689

4690 4691 4692 4693
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4694

4695 4696 4697
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4698

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4711 4712
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4713 4714
                            if soft_label is set to False. Default: -100

4715 4716 4717 4718 4719 4720 4721 4722 4723
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4724 4725
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4726 4727
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4728 4729
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4730 4731 4732 4733 4734 4735
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4736 4737
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4738 4739 4740 4741 4742
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4743 4744
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4745
    For each instance, it computes the smooth L1 loss element by element first
4746
    and then sums all the losses. So the shape of ouput Variable is
4747
    [batch_size, 1].
4748

4749 4750
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4751
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4752
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4753
            L1 loss op with same shape as :attr:`x`.
4754
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4755 4756
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4757
            by this tensor element by element.
4758
        outside_weight (Variable|None): A tensor with rank at least 2. This
4759 4760
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4761
            element by element.
4762
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4763 4764
           scalar with default value 1.0.

4765
    Returns:
4766
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4767 4768 4769 4770 4771

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4772 4773
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4774
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4775
            out = fluid.layers.smooth_l1(x=fc, y=label)
4776
    """
4777

4778
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4779 4780
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4793 4794 4795 4796


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4797
    This layer creates the one-hot representations for input indices.
4798 4799

    Args:
Y
Yibing Liu 已提交
4800 4801
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4802 4803

    Returns:
Y
Yibing Liu 已提交
4804
        Variable: The one-hot representations of input.
4805 4806

    Examples:
C
caoying03 已提交
4807
        .. code-block:: python
4808

Y
Yibing Liu 已提交
4809 4810
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4811 4812
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4813
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4814 4815 4816 4817 4818 4819
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4820 4821


Y
Yu Yang 已提交
4822
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4823
    """
Y
yi.wu 已提交
4824 4825 4826
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4827 4828 4829 4830 4831 4832

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4833 4834
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4835 4836 4837 4838 4839 4840

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4841 4842
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4843 4844
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4845 4846 4847 4848 4849
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4850
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4851
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4852 4853
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4854 4855
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4856 4857 4858
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4859 4860


4861
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4862
    """
C
caoying03 已提交
4863 4864
    Gives a new shape to the input Tensor without changing its data.

4865 4866 4867 4868 4869
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4870

4871
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4872

4873 4874 4875 4876
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4877
    2. 0 means the actual dimension value is going to be copied from the
4878 4879 4880 4881
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4882 4883

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4884
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4885
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4886

4887
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4888 4889
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4890 4891
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4892
    dimensions.
C
caoying03 已提交
4893

4894
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4895 4896 4897 4898
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4899 4900

    Args:
4901
        x(variable): The input tensor.
C
caoying03 已提交
4902 4903
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4904 4905 4906 4907 4908
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4909
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4910 4911 4912 4913
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4914
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4915

4916 4917
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4918

X
Xin Pan 已提交
4919 4920 4921
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4922 4923
    Examples:
        .. code-block:: python
G
guosheng 已提交
4924

4925
            data = fluid.layers.data(
4926
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4927
            reshaped = fluid.layers.reshape(
4928
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4929 4930 4931
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4932
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4933 4934 4935 4936 4937
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4938

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4954
    helper = LayerHelper("reshape2", **locals())
X
Xin Pan 已提交
4955 4956
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4957
    helper.append_op(
4958
        type="reshape2",
X
Xin Pan 已提交
4959
        inputs=inputs,
D
dzhwinter 已提交
4960
        attrs={"shape": shape},
4961 4962
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4963

D
dzhwinter 已提交
4964
    return helper.append_activation(out)
4965

4966

4967
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4968
    """
M
minqiyang 已提交
4969 4970 4971
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4972
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4973

Y
Yibing Liu 已提交
4974 4975
    Examples:
    Case 1:
M
minqiyang 已提交
4976
      Given
Y
Yibing Liu 已提交
4977 4978 4979 4980 4981 4982 4983 4984
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4985
        and
Y
Yibing Liu 已提交
4986 4987 4988
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4989

Y
Yibing Liu 已提交
4990
    Args:
4991
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4992
        axes (list): List of integers, indicating the dimensions to be squeezed.
4993
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4994 4995 4996 4997 4998 4999 5000 5001

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5002
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5003 5004
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5005 5006
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5007
    helper.append_op(
5008
        type="squeeze2",
5009
        inputs={"X": input},
Y
Yibing Liu 已提交
5010
        attrs={"axes": axes},
5011 5012
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5013

5014 5015 5016
    return out


5017
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5018
    """
M
minqiyang 已提交
5019 5020 5021
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5022

M
minqiyang 已提交
5023 5024
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5025
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5026

Y
Yibing Liu 已提交
5027
    Args:
5028
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5029
        axes (list): List of integers, indicating the dimensions to be inserted.
5030
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5031 5032 5033 5034 5035 5036 5037 5038

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5039
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5040 5041
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5042 5043
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5044
    helper.append_op(
5045
        type="unsqueeze2",
5046
        inputs={"X": input},
Y
Yibing Liu 已提交
5047
        attrs={"axes": axes},
5048 5049
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5050

5051 5052
    return out

5053

Y
yangyaming 已提交
5054
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5055
    """
Y
Yibing Liu 已提交
5056
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5057 5058 5059 5060
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5061
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5062 5063 5064 5065 5066 5067

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5068
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5069 5070 5071
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5072
            target_lod: [4, 2]
Y
yangyaming 已提交
5073 5074

            then we get a 1-level LoDTensor:
5075
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5076 5077 5078 5079 5080 5081
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5082
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5083 5084 5085 5086
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5087
                y.data = [[2, 4]]
Y
yangyaming 已提交
5088 5089 5090
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5091
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5092 5093 5094 5095 5096 5097
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5098
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5099 5100 5101 5102
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5103
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5104 5105 5106 5107
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5108
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5109 5110 5111 5112 5113
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5114
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5115
                           from :attr:`y`.
Y
yangyaming 已提交
5116
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5117
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5118 5119

    Returns:
Y
Yibing Liu 已提交
5120
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5121 5122

    Raises:
Y
Yibing Liu 已提交
5123
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5133
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5159
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5188 5189
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5202 5203 5204
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5218 5219 5220 5221


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5222
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5223
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5224

G
guosheng 已提交
5225 5226 5227 5228
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5251
                         The length of :attr:paddings must be
G
guosheng 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5262

G
guosheng 已提交
5263 5264 5265 5266 5267 5268
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5269
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5270 5271 5272 5273 5274 5275 5276
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5277 5278


C
chengduo 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5349
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5359 5360 5361 5362 5363 5364 5365
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5366 5367
    called label-smoothing regularization (LSR).

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5391
                              be :math:`(1, class\_num)`.
5392 5393
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5394
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5414
    smooth_label = helper.create_variable_for_type_inference(dtype)
5415 5416 5417 5418 5419 5420 5421
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5422 5423


Y
yi.wu 已提交
5424
@templatedoc()
5425 5426
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5427
    ${comment}
5428 5429

    Args:
Y
yi.wu 已提交
5430 5431
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5432 5433 5434
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5435 5436

    Returns:
Y
update  
yi.wu 已提交
5437
        Variable: ${out_comment}.
5438 5439

    Examples:
5440 5441
        .. code-block:: python

5442
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5443 5444 5445
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5446 5447
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5460 5461


J
jerrywgz 已提交
5462 5463 5464 5465 5466 5467
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5468 5469
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

            align_out = fluid.layers.roi_align(input=x, 
                                               rois=rois, 
                                               pooled_height=7, 
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5495
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5536 5537
        .. code-block:: python

W
whs 已提交
5538 5539 5540 5541
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5542
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5543 5544 5545 5546 5547 5548
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5549 5550


5551 5552 5553 5554 5555
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5556
    """
Q
qiaolongfei 已提交
5557
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5558

5559
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5560 5561 5562
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5563

5564
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5565

5566
    Args:
5567
        input (Variable): The input tensor of image resize layer,
5568 5569
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5570
        out_shape(list|tuple|Variable|None): Output shape of image resize
5571 5572
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5573
        scale(float|None): The multiplier for the input height or width.
5574 5575 5576
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5577 5578
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5579 5580
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5581 5582

    Returns:
Q
update  
qiaolongfei 已提交
5583 5584
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5585

5586 5587 5588
    Examples:
        .. code-block:: python

5589
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5590
    """
5591 5592 5593 5594
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5595 5596
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5597 5598
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5599 5600 5601 5602

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5603 5604 5605
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5606
    if out_shape is not None:
B
baiyf 已提交
5607 5608 5609
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5610 5611 5612 5613 5614 5615
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5616 5617 5618 5619
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5620
    out = helper.create_variable_for_type_inference(dtype)
5621
    helper.append_op(
5622
        type=resample_methods[resample],
5623
        inputs=inputs,
5624 5625 5626 5627
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5628 5629


Y
yuyang18 已提交
5630
@templatedoc(op_type="bilinear_interp")
5631 5632
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5633 5634 5635 5636 5637 5638
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5639

Y
yuyang18 已提交
5640 5641 5642 5643 5644 5645 5646 5647
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5648 5649 5650 5651 5652 5653 5654
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5655 5656 5657
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5658 5659 5660 5661 5662 5663 5664
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5665
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5666

5667
    Returns:
Q
update  
qiaolongfei 已提交
5668
        Variable: The output is a 4-D tensor of the shape
5669
        (num_batches, channls, out_h, out_w).
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5680 5681 5682
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5683 5684 5685
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5686 5687
def gather(input, index):
    """
Q
qiaolongfei 已提交
5688 5689
    **Gather Layer**

5690
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5691 5692 5693 5694
    of X indexed by `index` and concatenate them together.

    .. math::

5695
        Out = X[Index]
W
whs 已提交
5696 5697 5698 5699 5700 5701 5702


    .. code-block:: text


                Given:

5703 5704
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5715
        input (Variable): The source input with rank>=1.
W
whs 已提交
5716 5717 5718 5719 5720 5721
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5722

W
whs 已提交
5723 5724 5725 5726 5727 5728
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5729
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5730 5731 5732 5733 5734 5735 5736 5737
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5769
    out = helper.create_variable_for_type_inference(dtype)
5770 5771 5772 5773 5774 5775 5776 5777 5778
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5829
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5830 5831 5832 5833 5834 5835 5836 5837 5838
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5852

5853 5854 5855
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5856
    """
F
stash  
fengjiayi 已提交
5857
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5858
    dtype = x.dtype
X
Xin Pan 已提交
5859
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5860
    if seed is None:
5861
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5862
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5863
    if isinstance(seed, int):
F
fengjiayi 已提交
5864 5865 5866 5867 5868
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5869 5870 5871 5872
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5873
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5874 5875
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5876 5877
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5878
    return out
W
whs 已提交
5879 5880


5881
def log(x, name=None):
W
wanghaoshuang 已提交
5882 5883 5884 5885 5886
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5887
        Out = \\ln(x)
W
wanghaoshuang 已提交
5888 5889

    Args:
5890
        x (Variable): Input tensor.
5891 5892
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5893 5894 5895 5896 5897 5898 5899 5900

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5901
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5902 5903
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5904
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5905
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5906
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5907 5908 5909
    return out


5910
def relu(x, name=None):
W
wanghaoshuang 已提交
5911 5912
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5913
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5914 5915 5916 5917
    the tensor elementwise.

    .. math::

5918
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5919 5920

    Args:
5921
        x (Variable): The input tensor.
5922 5923
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5924 5925 5926 5927 5928 5929 5930 5931

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5932
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5933 5934
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5935
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5936
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5937
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5938
    return out
5939 5940


W
whs 已提交
5941 5942 5943
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5944 5945 5946 5947
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5948
    .. math::
5949 5950

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5951

5952
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5953 5954 5955 5956 5957
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5958
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5959
                           Its shape should be the same as input.
5960
        num_classes (int): The possible number of labels.
W
whs 已提交
5961 5962 5963 5964

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5965
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5966 5967 5968 5969

    Examples:

        .. code-block:: python
5970

W
whs 已提交
5971 5972 5973 5974
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5975 5976 5977
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5978 5979
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5980 5981
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5982
        outputs={
W
whs 已提交
5983 5984 5985
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5986 5987 5988
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6063
                    isinstance(shape, Variable)):
6064 6065 6066 6067 6068
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6069
    out = helper.create_variable_for_type_inference(x.dtype)
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6097

6098 6099
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6100

6101 6102 6103 6104
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6105

6106 6107 6108 6109 6110
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6111 6112 6113

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6149
    out = helper.create_variable_for_type_inference("float32")
6150 6151 6152 6153 6154 6155 6156 6157

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6158 6159


M
minqiyang 已提交
6160 6161
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6162
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6163
    which compares left score and right score passed in.
M
minqiyang 已提交
6164
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6165 6166 6167 6168 6169 6170

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6171
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6172 6173
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6174
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6175 6176 6177
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6178
       Variable: The ranking loss.
M
minqiyang 已提交
6179
    Raises:
M
minqiyang 已提交
6180
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6181 6182 6183 6184 6185 6186 6187
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6188
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6189 6190 6191 6192 6193 6194
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6195 6196
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6222

W
whs 已提交
6223 6224
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6225

W
whs 已提交
6226
      Case 0:
M
minqiyang 已提交
6227

W
whs 已提交
6228 6229 6230
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6231

W
whs 已提交
6232 6233 6234
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6235

W
whs 已提交
6236
      Case 1:
M
minqiyang 已提交
6237

W
whs 已提交
6238 6239
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6240

W
whs 已提交
6241 6242 6243
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6244

W
whs 已提交
6245
      Case 2:
M
minqiyang 已提交
6246

W
whs 已提交
6247 6248
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6249

W
whs 已提交
6250 6251 6252
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6253 6254


W
whs 已提交
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6281
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6310
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6333
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6356
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6380
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6405
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6429
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6430 6431 6432 6433 6434 6435 6436 6437
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6452
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6453
                        will be named automatically.
J
jerrywgz 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6481
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6482 6483 6484 6485 6486 6487 6488 6489 6490
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6505
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6528
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6550
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6551 6552 6553 6554 6555 6556 6557 6558
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6572

6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6583 6584
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6600
        ValueError: If axis is not in range [0, rank(x)].
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6617 6618
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6619
    helper.append_op(
6620
        type='flatten2',
6621
        inputs={"X": x},
6622 6623
        outputs={'Out': out,
                 'XShape': x_shape},
6624 6625
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6626 6627


C
chenweihang 已提交
6628
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6629
    """
C
chenweihang 已提交
6630
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6631
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6632 6633
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6634

C
chenweihang 已提交
6635 6636 6637 6638
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6639
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6640 6641 6642 6643 6644 6645
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6646
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6647 6648 6649
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6650 6651 6652
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6664 6665
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6666 6667 6668 6669 6670 6671
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6672
    return out
6673

6674

S
sneaxiy 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6684

S
sneaxiy 已提交
6685
    .. math::
6686

S
sneaxiy 已提交
6687 6688 6689
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6690
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6691 6692 6693 6694
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6695 6696 6697
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6698 6699
    Returns:
        Variable: The output sequence mask.
6700

S
sneaxiy 已提交
6701 6702
    """

Q
qingqing01 已提交
6703
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6704
    if name is None:
X
Xin Pan 已提交
6705
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6706
    else:
X
Xin Pan 已提交
6707
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6708

Q
qingqing01 已提交
6709 6710 6711
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6712 6713
        outputs={'Y': out},
        attrs={
6714
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6715 6716 6717
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6718 6719


X
Xin Pan 已提交
6720
def stack(x, axis=0):
S
sneaxiy 已提交
6721 6722 6723 6724
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6725 6726 6727 6728 6729 6730 6731

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6732
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6733
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6734 6735

    Args:
6736
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6737
        axis (int|None): The axis along which all inputs are stacked.
6738

S
sneaxiy 已提交
6739 6740
    Returns:
        Variable: The stacked variable.
6741

S
sneaxiy 已提交
6742 6743
    """

X
Xin Pan 已提交
6744 6745 6746 6747 6748 6749
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6750
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6751
    helper.append_op(
S
sneaxiy 已提交
6752 6753
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6754

X
Xin Pan 已提交
6755
    return out
D
dzhwinter 已提交
6756 6757 6758 6759 6760 6761 6762


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6763

D
dzhwinter 已提交
6764 6765 6766
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6767
    raised.
D
dzhwinter 已提交
6768 6769

    Args:
M
minqiyang 已提交
6770
        x (Variable): Input variable.
D
dzhwinter 已提交
6771 6772
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6773

D
dzhwinter 已提交
6774 6775
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6776

D
dzhwinter 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6788
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6789 6790 6791 6792 6793 6794 6795 6796

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6809

W
whs 已提交
6810 6811 6812 6813
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6814

W
whs 已提交
6815
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6816

W
whs 已提交
6817
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6818

W
whs 已提交
6819 6820 6821 6822
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6823

W
whs 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6840
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6841 6842 6843 6844 6845 6846
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6847 6848


G
fix  
gongweibao 已提交
6849 6850 6851
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6852
@templatedoc()
G
fix  
gongweibao 已提交
6853 6854 6855 6856 6857 6858 6859 6860 6861
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6862
    ${comment}
G
fix  
gongweibao 已提交
6863 6864

    Args:
G
gongweibao 已提交
6865 6866 6867
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6868
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6869 6870 6871
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6872 6873
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6874
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6875 6876 6877 6878

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6879
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6896 6897


G
gongweibao 已提交
6898
@templatedoc()
X
Xin Pan 已提交
6899
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6900
    """
G
gongweibao 已提交
6901
    ${comment}
G
fix  
gongweibao 已提交
6902 6903

    Args:
G
gongweibao 已提交
6904 6905 6906 6907
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6908 6909 6910
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6911
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6912 6913 6914 6915

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6916
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6927
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6928 6929 6930 6931 6932
        })

    return out


G
gongweibao 已提交
6933
@templatedoc()
G
fix  
gongweibao 已提交
6934
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6935
    """
G
gongweibao 已提交
6936
    ${comment}
G
fix  
gongweibao 已提交
6937 6938

    Args:
G
gongweibao 已提交
6939 6940 6941 6942
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6943
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6944 6945

    Returns:
G
gongweibao 已提交
6946
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6947 6948 6949 6950

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6951
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6963
@templatedoc()
G
fix  
gongweibao 已提交
6964 6965 6966 6967 6968 6969 6970 6971 6972
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6973
    ${comment}
G
fix  
gongweibao 已提交
6974 6975

    Args:
G
gongweibao 已提交
6976 6977
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6978
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6979 6980 6981 6982
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6983
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6984 6985

    Returns:
G
gongweibao 已提交
6986
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6987 6988 6989
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
6990
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7009
@templatedoc()
X
Xin Pan 已提交
7010
def sum(x):
G
fix  
gongweibao 已提交
7011
    """
G
gongweibao 已提交
7012
    ${comment}
G
fix  
gongweibao 已提交
7013 7014

    Args:
G
gongweibao 已提交
7015
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7016 7017

    Returns:
G
gongweibao 已提交
7018
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7019 7020 7021
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7022 7023
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7024 7025 7026 7027
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7028
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7029 7030 7031 7032

    return out


G
gongweibao 已提交
7033
@templatedoc()
G
fix  
gongweibao 已提交
7034 7035
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7036
    ${comment}
G
fix  
gongweibao 已提交
7037 7038

    Args:
G
gongweibao 已提交
7039 7040 7041 7042
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7043 7044

    Returns:
G
gongweibao 已提交
7045
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7046 7047 7048 7049

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7050 7051
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7063
@templatedoc()
G
fix  
gongweibao 已提交
7064 7065
def shape(input):
    """
G
gongweibao 已提交
7066
    ${comment}
G
fix  
gongweibao 已提交
7067 7068

    Args:
G
gongweibao 已提交
7069
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7070 7071

    Returns:
G
gongweibao 已提交
7072
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7073 7074 7075 7076

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7077 7078
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7079
    helper.append_op(
G
fix  
gongweibao 已提交
7080
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7081 7082

    return out
G
merge  
gongweibao 已提交
7083 7084


S
sneaxiy 已提交
7085 7086 7087 7088 7089 7090 7091 7092
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7093 7094
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7095
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7096 7097 7098
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7099

S
sneaxiy 已提交
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7111
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7112 7113 7114 7115 7116 7117 7118 7119
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7120
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7121
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7122 7123 7124 7125 7126 7127

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7128
    if name is None:
X
Xin Pan 已提交
7129
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7130 7131 7132
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7143
    return helper.append_activation(out)
S
sneaxiy 已提交
7144 7145


X
Xin Pan 已提交
7146
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7147 7148 7149
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7150
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7151 7152 7153
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7154
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7155 7156 7157
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7158
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7159 7160 7161
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7162
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7163 7164 7165
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7166
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7167 7168 7169
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7170
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7182 7183
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7184
        ])
M
minqiyang 已提交
7185 7186


7187
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7188 7189
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7190 7191
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7192 7193 7194

    if out is None:
        if name is None:
X
Xin Pan 已提交
7195
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7211
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7230
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7249
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7268
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7303
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7335
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7365
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7395
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7405 7406
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7429
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7459
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7498
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out