nn.py 391.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26 27
from ..framework import Variable, OpProtoHolder, _in_dygraph_mode
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
186
    'temporal_shift',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
D
dengkaipeng 已提交
191
    'kldiv_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
194
    'fsp_matrix',
Y
Yu Yang 已提交
195 196
]

J
jerrywgz 已提交
197 198
kIgnoreIndex = -100

Y
Yu Yang 已提交
199 200 201 202 203 204 205

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
206
       is_test=False,
207
       name=None):
Y
Yu Yang 已提交
208
    """
209
    **Fully Connected Layer**
Y
Yu Yang 已提交
210

211
    This function creates a fully connected layer in the network. It can take
212
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
213
    Args in detail). It creates a variable called weights for each input tensor,
214 215 216 217
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
218
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
219 220
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
221

222
    When the input is single tensor:
C
caoying03 已提交
223

224 225 226 227 228
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
229 230 231

    .. math::

232
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
233 234 235

    In the above equation:

236 237 238
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
239
    * :math:`b`: The bias parameter created by this layer (if needed).
240
    * :math:`Act`: The activation function.
C
caoying03 已提交
241
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
261
    Args:
R
ranqiu 已提交
262 263 264 265 266 267 268 269 270 271
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
272
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
273 274 275 276
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
277 278
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
279
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
280
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
281
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
282

283
    Returns:
F
fengjiayi 已提交
284
        Variable: The transformation result.
285 286

    Raises:
C
caoying03 已提交
287
        ValueError: If rank of the input tensor is less than 2.
288 289 290 291

    Examples:
        .. code-block:: python

292
          # when input is single tensor
F
fengjiayi 已提交
293
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
294
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
295 296 297 298 299

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
300
    """
C
caoying03 已提交
301
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
302 303 304 305

    dtype = helper.input_dtype()

    mul_results = []
306 307
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
308 309 310
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
311

Y
Yu Yang 已提交
312
        w = helper.create_parameter(
313
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
314
        tmp = helper.create_variable_for_type_inference(dtype)
315
        helper.append_op(
316 317 318
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
319
            outputs={"Out": tmp},
M
mozga-intel 已提交
320 321
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
322 323 324 325
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
326
    else:
X
Xin Pan 已提交
327
        pre_bias = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
332
            attrs={"use_mkldnn": False})
333 334 335 336
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
337 338


339 340 341
def embedding(input,
              size,
              is_sparse=False,
342
              is_distributed=False,
343 344 345
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
346
    """
347 348
    **Embedding Layer**

349
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
350 351
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
352 353 354

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
355 356

    Args:
357 358 359 360 361
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
362
        is_distributed(bool): Whether to run lookup table from remote parameter server.
363 364
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
365
            with zeros whenever lookup encounters it in :attr:`input`. If
366
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
367 368
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
369
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
370

371 372 373
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
374

375 376
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
377

C
chengduoZH 已提交
378
          dict_size = len(dataset.ids)
379
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
380
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
381 382 383
    """

    helper = LayerHelper('embedding', **locals())
384
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
385 386
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
387 388
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
389
    tmp = helper.create_variable_for_type_inference(dtype)
390 391
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
392 393 394 395 396
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
397 398 399
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
400
            'remote_prefetch': remote_prefetch,
401 402
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
403 404 405
    return tmp


W
wopeizl 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
422

W
wopeizl 已提交
423 424 425 426 427 428 429 430 431 432 433
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
434

W
wopeizl 已提交
435 436 437 438
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
439

W
wopeizl 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
526 527


P
phlrain 已提交
528 529 530 531 532 533
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
534
         dropout_prob=0.0,
P
phlrain 已提交
535 536 537 538 539
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
540
    """
P
phlrain 已提交
541
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
542 543

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
544
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
545 546
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
547
    .. math::
M
minqiyang 已提交
548 549 550 551 552 553 554

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
555
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
556 557 558 559

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
560 561

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
562 563 564 565 566 567
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
568 569 570
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
571
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
572

M
minqiyang 已提交
573
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
574 575 576 577 578
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
579
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
580 581 582 583 584
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
585
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
586 587
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
588 589
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
590 591 592 593 594 595
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
596
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
597

L
liuhongyu 已提交
598 599

    Returns:
M
minqiyang 已提交
600 601
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
602
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
603

H
haowang101779990 已提交
604 605 606 607
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
608
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
609 610
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
611
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
627
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
628 629 630 631 632 633
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
634 635 636
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
696 697 698 699 700 701 702 703 704 705
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
706
                  proj_activation='tanh',
707
                  dtype='float32',
X
xuezhong 已提交
708 709 710 711 712
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
713 714 715
    """
    **Dynamic LSTMP Layer**

716 717 718 719 720 721
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
722 723 724 725 726

    The formula is as follows:

    .. math::

727
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
728

729
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
730

731
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
732

733
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
734

735
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
736

737
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
738

739
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
740

Y
Yibing Liu 已提交
741 742 743 744 745 746
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
747
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
748
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
749
          bias vector).
Y
Yibing Liu 已提交
750 751 752
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
753
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
754
    * :math:`h`: The hidden state.
755
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
756 757
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
758
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
759
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
760
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
761 762
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
763 764 765 766

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
767

Y
Yibing Liu 已提交
768 769 770 771 772 773 774 775 776 777 778 779
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
780
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
781 782
                               hidden-hidden weight and projection weight.

783 784
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
785 786
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
787 788
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
789
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
790 791 792 793 794

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
795
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
796 797 798 799 800 801
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
802
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
803 804 805
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
806
                                - The shape is (1 x 7D).
C
chengduo 已提交
807 808 809 810 811

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
812 813 814 815 816 817 818 819 820
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
821
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
822 823
                              default "tanh".
        proj_activation(str): The activation for projection output.
824
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
825
                              default "tanh".
Y
Yibing Liu 已提交
826
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
827 828
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
829 830 831 832 833 834 835 836 837 838 839
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
840 841

    Returns:
842 843 844 845
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
846 847

    Examples:
848

Y
Yibing Liu 已提交
849 850
        .. code-block:: python

851 852 853 854
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
855
            hidden_dim, proj_dim = 512, 256
856
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
857
                                     act=None, bias_attr=None)
858 859 860
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
861 862 863 864
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
865
    """
866

C
chengduo 已提交
867
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
868
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
869
    size = size // 4
Y
Yibing Liu 已提交
870 871 872 873 874 875 876 877 878 879
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
880 881 882 883 884 885
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
901

X
xuezhong 已提交
902 903 904 905 906
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
907 908
    helper.append_op(
        type='lstmp',
909
        inputs=inputs,
Y
Yibing Liu 已提交
910 911 912 913 914 915 916 917 918
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
919 920
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
921 922 923 924 925 926 927 928 929
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
930 931 932 933 934 935 936
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
937 938
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
939
    """
940
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
941

942 943 944
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
945

G
guosheng 已提交
946 947 948 949 950 951 952 953 954
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
955

G
guosheng 已提交
956
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
957

Q
Qiao Longfei 已提交
958 959 960

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
961 962 963 964 965 966 967 968 969 970 971 972
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
973
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
974 975
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
976 977 978 979
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
980
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
981 982

    Args:
983 984
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
985
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
986
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
987 988
            is the hidden size.
        size(int): The dimension of the gru cell.
989
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
990 991
            hidden-hidden weight matrix. Note:

992
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
993
              :math:`D` is the hidden size.
994
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
995
              The first part are weights of the update gate and reset gate with
996
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
997
              candidate hidden state with shape :math:`(D \\times D)`.
998 999 1000 1001 1002

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1003
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1004
            the bias in the update gate, reset gate and candidate calculations.
1005 1006 1007
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1008 1009
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1010
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1011 1012 1013
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1014
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1015
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1016 1017 1018 1019
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1020 1021

    Returns:
G
guosheng 已提交
1022
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1023
            and sequence length is the same with the input.
1024

G
guosheng 已提交
1025
    Examples:
1026

G
guosheng 已提交
1027 1028
        .. code-block:: python

1029 1030 1031 1032
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1033
            hidden_dim = 512
1034
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1035
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1045
    batch_size = input.shape[0]
G
guosheng 已提交
1046
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1047
    if h_0:
G
guosheng 已提交
1048
        assert h_0.shape == (
Y
Yancey 已提交
1049 1050 1051
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1052

X
Xin Pan 已提交
1053 1054 1055 1056
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1070 1071
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1072 1073 1074 1075
        })
    return hidden


Y
Yu Yang 已提交
1076 1077 1078
def gru_unit(input,
             hidden,
             size,
1079 1080
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1081
             activation='tanh',
Q
Qiao Longfei 已提交
1082 1083
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1084
    """
1085 1086 1087
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1088
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1089
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1090

1091 1092
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1093

1094
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1095

1096
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1113 1114

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1115 1116 1117
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1118 1119
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1120 1121
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1122 1123 1124
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1125 1126 1127

    Args:
        input (Variable): The fc transformed input value of current step.
1128
        hidden (Variable): The hidden value of gru unit from previous step.
1129
        size (integer): The input dimension value.
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1144
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1145
            the bias in the update gate, reset gate and candidate calculations.
1146 1147 1148
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1149 1150
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1151 1152 1153 1154
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1155

1156 1157 1158 1159 1160 1161
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1162

1163
             # assuming we have x_t_data and prev_hidden of size=10
1164
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1165 1166
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1179
    size = size // 3
Y
Yu Yang 已提交
1180 1181

    # create weight
1182 1183
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1184

X
Xin Pan 已提交
1185 1186 1187
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1188
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1189
    # create bias
1190
    if helper.bias_attr:
Y
Yu Yang 已提交
1191 1192 1193
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1194
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1195 1196 1197

    helper.append_op(
        type='gru_unit',
1198
        inputs=inputs,
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1205 1206
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1207 1208 1209 1210 1211
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1212
@templatedoc()
1213
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1214 1215 1216 1217 1218 1219 1220
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1221
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1222 1223 1224 1225
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1226 1227 1228
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1229 1230

    """
Y
Yu Yang 已提交
1231 1232 1233 1234 1235 1236
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1237 1238 1239 1240 1241 1242 1243 1244
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1260 1261 1262 1263
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1264

W
wopeizl 已提交
1265 1266
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1267

W
wopeizl 已提交
1268
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1269

W
wopeizl 已提交
1270
        label(${label_type}): ${label_comment}
1271

W
wopeizl 已提交
1272 1273
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1274

W
wopeizl 已提交
1275 1276
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1277

W
wopeizl 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1288
                "Transition": transition,
W
wopeizl 已提交
1289 1290
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1291

W
wopeizl 已提交
1292
    return viterbi_path
Y
Yu Yang 已提交
1293 1294


Y
yi.wu 已提交
1295
@templatedoc()
F
fengjiayi 已提交
1296
def cos_sim(X, Y):
Y
Yu Yang 已提交
1297
    """
Y
yi.wu 已提交
1298 1299 1300
    ${comment}

    Args:
1301 1302
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1303

Y
yi.wu 已提交
1304
    Returns:
1305
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1306
    """
F
fengjiayi 已提交
1307
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1308 1309 1310
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1321 1322 1323 1324 1325
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1326
            dropout_implementation="downgrade_in_infer"):
1327 1328 1329 1330 1331
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1332
    training. The dropout operator randomly sets (according to the given dropout
1333 1334 1335
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1336 1337
    dropout op can be removed from the program to make the program more efficient.

1338
    Args:
1339 1340
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1341 1342 1343 1344 1345 1346 1347
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1348 1349
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1350
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1351 1352

                                           - train: out = input * mask
C
ceci3 已提交
1353
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1354 1355 1356

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1357
                                        2. upscale_in_train, upscale the outcome at training time
1358

H
haowang101779990 已提交
1359 1360
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1361

H
haowang101779990 已提交
1362 1363
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1364

M
minqiyang 已提交
1365

1366
    Returns:
1367
        Variable: A tensor variable is the shape with `x`.
1368 1369

    Examples:
1370

1371 1372
        .. code-block:: python

1373 1374
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1375 1376
    """

F
fengjiayi 已提交
1377
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1378 1379 1380
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1381 1382 1383 1384

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1385 1386 1387 1388 1389
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1390 1391 1392 1393
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1394 1395
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1396
        })
1397 1398 1399
    return out


J
jerrywgz 已提交
1400
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1401
    """
Y
Yibing Liu 已提交
1402 1403
    **Cross Entropy Layer**

1404 1405 1406
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1407 1408

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1409
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1410

Y
Yibing Liu 已提交
1411
        .. math::
Y
yangyaming 已提交
1412

Y
Yibing Liu 已提交
1413 1414 1415
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1416 1417
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1418 1419 1420 1421 1422

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1423
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1424 1425 1426
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1427 1428
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1429
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1430

Y
Yibing Liu 已提交
1431
    Args:
Y
yangyaming 已提交
1432
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1433 1434 1435 1436
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1437
        label (Variable|list): the ground truth which is a 2-D tensor. When
1438 1439 1440 1441
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1442
        soft_label (bool): a flag indicating whether to
1443
                                           interpretate the given labels as soft
1444
                                           labels. Default: `False`.
M
minqiyang 已提交
1445 1446
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1447
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1448 1449 1450 1451 1452

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1453 1454 1455
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1456

H
haowang101779990 已提交
1457 1458
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1459

H
haowang101779990 已提交
1460 1461
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1462 1463 1464 1465 1466 1467

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1468
    """
S
sneaxiy 已提交
1469 1470
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1471
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1472
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1473 1474 1475 1476 1477
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1478 1479
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1480 1481 1482
    return out


S
sneaxiy 已提交
1483 1484 1485 1486
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1487
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1488 1489 1490 1491 1492
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1493
                 'MatchX': [match_x],
S
sneaxiy 已提交
1494 1495 1496 1497 1498
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1499
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1500 1501 1502
    """
    Bayesian Personalized Ranking Loss Operator.

1503
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1504 1505 1506 1507 1508 1509
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1510 1511 1512 1513 1514 1515
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1516 1517
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1518 1519 1520
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1521 1522 1523
    Examples:
        .. code-block:: python

1524
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1525
    """
1526 1527 1528 1529 1530 1531

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1532
                'Label': [label]},
1533 1534 1535 1536
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1537
def square_error_cost(input, label):
Y
Yu Yang 已提交
1538
    """
1539 1540
    **Square error cost layer**

1541 1542
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1557 1558
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1559 1560

    Returns:
G
guosheng 已提交
1561
        Variable: The tensor variable storing the element-wise squared error \
1562
                  difference of input and label.
1563 1564 1565 1566 1567 1568 1569 1570

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1571
    """
F
fengjiayi 已提交
1572
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1573
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1580
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1581
    helper.append_op(
F
fengjiayi 已提交
1582 1583
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1584 1585 1586
    return square_out


Y
yi.wu 已提交
1587
@templatedoc()
Y
Yu Yang 已提交
1588 1589 1590 1591
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1592
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1593
    """
Y
yi.wu 已提交
1594
    **Chunk Evaluator**
Y
yi.wu 已提交
1595

Y
yangyaming 已提交
1596
    This function computes and outputs the precision, recall and
1597
    F1-score of chunk detection.
Y
yi.wu 已提交
1598

M
minqiyang 已提交
1599
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1600
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1601 1602 1603 1604 1605 1606

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1607

Y
yi.wu 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1633

Y
yi.wu 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1658
    Args:
1659 1660 1661 1662 1663
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1664

Y
yi.wu 已提交
1665
    Returns:
Y
update  
yi.wu 已提交
1666 1667 1668
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1669

Y
yi.wu 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1682
    """
F
fengjiayi 已提交
1683
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1684 1685

    # prepare output
X
Xin Pan 已提交
1686 1687 1688 1689 1690 1691 1692
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1693 1694 1695 1696 1697 1698 1699 1700

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1701 1702 1703 1704
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1705 1706 1707
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1708 1709
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1710
        })
1711 1712
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1713 1714


1715
@templatedoc()
Y
Yu Yang 已提交
1716 1717 1718 1719 1720 1721 1722
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1723 1724
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1725 1726 1727 1728
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1729 1730 1731 1732 1733 1734 1735

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1749

1750 1751
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1752 1753 1754 1755 1756 1757 1758
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1759
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1770
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1771 1772 1773 1774 1775 1776
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1777
def sequence_softmax(input, use_cudnn=False, name=None):
1778 1779 1780
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1781
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1798 1799 1800
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1813 1814
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1815
    softmax_out = helper.create_variable_for_type_inference(dtype)
1816 1817 1818 1819 1820 1821 1822 1823
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1824
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1825
    """
1826
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1827
    has the same shape as the input.
Q
qiaolongfei 已提交
1828

D
dengkaipeng 已提交
1829
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1830
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1831
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1832 1833 1834
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1835
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1836
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1837 1838 1839 1840 1841 1842 1843

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1844
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1845 1846 1847 1848 1849 1850 1851 1852

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1853 1854
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1855 1856
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1857 1858 1859
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1869
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1870
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1871 1872
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1873 1874

    """
1875 1876
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1877
    softmax_out = helper.create_variable_for_type_inference(dtype)
1878 1879 1880 1881
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1882 1883
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1884 1885 1886
    return softmax_out


Y
Yu Yang 已提交
1887 1888 1889
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1890 1891
           stride=1,
           padding=0,
1892
           dilation=1,
Y
Yu Yang 已提交
1893 1894 1895
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1896
           use_cudnn=True,
1897 1898
           act=None,
           name=None):
Y
Yu Yang 已提交
1899
    """
C
chengduoZH 已提交
1900
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1901 1902
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1903
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1904 1905 1906 1907 1908 1909 1910
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1911 1912 1913
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1914

1915
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1916

C
chengduoZH 已提交
1917 1918
    .. math::

C
refine  
chengduoZH 已提交
1919
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1920

T
tensor-tang 已提交
1921
    Where:
C
chengduoZH 已提交
1922

1923 1924 1925 1926 1927
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1928
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1929 1930 1931

    Example:

1932 1933
        - Input:

W
weixing02 已提交
1934
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1935

W
weixing02 已提交
1936
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1937

1938
        - Output:
T
tensor-tang 已提交
1939

W
weixing02 已提交
1940
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1941

C
chengduoZH 已提交
1942
        Where
1943 1944

        .. math::
C
chengduoZH 已提交
1945

W
weixing02 已提交
1946 1947
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1948 1949

    Args:
1950
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1951
        num_filters(int): The number of filter. It is as same as the output
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1969 1970 1971 1972 1973
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1974
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1975 1976 1977 1978 1979
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1980 1981
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1982 1983
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1984
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1985
            will be named automatically. Default: None
C
chengduoZH 已提交
1986 1987

    Returns:
G
guosheng 已提交
1988
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1989 1990
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1991
    Raises:
1992 1993
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1994

C
chengduoZH 已提交
1995 1996 1997
    Examples:
        .. code-block:: python

1998 1999
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2000 2001 2002
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2003
    assert param_attr is not False, "param_attr should not be False here."
2004
    l_type = 'conv2d'
X
xzl 已提交
2005 2006
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2007
        l_type = 'depthwise_conv2d'
2008 2009 2010 2011

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2012 2013 2014 2015 2016
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2017
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2018

C
chengduoZH 已提交
2019 2020 2021
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2022
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2023

C
chengduoZH 已提交
2024 2025
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2026 2027

    input_shape = input.shape
M
minqiyang 已提交
2028
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2029 2030

    def _get_default_param_initializer():
C
chengduo 已提交
2031 2032
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2033 2034 2035 2036 2037 2038 2039 2040
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2041
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2057
    helper.append_op(
2058
        type=l_type,
Y
Yu Yang 已提交
2059 2060 2061 2062 2063
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2064 2065 2066
        attrs={
            'strides': stride,
            'paddings': padding,
2067
            'dilations': dilation,
C
chengduoZH 已提交
2068
            'groups': groups,
2069
            'use_cudnn': use_cudnn,
2070
            'use_mkldnn': False,
2071
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2072
        })
Y
Yu Yang 已提交
2073 2074 2075 2076 2077 2078

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2096 2097 2098 2099 2100 2101
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2111 2112
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2113 2114 2115
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2116
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2142
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2143 2144
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2145
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2146 2147
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2148
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2149 2150
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2151
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2152 2153 2154 2155 2156 2157
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2168 2169
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2170 2171
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2172
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2173
            will be named automatically. Default: None.
C
chengduoZH 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2186 2187
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2188 2189 2190
    """

    l_type = 'conv3d'
C
chengduo 已提交
2191
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2202
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2216 2217 2218
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2219 2220 2221 2222 2223 2224 2225 2226
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2227
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2242
            'use_mkldnn': False
C
chengduoZH 已提交
2243 2244
        })

2245
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2246 2247 2248 2249

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2250
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2251
    """
Y
yangyaming 已提交
2252 2253 2254
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2266
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2267 2268 2269 2270 2271
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2272
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2273 2274 2275 2276 2277 2278 2279

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2280 2281
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2282

L
Luo Tao 已提交
2283 2284
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2285
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2286
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2287
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2288 2289 2290 2291 2292 2293 2294

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2295

Y
yangyaming 已提交
2296
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2297 2298 2299 2300 2301
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2302 2303
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2304
    """
F
fengjiayi 已提交
2305
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2306
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2307 2308
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2309 2310 2311 2312 2313 2314

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2315 2316
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2317

Y
yangyaming 已提交
2318 2319 2320 2321 2322
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2323 2324 2325
    return pool_out


C
add doc  
chengduoZH 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2345
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2346 2347 2348 2349 2350
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2351
def sequence_first_step(input):
L
Luo Tao 已提交
2352
    """
L
Luo Tao 已提交
2353
    This function gets the first step of sequence.
L
Luo Tao 已提交
2354 2355 2356 2357

    .. code-block:: text

       x is a 1-level LoDTensor:
2358
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2359 2360 2361 2362 2363
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2364
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2365
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2366

L
Luo Tao 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2376

Y
yangyaming 已提交
2377
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2378 2379 2380
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2381 2382 2383
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2384
def sequence_last_step(input):
L
Luo Tao 已提交
2385
    """
L
Luo Tao 已提交
2386
    This function gets the last step of sequence.
L
Luo Tao 已提交
2387 2388 2389 2390

    .. code-block:: text

       x is a 1-level LoDTensor:
2391
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2392 2393 2394 2395 2396
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2397
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2398
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2399

L
Luo Tao 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2409

Y
yangyaming 已提交
2410
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2411 2412 2413
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2414 2415 2416
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2417 2418 2419 2420
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2421
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2422 2423 2424 2425 2426
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2427

H
haowang101779990 已提交
2428
              - Case:
Y
Yibing Liu 已提交
2429

2430
            Given the input Variable **input**:
2431

2432 2433 2434
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2435

2436
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2437

2438
            the output Variable will be
2439

2440 2441 2442
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2443

M
minqiyang 已提交
2444
    Note:
H
haowang101779990 已提交
2445
          The first dimension size of **input**, **offset** and **length**
2446
          should be equal. The **offset** should start from 0.
2447

Y
Yibing Liu 已提交
2448
    Args:
2449
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2450
                         sequences.
Y
Yibing Liu 已提交
2451 2452 2453 2454 2455 2456
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2457
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2468
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2469 2470 2471 2472
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2473
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2488
@templatedoc()
Y
Yu Yang 已提交
2489
def pool2d(input,
C
chengduoZH 已提交
2490 2491
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2492 2493
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2494
           global_pooling=False,
C
chengduoZH 已提交
2495
           use_cudnn=True,
2496
           ceil_mode=False,
2497 2498
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2499
    """
F
fengjiayi 已提交
2500
    ${comment}
2501 2502

    Args:
2503 2504 2505
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2506
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2507
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2508 2509
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2510
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2511 2512 2513 2514 2515 2516
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2517 2518 2519
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2520
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2521
                        layer will be named automatically.
2522
        exclusive (bool): Whether to exclude padding points in average pooling
2523
                          mode, default is true
F
fengjiayi 已提交
2524

2525
    Returns:
F
fengjiayi 已提交
2526
        Variable: The pooling result.
F
fengjiayi 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2539
          pool2d = fluid.layers.pool2d(
2540 2541 2542 2543
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2544
                            global_pooling=False)
Y
Yu Yang 已提交
2545 2546 2547 2548 2549
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2550

C
chengduoZH 已提交
2551 2552 2553 2554 2555
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2556 2557 2558 2559
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2560 2561
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2562

C
Add doc  
chengduoZH 已提交
2563
    l_type = 'pool2d'
2564 2565

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2566
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2567
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2568 2569

    helper.append_op(
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2581 2582
            "use_mkldnn": False,
            "exclusive": exclusive,
2583 2584 2585 2586 2587
        })

    return pool_out


D
dengkaipeng 已提交
2588
@templatedoc()
2589 2590 2591 2592 2593 2594 2595 2596
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2597 2598
           name=None,
           exclusive=True):
2599
    """
2600
    ${comment}
2601 2602

    Args:
D
dengkaipeng 已提交
2603 2604 2605 2606 2607
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2608 2609 2610 2611 2612
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2613 2614 2615 2616 2617 2618 2619
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2620
        exclusive (bool): Whether to exclude padding points in average pooling
2621
                          mode, default is true
2622

2623
    Returns:
2624
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2638 2639 2640 2641 2642
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2643

C
chengduoZH 已提交
2644 2645 2646 2647 2648
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2649 2650 2651
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2652

C
chengduoZH 已提交
2653 2654
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2655

2656 2657
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2658
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2659
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2660 2661

    helper.append_op(
2662
        type=l_type,
Y
Yu Yang 已提交
2663 2664 2665 2666 2667 2668 2669
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2670
            "paddings": pool_padding,
2671
            "use_cudnn": use_cudnn,
2672
            "ceil_mode": ceil_mode,
2673 2674
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2675 2676 2677 2678 2679
        })

    return pool_out


2680 2681 2682 2683 2684 2685 2686
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2687 2688 2689 2690 2691 2692 2693
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2694

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2708 2709 2710 2711 2712 2713 2714 2715 2716

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2717 2718
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2733
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2734
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2735
          # of input data into m * n grids averagely and performs poolings in each
2736 2737
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2738
          #
2739 2740 2741 2742 2743 2744 2745 2746
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2747 2748
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2749
          pool_out = fluid.layers.adaptive_pool2d(
2750 2751
                            input=data,
                            pool_size=[3, 3],
2752
                            pool_type='avg')
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2763
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2789
    return (pool_out, mask) if require_index else pool_out
2790 2791 2792 2793 2794 2795 2796 2797 2798


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2799 2800 2801 2802 2803 2804 2805
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2824 2825 2826

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2827 2828 2829
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2830
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2831
            it must contain three integers, (Depth, Height, Width).
2832
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2833 2834
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2849 2850
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2851
          # of input data into l * m * n grids averagely and performs poolings in each
2852 2853
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2854
          #
2855 2856 2857 2858 2859 2860 2861 2862 2863
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2864
          #                 output[:, :, i, j, k] =
2865 2866
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2867 2868
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2869
          pool_out, mask = fluid.layers.adaptive_pool3d(
2870
                            input=data,
D
dengkaipeng 已提交
2871
                            pool_size=[3, 3, 3],
2872
                            pool_type='avg')
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2883
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2909
    return (pool_out, mask) if require_index else pool_out
2910 2911


Y
Yu Yang 已提交
2912 2913 2914 2915 2916 2917 2918
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2919
               data_layout='NCHW',
Y
Yang Yang 已提交
2920
               in_place=False,
2921 2922
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2923
               moving_variance_name=None,
2924
               do_model_average_for_mean_and_var=False,
2925 2926
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2927
    """
Q
qiaolongfei 已提交
2928 2929 2930 2931
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2932

Q
qiaolongfei 已提交
2933
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2934

Q
qiaolongfei 已提交
2935 2936
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2937 2938 2939
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2966
    Args:
Q
qingqing01 已提交
2967
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2968
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2978 2979 2980 2981 2982 2983 2984 2985
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2986
        data_layout(string, default NCHW): NCHW|NHWC
2987
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2988 2989 2990 2991
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2992
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2993
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2994 2995 2996 2997 2998
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2999 3000

    Returns:
Q
qiaolongfei 已提交
3001
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3002 3003 3004 3005 3006 3007 3008

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3009
    """
C
chengduo 已提交
3010
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3011 3012 3013
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3014 3015 3016 3017
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3036
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3037

3038 3039
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3040 3041 3042
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3043
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3044
        shape=param_shape,
W
Wu Yi 已提交
3045
        dtype=dtype)
3046 3047 3048 3049 3050 3051
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3052
            trainable=False,
W
wanghaoshuang 已提交
3053
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3054
        shape=param_shape,
W
Wu Yi 已提交
3055
        dtype=dtype)
3056
    variance.stop_gradient = True
Y
Yu Yang 已提交
3057 3058 3059 3060 3061 3062

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3063 3064 3065 3066
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3067

X
Xin Pan 已提交
3068 3069
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3087 3088 3089 3090
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3091
            "data_layout": data_layout,
X
Xin Pan 已提交
3092
            "use_mkldnn": False,
3093 3094
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3095
        })
Y
Yu Yang 已提交
3096 3097 3098 3099

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3219
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3220 3221 3222 3223

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3224
@templatedoc()
G
guosheng 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3235
    ${comment}
G
guosheng 已提交
3236 3237 3238

    The formula is as follows:

Y
yuyang18 已提交
3239
    ..  math::
G
guosheng 已提交
3240 3241 3242 3243 3244 3245 3246

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3247 3248 3249 3250 3251 3252 3253 3254
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3255

G
guosheng 已提交
3256 3257
    Args:
        input(Variable): The input tensor variable.
3258
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3259
            normalization. Default True.
3260
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3261 3262
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3263
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3264
            Default 1.
3265
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3266
            division by zero. Default 1e-05.
G
guosheng 已提交
3267
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3268 3269
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3270 3271
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3272
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3273 3274
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3275
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3276
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3277
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3278 3279 3280
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3281 3282

    Returns:
Y
yuyang18 已提交
3283
        ${y_comment}
G
guosheng 已提交
3284 3285 3286

    Examples:

Y
yuyang18 已提交
3287 3288 3289
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3290
    """
L
lujun 已提交
3291 3292
    assert _in_dygraph_mode(
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3307
    if shift:
G
guosheng 已提交
3308 3309 3310 3311 3312 3313
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3314 3315 3316 3317 3318
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3346
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3394 3395
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3413
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3414 3415 3416
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3417
    This layer calculates the spectral normalization value of weight parameters of
3418
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3419
    Parameters. Calculations are showed as follows.
3420

D
dengkaipeng 已提交
3421 3422 3423
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3424
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3437
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3438 3439 3440 3441

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3442

D
dengkaipeng 已提交
3443
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3444 3445
                

D
dengkaipeng 已提交
3446 3447 3448 3449
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3450 3451 3452
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3453 3454 3455
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3456
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3457 3458 3459 3460 3461 3462 3463 3464

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3465
    dtype = weight.dtype
D
dengkaipeng 已提交
3466 3467 3468

    # create intput and parameters
    inputs = {'Weight': weight}
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3487 3488

    # create output
3489
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3490 3491

    helper.append_op(
3492
        type="spectral_norm",
D
Dun 已提交
3493
        inputs=inputs,
3494 3495 3496 3497 3498 3499
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3500

3501
    return out
D
Dun 已提交
3502 3503


Y
Yu Yang 已提交
3504 3505 3506 3507
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3508 3509 3510
                     padding=0,
                     stride=1,
                     dilation=1,
3511
                     groups=None,
C
caoying03 已提交
3512
                     param_attr=None,
3513
                     bias_attr=None,
C
chengduoZH 已提交
3514
                     use_cudnn=True,
3515
                     act=None,
C
caoying03 已提交
3516
                     name=None):
Y
Yu Yang 已提交
3517
    """
3518 3519 3520 3521 3522 3523 3524 3525
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3526 3527
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3528 3529 3530
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3531 3532 3533 3534 3535

    For each input :math:`X`, the equation is:

    .. math::

3536
        Out = \sigma (W \\ast X + b)
3537

3538
    Where:
3539 3540 3541

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3542 3543 3544 3545
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3546

3547 3548 3549 3550
    Example:

        - Input:

3551
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3552

3553
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3554 3555 3556

        - Output:

3557
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3558 3559

        Where
Y
Yu Yang 已提交
3560

3561 3562
        .. math::

3563 3564
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3565 3566
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3567 3568

    Args:
3569 3570 3571 3572
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3573 3574 3575 3576
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3605
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3606 3607 3608
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3609
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3610
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3611 3612

    Returns:
3613
        Variable: The tensor variable storing the convolution transpose result.
3614 3615

    Raises:
3616 3617
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3618 3619 3620 3621

    Examples:
       .. code-block:: python

3622 3623
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3624
    """
C
chengduo 已提交
3625
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3626 3627 3628 3629 3630 3631 3632 3633
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3634 3635 3636
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3637 3638 3639
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3640

C
chengduoZH 已提交
3641 3642
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3643

Y
Yu Yang 已提交
3644 3645 3646 3647 3648
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3649

Y
Yu Yang 已提交
3650 3651
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3652

C
chengduoZH 已提交
3653
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3654
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3655
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3656
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3657
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3658 3659 3660
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3661

3662 3663 3664 3665 3666 3667 3668
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3669
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3670
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3671

Y
Yu Yang 已提交
3672 3673 3674
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3675
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3676
    helper.append_op(
3677
        type=op_type,
Y
Yu Yang 已提交
3678 3679
        inputs={'Input': [input],
                'Filter': [img_filter]},
3680
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3681
        attrs={
3682
            'output_size': output_size,
3683 3684 3685 3686 3687
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3688 3689
        })

3690 3691 3692
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3693 3694


3695
def conv3d_transpose(input,
Y
Yu Yang 已提交
3696 3697 3698
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3699 3700 3701
                     padding=0,
                     stride=1,
                     dilation=1,
3702
                     groups=None,
C
caoying03 已提交
3703
                     param_attr=None,
3704
                     bias_attr=None,
C
chengduoZH 已提交
3705
                     use_cudnn=True,
3706
                     act=None,
C
caoying03 已提交
3707
                     name=None):
Y
Yu Yang 已提交
3708
    """
3709
    **Convlution3D transpose layer**
3710

3711
    The convolution3D transpose layer calculates the output based on the input,
3712
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3713 3714 3715 3716 3717 3718
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3719 3720 3721
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3722 3723 3724 3725 3726

    For each input :math:`X`, the equation is:

    .. math::

3727
        Out = \sigma (W \\ast X + b)
3728 3729 3730

    In the above equation:

3731 3732
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3733 3734 3735 3736
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3737

3738 3739 3740 3741
    Example:

        - Input:

3742
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3743

3744
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3745 3746 3747

        - Output:

3748
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3749 3750

        Where
Y
Yu Yang 已提交
3751

3752 3753
        .. math::

3754 3755 3756
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3757 3758

    Args:
3759
        input(Variable): The input image with [N, C, D, H, W] format.
3760 3761 3762
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3763
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3764 3765
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3766
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3767 3768 3769
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3770 3771
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3772
        stride(int|tuple): The stride size. If stride is a tuple, it must
3773 3774
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3775
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3776 3777 3778
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3779 3780 3781 3782 3783
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3793 3794
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3795 3796
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3797 3798
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3799 3800

    Returns:
3801
        Variable: The tensor variable storing the convolution transpose result.
3802 3803

    Raises:
3804 3805
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3806 3807 3808 3809

    Examples:
       .. code-block:: python

3810 3811
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3812
    """
C
chengduo 已提交
3813
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3814 3815
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3816
    if not isinstance(input, Variable):
3817
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3818 3819
    input_channel = input.shape[1]

3820 3821 3822
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3823

C
chengduoZH 已提交
3824 3825 3826
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3827 3828 3829 3830 3831 3832
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3833 3834 3835
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3836

3837
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3838
                         padding[0] - 1) // dilation[0] + 1
3839
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3840
                         padding[1] - 1) // dilation[1] + 1
3841
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3842
                         padding[2] - 1) // dilation[2] + 1
3843
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3844
    else:
3845 3846
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3847

3848
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3849
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3850 3851 3852
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3853
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3854
    helper.append_op(
3855
        type=l_type,
Y
Yu Yang 已提交
3856 3857
        inputs={'Input': [input],
                'Filter': [img_filter]},
3858
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3859 3860 3861 3862
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3863
            'groups': groups,
C
chengduoZH 已提交
3864 3865
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3866

3867 3868
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3869
    return out
Y
yangyaming 已提交
3870 3871


Y
yangyaming 已提交
3872
def sequence_expand(x, y, ref_level=-1, name=None):
3873
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3874 3875 3876 3877
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3878 3879 3880 3881 3882

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3883
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3884
                x.data = [[a], [b], [c], [d]]
3885 3886 3887
                x.dims = [4, 1]

            y is a LoDTensor:
3888 3889
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3890

Y
yangyaming 已提交
3891
            ref_level: 0
3892

Y
yangyaming 已提交
3893
            then output is a 1-level LoDTensor:
3894
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3895
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3896 3897 3898 3899
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3900
                x.data = [[a], [b], [c]]
3901 3902 3903
                x.dims = [3, 1]

            y is a LoDTensor:
3904
                y.lod = [[2, 0, 3]]
3905

Y
yangyaming 已提交
3906
            ref_level: -1
3907

Y
yangyaming 已提交
3908 3909 3910
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3911 3912 3913
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3914 3915
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3916
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3917
                        will be named automatically.
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3928
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3929
    """
Y
yangyaming 已提交
3930
    helper = LayerHelper('sequence_expand', input=x, **locals())
3931
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3932
    tmp = helper.create_variable_for_type_inference(dtype)
3933
    helper.append_op(
Y
yangyaming 已提交
3934 3935 3936 3937 3938
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3939
    return tmp
3940 3941


C
chengduo 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3998
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3999 4000 4001 4002 4003 4004 4005 4006
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4007
@templatedoc()
4008
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4009 4010 4011 4012 4013
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4014 4015 4016
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4017
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4018 4019 4020 4021
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4022 4023 4024
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4025

F
fengjiayi 已提交
4026
    Returns:
M
minqiyang 已提交
4027
        Variable: The padded sequence batch and the original lengths before
4028
                  padding. All sequences has the same length.
M
minqiyang 已提交
4029

F
fengjiayi 已提交
4030 4031 4032 4033 4034 4035 4036
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4037
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4038
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4039 4040 4041 4042 4043
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4044 4045
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4046 4047 4048 4049

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4050 4051 4052 4053 4054 4055
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4056 4057
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4058
        attrs={'padded_length': maxlen})
4059
    return out, length
F
fengjiayi 已提交
4060 4061


4062
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4063
    """
4064
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4065

4066 4067
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4077 4078 4079
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4080
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4081 4082 4083 4084 4085 4086

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4087
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4088 4089 4090 4091 4092 4093

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4094 4095
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4110
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4122 4123 4124 4125 4126 4127 4128
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4129
                is_accumulated=True,
4130 4131
                name=None,
                return_parent_idx=False):
4132
    """
4133 4134
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4135 4136 4137

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4138 4139

    This layer does the search in beams for one time step. Specifically, it
4140 4141 4142
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4154 4155 4156 4157

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4158

4159
    Args:
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4183 4184
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4185 4186
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4187 4188 4189 4190
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4191

4192
    Returns:
4193 4194 4195 4196
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4197 4198 4199 4200

    Examples:
        .. code-block:: python

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4218
    helper = LayerHelper('beam_search', **locals())
4219 4220 4221 4222 4223 4224
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4225

X
Xin Pan 已提交
4226 4227 4228
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4229 4230 4231 4232 4233
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4234 4235 4236

    helper.append_op(
        type='beam_search',
4237
        inputs=inputs,
Q
Qiao Longfei 已提交
4238 4239 4240
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4241
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4242 4243 4244 4245 4246 4247
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4248
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4249
        })
4250 4251 4252 4253
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4254 4255


4256 4257 4258 4259 4260 4261 4262
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4263

4264 4265 4266 4267 4268 4269 4270 4271 4272
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4273

4274 4275 4276 4277 4278 4279
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4280

4281 4282
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4283

4284 4285 4286 4287 4288 4289
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4290 4291
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4307 4308 4309 4310
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4311
              param_attr=None,
C
caoying03 已提交
4312 4313
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4314 4315 4316 4317
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4318
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4319

4320
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4321

4322
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4323

4324
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4325 4326 4327

            h_t & = o_t tanh(c_t)

4328 4329 4330 4331 4332 4333
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4334 4335 4336

        .. math::

4337
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4338 4339 4340 4341 4342 4343 4344 4345

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4346
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4347 4348

    Args:
Y
yangyaming 已提交
4349 4350 4351 4352 4353 4354
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4355
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4368 4369
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4370 4371

    Returns:
Y
yangyaming 已提交
4372
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4373 4374

    Raises:
4375 4376 4377 4378
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4379 4380 4381 4382 4383 4384

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4385
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4386
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4387
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4404
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4405 4406 4407 4408
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4409 4410
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4411 4412 4413
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4414
    size = cell_t_prev.shape[1]
4415
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4416 4417
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4418
                param_attr=param_attr,
4419
                bias_attr=bias_attr)
Y
yangyaming 已提交
4420
    dtype = x_t.dtype
X
Xin Pan 已提交
4421 4422
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4432
    return h, c
G
guosheng 已提交
4433 4434


C
caoying03 已提交
4435
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4436
    """
Y
yangyaming 已提交
4437
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4438 4439 4440

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4441
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4442 4443
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4444 4445
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4446
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4447
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4448
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4449 4450
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4451 4452 4453

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4454

G
guosheng 已提交
4455 4456 4457 4458 4459 4460
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4461
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4462 4463 4464 4465
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4466 4467 4468 4469

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4470
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4471 4472 4473
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4474 4475
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4476
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4477 4478
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4479 4480 4481 4482 4483
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4484
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4485 4486 4487 4488
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4489 4490


C
caoying03 已提交
4491
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4492
    """
Y
Yibing Liu 已提交
4493
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4494 4495 4496

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4497 4498 4499
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4500
            must be in the range :math:`[-rank(input), rank(input))`. If
4501
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4502
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4503 4504
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4505
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4506
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4507
                       will be named automatically.
G
guosheng 已提交
4508 4509

    Returns:
Y
Yibing Liu 已提交
4510
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4511

G
guosheng 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4522 4523
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4524 4525 4526 4527 4528 4529 4530

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4531 4532
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4533
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4534 4535
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4536 4537 4538 4539 4540
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4541
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4542 4543 4544 4545
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4546 4547


C
caoying03 已提交
4548
def reduce_max(input, dim=None, keep_dim=False, name=None):
4549
    """
Y
yangyaming 已提交
4550
    Computes the maximum of tensor elements over the given dimension.
4551 4552 4553

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4554
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4555 4556 4557
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4558
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4559 4560
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4561
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4562 4563
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4564 4565 4566

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4567

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4579 4580 4581 4582 4583 4584 4585

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4586 4587
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4588
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4589 4590
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4591 4592 4593 4594 4595
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4596
            'dim': dim if dim != None else [0],
4597 4598 4599 4600 4601 4602
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4603
def reduce_min(input, dim=None, keep_dim=False, name=None):
4604
    """
Y
yangyaming 已提交
4605
    Computes the minimum of tensor elements over the given dimension.
4606 4607 4608

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4609
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4610 4611 4612
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4613
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4614 4615
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4616
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4617 4618
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4619 4620 4621

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4622

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4634 4635 4636 4637 4638 4639 4640

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4641 4642
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4643
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4644 4645
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4646 4647 4648 4649 4650
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4651
            'dim': dim if dim != None else [0],
4652 4653 4654 4655
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4656 4657


4658 4659 4660 4661 4662 4663
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4664
        dim (list|int|None): The dimensions along which the product is performed. If
4665 4666
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4667 4668
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4669 4670 4671
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4672
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4673
            layer will be named automatically.
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4688
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4689
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4690 4691 4692 4693 4694 4695 4696

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4697 4698
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4699
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4700 4701
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4702 4703 4704 4705 4706
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4707
            'dim': dim if dim != None else [0],
4708 4709 4710 4711 4712 4713
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4714
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4715
    """
C
caoying03 已提交
4716
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4717 4718 4719

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4720 4721 4722 4723 4724
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4725
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4726
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4727
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4728 4729
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4730 4731

    Returns:
D
dzhwinter 已提交
4732
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4742 4743
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4759
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4782
    .. math::
4783 4784

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4785 4786 4787 4788 4789

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4790
        x(Variable|list): The input tensor to l2_normalize layer.
4791
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4792 4793
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4794
        epsilon(float): The epsilon value is used to avoid division by zero, \
4795
            the defalut value is 1e-10.
4796
        name(str|None): A name for this layer(optional). If set None, the layer \
4797
            will be named automatically.
C
caoying03 已提交
4798 4799

    Returns:
4800
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4801 4802

    Examples:
4803

C
caoying03 已提交
4804 4805
        .. code-block:: python

4806 4807 4808 4809
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4810 4811
    """

F
fengjiayi 已提交
4812 4813
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4814 4815
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4816 4817
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4818
    helper.append_op(
4819 4820 4821 4822
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4823
        attrs={
4824 4825
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4826 4827
        })
    return out
4828 4829


S
sneaxiy 已提交
4830
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4831
    """
Y
ying 已提交
4832 4833 4834 4835
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4836

C
chengduoZH 已提交
4837
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4838
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4839

4840 4841 4842 4843 4844
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4845
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4846

C
chengduoZH 已提交
4847
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4848
      performs in the following way.
G
guosheng 已提交
4849

4850
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4851
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4852
        last two dimensions and a batched matrix multiply supporting broadcast
4853
        applies on the two tensors.
G
guosheng 已提交
4854

Y
ying 已提交
4855 4856
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4857
    removed after matrix multiplication.
G
guosheng 已提交
4858 4859 4860

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4861 4862 4863
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4864
        alpha (float): The scale of output. Default 1.0.
4865
        name(str|None): A name for this layer(optional). If set None, the layer
4866
            will be named automatically.
G
guosheng 已提交
4867 4868

    Returns:
4869
        Variable: The product Tensor variable.
G
guosheng 已提交
4870

G
guosheng 已提交
4871 4872 4873
    Examples:
        .. code-block:: python

4874
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4875 4876
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4877

4878 4879
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4880

4881 4882
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4883

4884 4885
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4886 4887 4888 4889

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4890 4891
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4892

Y
ying 已提交
4893
            # x: [M], y: [N]
4894
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4895
    """
Y
ying 已提交
4896 4897 4898 4899 4900 4901 4902

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4903
            y_shape = y_shape + [1]
Y
ying 已提交
4904 4905 4906 4907 4908 4909 4910

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4911 4912
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4913

C
chengduo 已提交
4914
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4915
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4916 4917 4918
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4919
                if dim_x != y_shape[i]:
C
chengduo 已提交
4920 4921
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4922 4923 4924

    __check_input(x, y)

4925
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4926
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4927
    helper.append_op(
4928 4929 4930 4931
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4932 4933 4934
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4935
            'alpha': float(alpha),
S
sneaxiy 已提交
4936
        })
4937
    return out
4938 4939


4940
def topk(input, k, name=None):
Q
qingqing01 已提交
4941 4942 4943 4944
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4945
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4946 4947 4948 4949 4950 4951
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4973 4974 4975
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4976
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4977
                 of input.
4978
        name(str|None): A name for this layer(optional). If set None, the layer
4979
                       will be named automatically.
F
fengjiayi 已提交
4980
                       Default: None
Q
qingqing01 已提交
4981 4982

    Returns:
4983 4984 4985
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4986
        within the last dimension of input.
Q
qingqing01 已提交
4987

F
fengjiayi 已提交
4988 4989
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4990 4991 4992 4993 4994 4995 4996

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4997 4998
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4999 5000 5001 5002 5003 5004
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5005 5006
    helper.append_op(
        type="top_k",
W
whs 已提交
5007
        inputs=inputs,
Q
qingqing01 已提交
5008 5009
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5010
        attrs=attrs)
Q
qingqing01 已提交
5011 5012 5013 5014 5015
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5016
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5017
    """
Y
ying 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5027

Y
ying 已提交
5028
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5029

5030
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5031 5032
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5033
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5034

5035
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5036 5037
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5038

5039 5040 5041
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5042
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5043
                          the length of reference string.
5044
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5045
                                     calculating edit distance.
5046
        name (str): The name of this layer. It is optional.
5047

W
wanghaoshuang 已提交
5048
    Returns:
W
wanghaoshuang 已提交
5049
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5050 5051 5052 5053

    Examples:
        .. code-block:: python

T
tink2123 已提交
5054 5055
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5056
            cost = fluid.layers.edit_distance(input=x,label=y)
5057
    """
5058
    helper = LayerHelper("edit_distance", **locals())
5059

5060
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5061
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5062 5063
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5064 5065 5066 5067 5068

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5069
            attrs={"tokens": ignored_tokens})
5070 5071 5072 5073 5074
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5075
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5076
            attrs={"tokens": ignored_tokens})
5077 5078
        label = erased_label

5079
    # edit distance op
X
Xin Pan 已提交
5080 5081
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5082 5083 5084 5085
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5086 5087
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5088 5089
        attrs={"normalized": normalized})

5090
    return edit_distance_out, sequence_num
5091 5092 5093 5094 5095


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5096

Y
ying 已提交
5097 5098 5099 5100
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5118
        input.lod = [[4, 4]]
M
minqiyang 已提交
5119

W
whs 已提交
5120
        Computation:
5121

W
whs 已提交
5122 5123 5124 5125 5126 5127
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5128 5129 5130 5131 5132

        output.data = [[2],
                       [1],
                       [3]]

5133
        output.lod = [[2, 1]]
5134

W
whs 已提交
5135

5136 5137
    Args:

Y
ying 已提交
5138 5139 5140 5141 5142 5143 5144 5145 5146
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5147
        name (str): The name of this layer. It is optional.
5148 5149

    Returns:
H
haowang101779990 已提交
5150 5151 5152
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5153
                  LoD [[]] and dims [1, 1].
5154 5155 5156 5157 5158

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5159

5160
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5161
    """
5162
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5163
    _, topk_indices = topk(input, k=1)
5164 5165

    # ctc align op
X
Xin Pan 已提交
5166
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5167 5168 5169
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5170
        outputs={"Output": [ctc_out]},
5171 5172
        attrs={"merge_repeated": True,
               "blank": blank})
5173
    return ctc_out
5174 5175


W
Wu Yi 已提交
5176
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5177
    """
5178 5179
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5180
    to compute Connectionist Temporal Classification (CTC) loss.
5181 5182
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5183 5184 5185
    input tensor.

    Args:
5186
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5187 5188 5189 5190
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5191
       label (Variable): The ground truth of variable-length sequence,
5192 5193 5194
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5195 5196
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5197 5198 5199
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5200
         follewed by a mean_op.
W
Wu Yi 已提交
5201
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5202 5203

    Returns:
5204 5205
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5206 5207

    Examples:
5208

W
wanghaoshuang 已提交
5209
        .. code-block:: python
5210

5211 5212 5213
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5214 5215

    """
F
fengjiayi 已提交
5216
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5217 5218
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5219 5220 5221 5222 5223 5224
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5225 5226 5227 5228 5229
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5230
    return loss_out
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5246 5247 5248
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5249 5250 5251 5252 5253
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5254

5255
            out.lod  = [[0, 1, 3]]
5256 5257 5258 5259

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5260 5261 5262 5263 5264 5265 5266
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5267 5268 5269

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5270 5271

    Returns:
5272

5273 5274 5275 5276 5277
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5278
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5279
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5280 5281
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5282
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5283 5284 5285 5286 5287 5288
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5289 5290


5291 5292 5293 5294
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5295 5296 5297 5298 5299 5300
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5301
        num_neg_samples=None,
5302 5303 5304
        name=None,
        sampler="uniform",
        custom_dist=None,
5305 5306
        seed=0,
        is_sparse=False):
5307 5308 5309 5310 5311 5312 5313
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5314 5315
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5316
            sample is 1.0.
C
chengduo 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5326
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5327 5328
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5329 5330 5331
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5332
        custom_dist (float[]): A float[] with size=num_total_classes.
5333 5334 5335 5336
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5337
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5338

5339
    Returns:
Y
Yibing Liu 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5367 5368 5369 5370 5371 5372 5373 5374 5375

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5376

5377
    """
Y
Yang Yu 已提交
5378 5379 5380
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5381 5382

    dim = input.shape[1]
Y
Yang Yu 已提交
5383 5384 5385 5386 5387 5388
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5389
    inputs = {}
C
chengduo 已提交
5390 5391 5392 5393 5394 5395 5396
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5397 5398 5399
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5400

5401 5402 5403 5404
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5405 5406 5407 5408 5409 5410 5411

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5412 5413 5414 5415 5416 5417 5418 5419 5420
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5421
            if normal_prob - 1.0 > 0:
5422
                bigs.append((i, normal_prob))
5423
            elif 1.0 - normal_prob > 0:
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5439
            if big_left - 1.0 > 0:
5440
                bigs.append((big_idx, big_left))
5441
            elif 1.0 - big_left > 0:
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5471 5472 5473 5474
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5475 5476 5477 5478 5479
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5480 5481 5482 5483
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5484

Y
Yang Yu 已提交
5485 5486
    attrs = {
        'num_total_classes': int(num_total_classes),
5487 5488
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5489
        'sampler': sampler,
5490 5491
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5492
    }
Y
Yang Yu 已提交
5493 5494 5495

    helper.append_op(
        type='nce',
C
chengduo 已提交
5496
        inputs=inputs,
Y
Yang Yu 已提交
5497 5498 5499 5500 5501 5502
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5503
    return cost / (num_neg_samples + 1)
5504 5505


C
chengduo 已提交
5506 5507
def hsigmoid(input,
             label,
5508
             num_classes,
C
chengduo 已提交
5509 5510
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5511
             name=None,
5512 5513 5514
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5515
             is_sparse=False):
W
weixing02 已提交
5516 5517
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5518
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5519
    complete binary tree, or you can use is_custom to pass your own tree to
5520
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5521 5522 5523 5524 5525 5526
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5527
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5528
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5529

5530 5531
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5532 5533 5534 5535
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5536
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5537
       related to the same batch of inputs.
5538

W
weixing02 已提交
5539
    Args:
M
minqiyang 已提交
5540
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5541 5542 5543 5544
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5545 5546
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5547
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5559
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5560
            it should be in leaf -> root order
M
minqiyang 已提交
5561 5562 5563
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5564
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5565
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5566
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5567
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5568
             of W and input will be sparse.
W
weixing02 已提交
5569 5570

    Returns:
J
JiabinYang 已提交
5571
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5572 5573 5574 5575 5576

    Examples:

        .. code-block:: python

G
guosheng 已提交
5577 5578 5579
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5580 5581 5582 5583
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5584 5585
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5586
    dim = input.shape[1]
5587
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5588 5589 5590
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5591 5592 5593 5594
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5595 5596
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5597 5598 5599
    else:
        pass

J
JiabinYang 已提交
5600
    weights = None
5601 5602 5603 5604
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5605
    if not is_custom:
J
JiabinYang 已提交
5606 5607 5608 5609 5610 5611 5612 5613
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5614
            shape=[num_classes, dim],
J
JiabinYang 已提交
5615 5616
            is_bias=False,
            dtype=input.dtype)
5617 5618 5619
    inputs = {
        "X": input,
        "W": weights,
5620
        "PathTable": path_table,
5621
        "PathCode": path_code,
5622 5623
        "Label": label
    }
W
weixing02 已提交
5624
    if helper.bias_attr:
5625
        if not is_custom:
J
JiabinYang 已提交
5626 5627
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5628
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5629 5630 5631 5632 5633 5634
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5635
                shape=[num_classes, 1],
J
JiabinYang 已提交
5636 5637 5638
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5639 5640
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5641
        inputs=inputs,
W
weixing02 已提交
5642
        outputs={"Out": out,
5643 5644 5645 5646 5647 5648 5649
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5650 5651 5652
    return out


Y
fix ci.  
ying 已提交
5653
def transpose(x, perm, name=None):
Y
ying 已提交
5654 5655 5656 5657 5658 5659 5660
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5661 5662 5663
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5664 5665 5666 5667 5668 5669 5670

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5671
            # use append_batch_size=False to avoid prepending extra
5672
            # batch size in shape
5673
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5674
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5675
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5676 5677
    """

Y
fix ci.  
ying 已提交
5678
    if len(perm) != len(x.shape):
Y
ying 已提交
5679 5680 5681
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5682 5683 5684 5685 5686 5687
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5688 5689

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5690 5691
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5692
    helper.append_op(
5693
        type='transpose2',
Y
fix ci.  
ying 已提交
5694
        inputs={'X': [x]},
5695 5696
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5697 5698
        attrs={'axis': perm})
    return out
5699 5700


5701 5702 5703 5704 5705 5706 5707
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5708
    """
5709 5710 5711 5712 5713 5714 5715
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5744 5745 5746 5747 5748 5749 5750 5751 5752
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5753 5754 5755
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5756 5757 5758 5759 5760
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5788 5789 5790
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5803
            output.dims = {8, 8}
5804

5805
            output.lod = [[4, 4]]
5806

T
Tink_Y 已提交
5807
    Examples:
5808 5809 5810

        .. code-block:: python

5811 5812
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5813 5814

    """
W
wanghaoshuang 已提交
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5825 5826 5827 5828 5829 5830 5831
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5832
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5833
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5834
    helper.append_op(
5835
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5836
    return out
5837 5838


Y
yuyang18 已提交
5839
@templatedoc()
5840
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5841 5842
    """
    ${comment}
5843 5844

    Args:
Y
yuyang18 已提交
5845
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5846 5847
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5848 5849 5850 5851 5852
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5853
        ${out_comment}.
5854 5855

    Examples:
Y
yuyang18 已提交
5856 5857 5858 5859
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5860 5861 5862 5863 5864 5865
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5866
    out = helper.create_variable_for_type_inference(dtype)
5867 5868 5869 5870 5871
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5872
    return helper.append_activation(out)
5873 5874


Y
yuyang18 已提交
5875
@templatedoc()
5876 5877
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5878 5879
    ${comment}

L
lujun 已提交
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5923 5924

    Args:
Y
yuyang18 已提交
5925 5926
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5927 5928

    Returns:
Y
yuyang18 已提交
5929
        ${out_comment}.
5930 5931
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5932 5933 5934 5935 5936

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5937
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5938 5939 5940 5941 5942 5943
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5944 5945


5946 5947 5948
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5949
                               ignore_index=kIgnoreIndex,
5950
                               numeric_stable_mode=True,
5951
                               return_softmax=False):
5952 5953
    """
    **Softmax With Cross Entropy Operator.**
5954

5955 5956 5957 5958
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5959

5960 5961 5962
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5963

5964 5965 5966
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5967

5968
    The equation is as follows:
5969

5970
    1) Hard label (one-hot label, so every sample has exactly one class)
5971

5972 5973 5974 5975
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5976

5977 5978 5979
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5980

5981 5982 5983 5984
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5985 5986 5987
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5988

H
haowang101779990 已提交
5989
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5990

H
haowang101779990 已提交
5991
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5992

H
haowang101779990 已提交
5993
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5994 5995 5996

    and then cross entropy loss is calculated by softmax and label.

5997 5998 5999 6000 6001 6002 6003 6004
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6005 6006
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6007
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6008 6009 6010
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6011 6012 6013
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6014
                                    stable algorithm. Default: True
6015
        return_softmax (bool): A flag indicating whether to return the softmax
6016
                               along with the cross entropy loss. Default: False
6017

6018
    Returns:
H
haowang101779990 已提交
6019 6020 6021 6022 6023
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6024 6025 6026 6027 6028 6029 6030

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6031 6032
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6033 6034
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6035 6036
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6037 6038 6039 6040 6041 6042
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6043 6044 6045 6046 6047
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6048 6049 6050 6051

    if return_softmax:
        return loss, softmax

6052 6053 6054
    return loss


6055 6056 6057
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6058
                                       num_true=1,
6059
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6060 6061 6062
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6063
                                       seed=0):
X
xuezhong 已提交
6064 6065 6066 6067 6068
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6069
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6070 6071 6072 6073 6074 6075 6076 6077
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6078
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6079 6080 6081 6082 6083 6084 6085 6086
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6087
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6099
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6100 6101 6102 6103 6104
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6105
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6106
            logits.
X
xuezhong 已提交
6107 6108 6109 6110 6111
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6112 6113 6114
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6135 6136
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6137 6138 6139 6140 6141

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6142
            'Labels': label,
X
xuezhong 已提交
6143 6144
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6145 6146 6147 6148
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6149
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6150 6151 6152
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6153
            'use_customized_samples': use_customized_samples,
6154
            'uniq': True,
X
xuezhong 已提交
6155 6156 6157 6158
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6159 6160
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6161 6162 6163 6164 6165 6166
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6167 6168
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6169
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6170
                'Label': sampled_softlabel},
X
xuezhong 已提交
6171 6172 6173
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6174
            'soft_label': True,
X
xuezhong 已提交
6175 6176 6177
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6178
    return loss / num_true
X
xuezhong 已提交
6179 6180


6181 6182
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6183 6184
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6185
    For each instance, it computes the smooth L1 loss element by element first
6186
    and then sums all the losses. So the shape of ouput Variable is
6187
    [batch_size, 1].
6188

6189 6190
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6191
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6192
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6193
            L1 loss op with same shape as :attr:`x`.
6194
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6195 6196
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6197
            by this tensor element by element.
6198
        outside_weight (Variable|None): A tensor with rank at least 2. This
6199 6200
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6201
            element by element.
6202
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6203 6204
           scalar with default value 1.0.

6205
    Returns:
6206
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6207 6208 6209 6210 6211

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6212 6213
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6214
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6215
            out = fluid.layers.smooth_l1(x=fc, y=label)
6216
    """
6217

6218
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6219 6220
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6233 6234 6235 6236


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6237
    This layer creates the one-hot representations for input indices.
6238 6239

    Args:
Y
Yibing Liu 已提交
6240 6241
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6242 6243

    Returns:
Y
Yibing Liu 已提交
6244
        Variable: The one-hot representations of input.
6245 6246

    Examples:
C
caoying03 已提交
6247
        .. code-block:: python
6248

Y
Yibing Liu 已提交
6249 6250
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6251 6252
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6253
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6254 6255 6256 6257
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6258 6259
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6260
    return one_hot_out
Y
Yu Yang 已提交
6261 6262


Y
Yu Yang 已提交
6263
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6264
    """
Y
yi.wu 已提交
6265 6266 6267
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6268 6269 6270 6271 6272 6273

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6274 6275
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6276 6277 6278 6279 6280 6281

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6282 6283
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6284 6285
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6286 6287 6288 6289 6290
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6291
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6292
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6293 6294
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6295
            outputs={'Out': [counter]},
M
minqiyang 已提交
6296 6297
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6298 6299 6300
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6301 6302


6303
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6304
    """
C
caoying03 已提交
6305 6306
    Gives a new shape to the input Tensor without changing its data.

6307 6308 6309 6310 6311
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6312

6313
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6314

6315 6316 6317 6318
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6319
    2. 0 means the actual dimension value is going to be copied from the
6320 6321 6322 6323
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6324 6325

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6326
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6327
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6328

6329
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6330 6331
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6332 6333
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6334
    dimensions.
C
caoying03 已提交
6335

6336
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6337 6338 6339 6340
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6341 6342

    Args:
6343
        x(variable): The input tensor.
C
caoying03 已提交
6344 6345
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6346 6347 6348 6349 6350
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6351 6352
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6353 6354 6355
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6356
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6357
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6358

6359
    Returns:
G
guosheng 已提交
6360 6361 6362 6363
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6364

X
Xin Pan 已提交
6365 6366 6367
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6368 6369
    Examples:
        .. code-block:: python
G
guosheng 已提交
6370

6371
            data = fluid.layers.data(
6372
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6373
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6374
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6375 6376 6377
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6378
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6379 6380 6381 6382 6383
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6384

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6400
    helper = LayerHelper("reshape2", **locals())
6401 6402
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6403
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6404
    helper.append_op(
6405
        type="reshape2",
X
Xin Pan 已提交
6406
        inputs=inputs,
D
dzhwinter 已提交
6407
        attrs={"shape": shape},
6408 6409
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6410

D
dzhwinter 已提交
6411
    return helper.append_activation(out)
6412

6413

6414
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6415
    """
M
minqiyang 已提交
6416 6417 6418
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6419
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6420

H
haowang101779990 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6442

Y
Yibing Liu 已提交
6443
    Args:
6444
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6445
        axes (list): List of integers, indicating the dimensions to be squeezed.
6446
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6447 6448 6449 6450 6451 6452 6453 6454

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6455
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6456
    """
L
lujun 已提交
6457 6458
    assert not _in_dygraph_mode(), (
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6459
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6460 6461
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6462
    helper.append_op(
6463
        type="squeeze2",
6464
        inputs={"X": input},
Y
Yibing Liu 已提交
6465
        attrs={"axes": axes},
6466 6467
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6468

6469 6470 6471
    return out


6472
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6473
    """
M
minqiyang 已提交
6474 6475 6476
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6477

M
minqiyang 已提交
6478
    For example:
H
haowang101779990 已提交
6479 6480 6481

    .. code-block:: text

M
minqiyang 已提交
6482
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6483
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6484

Y
Yibing Liu 已提交
6485
    Args:
6486
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6487
        axes (list): List of integers, indicating the dimensions to be inserted.
6488
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6489 6490 6491 6492 6493 6494 6495 6496

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6497
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6498 6499
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6500 6501
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6502
    helper.append_op(
6503
        type="unsqueeze2",
6504
        inputs={"X": input},
Y
Yibing Liu 已提交
6505
        attrs={"axes": axes},
6506 6507
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6508

6509 6510
    return out

6511

Y
yangyaming 已提交
6512
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6513
    """
Y
Yibing Liu 已提交
6514
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6515 6516 6517 6518
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6519
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6520 6521 6522 6523 6524 6525

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6526
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6527 6528 6529
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6530
            target_lod: [4, 2]
Y
yangyaming 已提交
6531 6532

            then we get a 1-level LoDTensor:
6533
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6534 6535 6536 6537 6538 6539
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6540
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6541 6542 6543 6544
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6545
                y.data = [[2, 4]]
Y
yangyaming 已提交
6546 6547 6548
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6549
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6550 6551 6552 6553 6554 6555
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6556
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6557 6558 6559 6560
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6561
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6562 6563 6564 6565
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6566
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6567 6568 6569 6570 6571
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6572
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6573
                           from :attr:`y`.
Y
yangyaming 已提交
6574
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6575
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6576 6577

    Returns:
Y
Yibing Liu 已提交
6578
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6579 6580

    Raises:
Y
Yibing Liu 已提交
6581
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6591
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6617
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6646 6647
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6660 6661 6662
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6676 6677 6678 6679


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6680
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6681
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6682

G
guosheng 已提交
6683 6684 6685 6686
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6709
                         The length of :attr:paddings must be
G
guosheng 已提交
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6720

G
guosheng 已提交
6721 6722 6723 6724 6725 6726
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6727
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6728 6729 6730 6731 6732 6733 6734
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6735 6736


C
chengduo 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6768 6769
		And
            pad_value = -1,
C
chengduo 已提交
6770

T
Tink_Y 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6806
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6816 6817 6818 6819 6820 6821 6822
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6823 6824
    called label-smoothing regularization (LSR).

6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6848
                              be :math:`(1, class\_num)`.
6849 6850
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6851
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6871
    smooth_label = helper.create_variable_for_type_inference(dtype)
6872 6873 6874 6875 6876 6877 6878
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6879 6880


W
wopeizl 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6917 6918


J
jerrywgz 已提交
6919 6920 6921 6922 6923 6924
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6925 6926
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6943 6944 6945
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6946 6947 6948 6949 6950 6951
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6952
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6993 6994
        .. code-block:: python

W
whs 已提交
6995 6996 6997 6998
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6999
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7000 7001 7002 7003 7004 7005
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7006 7007


7008 7009 7010 7011
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7012
                 resample='BILINEAR',
7013 7014
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7015
                 align_mode=1):
7016
    """
Q
qiaolongfei 已提交
7017
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7018

7019
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7020 7021 7022
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7023

7024
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7025

7026
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7027

7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7038
    Align_corners and align_mode are optinal parameters,the calculation method 
7039 7040 7041 7042
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7043
    .. code-block:: text
7044

T
Tink_Y 已提交
7045
        For scale:
7046
          
T
Tink_Y 已提交
7047
            if align_corners = True && out_size > 1 :
7048

T
Tink_Y 已提交
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7060

T
Tink_Y 已提交
7061 7062
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7063

T
Tink_Y 已提交
7064 7065
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7066

T
Tink_Y 已提交
7067 7068
          else:
              align_corners = True
7069

T
Tink_Y 已提交
7070 7071
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7072

T
Tink_Y 已提交
7073 7074
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7075

T
Tink_Y 已提交
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7086

T
Tink_Y 已提交
7087 7088 7089 7090
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7091

T
Tink_Y 已提交
7092 7093
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7094 7095 7096 7097 7098 7099 7100 7101 7102

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7103
    Args:
7104
        input (Variable): The input tensor of image resize layer,
7105 7106
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7107
        out_shape(list|tuple|Variable|None): Output shape of image resize
7108 7109
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7110
        scale(float|None): The multiplier for the input height or width.
7111 7112 7113
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7114 7115
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7116
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7117
                       currently.
7118
                       Default: 'BILINEAR'
7119 7120 7121
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7122
                                :attr:`out_shape` and :attr:`scale` specifying
7123 7124 7125 7126 7127 7128 7129
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7130 7131
                                constructing stage.
                                Default: None
7132 7133 7134 7135
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7136
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7137 7138
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7139 7140

    Returns:
Q
update  
qiaolongfei 已提交
7141 7142
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7143

7144 7145 7146
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7147
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7148 7149 7150
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7151 7152
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7153

7154 7155 7156
    Examples:
        .. code-block:: python

7157
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7158
    """
7159 7160 7161 7162
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7163 7164
    if resample not in resample_methods:
        raise ValueError(
7165
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7166
        )
7167
    resample_type = resample_methods[resample]
7168 7169 7170 7171 7172 7173

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7174
    if out_shape is None and scale is None:
7175
        raise ValueError("One of out_shape and scale must not be None.")
7176
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7177
    dtype = helper.input_dtype()
7178 7179 7180 7181

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7182 7183 7184
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7185
    if out_shape is not None:
7186 7187 7188 7189
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7190
            inputs['OutSize'] = out_shape
7191 7192 7193 7194 7195 7196 7197 7198
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7199 7200 7201 7202
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7203 7204 7205 7206 7207
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7208
    out = helper.create_variable_for_type_inference(dtype)
7209
    helper.append_op(
7210
        type='{}_interp'.format(resample_type),
7211
        inputs=inputs,
7212
        outputs={"Out": out},
7213 7214 7215 7216 7217 7218 7219
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7220
    return out
F
stash  
fengjiayi 已提交
7221 7222


7223
@templatedoc(op_type="bilinear_interp")
7224 7225 7226 7227
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7228 7229
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7230
                    align_mode=1):
7231
    """
7232 7233
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7234 7235
    in priority order.

7236 7237 7238 7239
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7240 7241
    again in the other direction.

7242
    For details of bilinear interpolation, please refer to Wikipedia:
7243
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7244

T
tink2123 已提交
7245
    Align_corners and align_mode are optinal parameters,the calculation 
7246 7247 7248 7249
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7250
    .. code-block:: text
7251

T
Tink_Y 已提交
7252
        For scale:
7253
          
T
Tink_Y 已提交
7254
            if align_corners = True && out_size > 1 :
7255

T
Tink_Y 已提交
7256 7257 7258 7259 7260
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7261

T
Tink_Y 已提交
7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7272 7273


T
Tink_Y 已提交
7274
          else:
T
tink2123 已提交
7275

T
Tink_Y 已提交
7276 7277
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7278

T
Tink_Y 已提交
7279 7280
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7281 7282 7283



Y
yuyang18 已提交
7284 7285 7286 7287
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7288

Y
yuyang18 已提交
7289 7290 7291 7292 7293
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7294 7295 7296
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7297
                                :attr:`out_shape` and :attr:`scale` specifying
7298 7299 7300 7301 7302 7303 7304
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7305 7306
                                constructing stage.
                                Default: None
7307 7308
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7309 7310 7311

    Returns:
        ${out_comment}.
7312 7313 7314 7315 7316

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7317 7318
    """

7319 7320
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7321 7322


7323
@templatedoc(op_type="nearest_interp")
7324 7325 7326 7327
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7328 7329
                   actual_shape=None,
                   align_corners=True):
7330
    """
7331
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7332 7333
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7334 7335
    out_shape and scale in priority order.

7336 7337
    Example:

T
Tink_Y 已提交
7338 7339 7340 7341 7342
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7343

T
Tink_Y 已提交
7344 7345 7346 7347 7348 7349 7350 7351
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7352
          
T
Tink_Y 已提交
7353 7354
          if:
              align_corners = False
7355

T
Tink_Y 已提交
7356 7357
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7358

T
Tink_Y 已提交
7359 7360
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7361

T
Tink_Y 已提交
7362 7363
          else:
              align_corners = True
7364

T
Tink_Y 已提交
7365 7366
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7367

T
Tink_Y 已提交
7368 7369
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7370 7371


7372
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7373
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7374 7375 7376 7377 7378

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7379

Y
yuyang18 已提交
7380 7381 7382 7383 7384
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7385 7386 7387
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7388
                                :attr:`out_shape` and :attr:`scale` specifying
7389 7390 7391 7392 7393 7394 7395
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7396 7397
                                constructing stage.
                                Default: None
7398
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7399 7400 7401

    Returns:
        ${out_comment}.
7402 7403 7404 7405 7406

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7407 7408
    """

7409 7410
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7411 7412 7413 7414


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7415 7416 7417
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7418 7419 7420 7421 7422 7423 7424
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7425
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7426

7427
    Returns:
Q
update  
qiaolongfei 已提交
7428
        Variable: The output is a 4-D tensor of the shape
7429
        (num_batches, channls, out_h, out_w).
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7440 7441 7442
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7443 7444 7445
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7446 7447
def gather(input, index):
    """
Q
qiaolongfei 已提交
7448 7449
    **Gather Layer**

7450
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7451 7452 7453 7454
    of X indexed by `index` and concatenate them together.

    .. math::

7455
        Out = X[Index]
W
whs 已提交
7456 7457 7458 7459 7460 7461 7462


    .. code-block:: text


                Given:

7463 7464
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7475
        input (Variable): The source input with rank>=1.
W
whs 已提交
7476 7477 7478 7479 7480 7481
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7482

W
whs 已提交
7483 7484 7485 7486 7487 7488
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7489
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7490 7491 7492 7493 7494 7495 7496 7497
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7529
    out = helper.create_variable_for_type_inference(dtype)
7530 7531 7532 7533 7534 7535 7536 7537 7538
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7539 7540 7541 7542 7543 7544 7545 7546 7547
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7548

Q
Qingsheng Li 已提交
7549
    Given the following input:
H
haowang101779990 已提交
7550

Q
Qingsheng Li 已提交
7551
    .. code-block:: text
H
haowang101779990 已提交
7552

Q
Qingsheng Li 已提交
7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7565

Q
Qingsheng Li 已提交
7566
    .. code-block:: text
H
haowang101779990 已提交
7567

Q
Qingsheng Li 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7583
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7594
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7617

7618 7619 7620
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7621
    """
F
stash  
fengjiayi 已提交
7622
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7623
    dtype = x.dtype
X
Xin Pan 已提交
7624
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7625
    if seed is None:
7626
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7627
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7628
    if isinstance(seed, int):
F
fengjiayi 已提交
7629 7630 7631 7632 7633
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7634 7635 7636 7637
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7638
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7639 7640
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7641 7642
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7643
    return out
W
whs 已提交
7644 7645


7646
def log(x, name=None):
W
wanghaoshuang 已提交
7647 7648 7649 7650 7651
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7652
        Out = \\ln(x)
W
wanghaoshuang 已提交
7653 7654

    Args:
7655
        x (Variable): Input tensor.
7656 7657
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7658 7659 7660 7661 7662 7663 7664 7665

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7666
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7667 7668
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7669
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7670
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7671
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7672 7673 7674
    return out


7675
def relu(x, name=None):
W
wanghaoshuang 已提交
7676 7677
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7678
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7679 7680 7681 7682
    the tensor elementwise.

    .. math::

7683
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7684 7685

    Args:
7686
        x (Variable): The input tensor.
7687 7688
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7689 7690 7691 7692 7693 7694 7695 7696

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7697
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7698 7699
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7700
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7701
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7702 7703
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7704
    return out
7705 7706


C
chengduo 已提交
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7748 7749 7750
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7751 7752 7753 7754
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7755
    .. math::
7756

H
haowang101779990 已提交
7757
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7758

7759
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7760 7761 7762 7763 7764
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7765
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7766
                           Its shape should be the same as input.
7767
        num_classes (int): The possible number of labels.
W
whs 已提交
7768 7769

    Returns:
M
minqiyang 已提交
7770 7771
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7772
                     Three variables:
M
minqiyang 已提交
7773

H
haowang101779990 已提交
7774 7775 7776
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7777 7778 7779 7780

    Examples:

        .. code-block:: python
7781

W
whs 已提交
7782 7783 7784 7785
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7786 7787 7788
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7789 7790
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7791 7792
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7793
        outputs={
W
whs 已提交
7794 7795 7796
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7797 7798 7799
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7868
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7869 7870 7871 7872 7873

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7874
            isinstance(shape, Variable)):
7875 7876 7877 7878 7879
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7880
    out = helper.create_variable_for_type_inference(x.dtype)
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7898 7899


W
whs 已提交
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7917

W
whs 已提交
7918
              out_shape = [2, 3, 5, 5]
7919

W
whs 已提交
7920
          Step 1:
7921

W
whs 已提交
7922 7923 7924
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7925

W
whs 已提交
7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7971
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7972
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7985

W
whs 已提交
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7997
            isinstance(out_shape, Variable)):
W
whs 已提交
7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8019 8020
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8021

8022 8023
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8024
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8025 8026 8027
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8028

8029 8030
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8031

H
haowang101779990 已提交
8032 8033
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8034 8035
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8036

H
haowang101779990 已提交
8037 8038 8039 8040 8041 8042 8043 8044
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8045 8046 8047

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8082
    out = helper.create_variable_for_type_inference("float32")
8083 8084 8085 8086 8087 8088 8089 8090

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8091 8092


M
minqiyang 已提交
8093 8094
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8095
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8096
    which compares left score and right score passed in.
M
minqiyang 已提交
8097
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8098 8099 8100

    .. math::

H
haowang101779990 已提交
8101
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8102 8103

    Args:
M
minqiyang 已提交
8104
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8105 8106
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8107
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8108 8109
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8110

M
minqiyang 已提交
8111
    Returns:
M
minqiyang 已提交
8112
       Variable: The ranking loss.
H
haowang101779990 已提交
8113

M
minqiyang 已提交
8114
    Raises:
M
minqiyang 已提交
8115
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8116

M
minqiyang 已提交
8117
    Examples:
H
haowang101779990 已提交
8118

M
minqiyang 已提交
8119
        .. code-block:: python
H
haowang101779990 已提交
8120

M
minqiyang 已提交
8121 8122 8123 8124 8125
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8126
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8127 8128 8129 8130 8131 8132
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8133 8134
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8158
        .. code-block:: text
W
whs 已提交
8159

T
Tink_Y 已提交
8160
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8161

T
Tink_Y 已提交
8162 8163
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8164

T
Tink_Y 已提交
8165
	      Case 0:
M
minqiyang 已提交
8166

T
Tink_Y 已提交
8167 8168 8169
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8170

T
Tink_Y 已提交
8171 8172 8173
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8174

T
Tink_Y 已提交
8175
	      Case 1:
M
minqiyang 已提交
8176

T
Tink_Y 已提交
8177 8178
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8179

T
Tink_Y 已提交
8180 8181 8182
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8183

T
Tink_Y 已提交
8184
	      Case 2:
M
minqiyang 已提交
8185

T
Tink_Y 已提交
8186 8187
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8188

T
Tink_Y 已提交
8189 8190 8191
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8192 8193


W
whs 已提交
8194 8195
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8196
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8220
    out = helper.create_variable_for_type_inference(dtype)
8221 8222 8223 8224 8225 8226 8227 8228 8229
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8230
    helper.append_op(
8231
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8232 8233 8234 8235

    return out


8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8248 8249 8250 8251 8252

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8253 8254
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8255 8256
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8278 8279 8280 8281 8282

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8283 8284
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8285 8286
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8287
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8308 8309 8310 8311 8312

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8313 8314
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8315 8316
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8317
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8339 8340 8341 8342 8343

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8344
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8345
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8346 8347
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8348
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8371 8372 8373 8374 8375

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8376 8377
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8378 8379
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8380
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8402 8403 8404 8405 8406

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8407 8408
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8409 8410
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8411
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8412 8413 8414 8415 8416 8417 8418 8419
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8420 8421 8422 8423
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8424 8425
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8426 8427 8428

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8429
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8430
          weight (alpha).
J
jerrywgz 已提交
8431
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8432 8433 8434
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8435
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8436
          will be named automatically.
J
jerrywgz 已提交
8437 8438 8439 8440 8441 8442 8443 8444

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8445
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8459
        attr=helper.param_attr,
J
jerrywgz 已提交
8460 8461 8462 8463
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8464
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8484
    Returns:
8485
        output(${out_type}): ${out_comment}
8486 8487 8488

    Examples:

8489
    .. code-block:: python
8490

H
haowang101779990 已提交
8491 8492
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8493 8494
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8495
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8514
    Returns:
8515
        output(${out_type}): ${out_comment}
8516 8517 8518 8519 8520

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8521 8522
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8523 8524
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8525
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8543
    Returns:
8544
        output(${out_type}): ${out_comment}
8545 8546 8547 8548 8549

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8550 8551
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8552 8553
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8554
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8555 8556 8557 8558 8559 8560 8561 8562
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8563 8564 8565 8566
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8567

H
haowang101779990 已提交
8568
    For Example:
M
minqiyang 已提交
8569

H
haowang101779990 已提交
8570
    .. code-block:: text
8571

H
haowang101779990 已提交
8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8593 8594 8595

    Args:
        x (Variable): A tensor of rank >= axis.
8596 8597
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8598 8599 8600 8601 8602 8603 8604 8605
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8606 8607 8608
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8609 8610 8611 8612
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8613
        ValueError: If axis is not in range [0, rank(x)].
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8630 8631
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8632
    helper.append_op(
8633
        type='flatten2',
8634
        inputs={"X": x},
8635 8636
        outputs={'Out': out,
                 'XShape': x_shape},
8637 8638
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8639 8640


C
chenweihang 已提交
8641
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8642
    """
C
chenweihang 已提交
8643
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8644
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8645 8646
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8647

H
haowang101779990 已提交
8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8665 8666

    Args:
C
chenweihang 已提交
8667 8668 8669
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8681 8682
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8683 8684 8685 8686 8687 8688
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8689
    return out
8690

8691

S
sneaxiy 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8701

S
sneaxiy 已提交
8702
    .. math::
8703

S
sneaxiy 已提交
8704 8705 8706
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8707
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8708 8709 8710 8711
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8712 8713 8714
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8715 8716
    Returns:
        Variable: The output sequence mask.
8717

S
sneaxiy 已提交
8718 8719
    """

Q
qingqing01 已提交
8720
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8721
    if name is None:
X
Xin Pan 已提交
8722
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8723
    else:
X
Xin Pan 已提交
8724
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8725

Q
qingqing01 已提交
8726 8727 8728
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8729 8730
        outputs={'Y': out},
        attrs={
8731
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8732 8733 8734
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8735 8736


X
Xin Pan 已提交
8737
def stack(x, axis=0):
S
sneaxiy 已提交
8738 8739 8740 8741
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8742 8743 8744 8745 8746 8747 8748

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8749
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8750
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8751

C
chengduozh 已提交
8752 8753
    For Example:

C
chengduozh 已提交
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8792
    Args:
8793
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8794
        axis (int|None): The axis along which all inputs are stacked.
8795

S
sneaxiy 已提交
8796 8797
    Returns:
        Variable: The stacked variable.
8798

S
sneaxiy 已提交
8799 8800
    """

X
Xin Pan 已提交
8801 8802 8803 8804 8805 8806
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8807
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8808
    helper.append_op(
S
sneaxiy 已提交
8809 8810
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8811

X
Xin Pan 已提交
8812
    return out
D
dzhwinter 已提交
8813 8814 8815 8816 8817 8818 8819


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8820

D
dzhwinter 已提交
8821 8822 8823
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8824
    raised.
D
dzhwinter 已提交
8825 8826

    Args:
M
minqiyang 已提交
8827
        x (Variable): Input variable.
D
dzhwinter 已提交
8828 8829
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8830

D
dzhwinter 已提交
8831 8832
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8833

D
dzhwinter 已提交
8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8844
    for _ in range(num):
X
Xin Pan 已提交
8845
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8846 8847 8848 8849 8850 8851 8852 8853

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8866

W
whs 已提交
8867 8868 8869 8870
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8871

W
whs 已提交
8872
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8873

W
whs 已提交
8874
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8875

W
whs 已提交
8876 8877 8878 8879
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8880

W
whs 已提交
8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8897
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8898 8899 8900 8901 8902 8903
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8904 8905


G
fix  
gongweibao 已提交
8906 8907 8908
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8909
@templatedoc()
G
fix  
gongweibao 已提交
8910 8911 8912 8913 8914 8915 8916 8917 8918
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8919
    ${comment}
G
fix  
gongweibao 已提交
8920 8921

    Args:
G
gongweibao 已提交
8922 8923 8924
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8925
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8926 8927 8928
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8929 8930
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8931
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8932

8933 8934 8935 8936 8937
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8938 8939 8940
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8941
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8958 8959


G
gongweibao 已提交
8960
@templatedoc()
X
Xin Pan 已提交
8961
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8962
    """
G
gongweibao 已提交
8963
    ${comment}
G
fix  
gongweibao 已提交
8964 8965

    Args:
G
gongweibao 已提交
8966 8967 8968 8969
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8970 8971 8972
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8973
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8974

8975 8976 8977 8978
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8979 8980 8981
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8982
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8983 8984 8985 8986 8987 8988 8989 8990 8991 8992
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8993
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8994 8995 8996 8997 8998
        })

    return out


G
gongweibao 已提交
8999
@templatedoc()
G
fix  
gongweibao 已提交
9000
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9001
    """
G
gongweibao 已提交
9002
    ${comment}
G
fix  
gongweibao 已提交
9003 9004

    Args:
G
gongweibao 已提交
9005 9006 9007 9008
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9009
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9010 9011

    Returns:
G
gongweibao 已提交
9012
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9013

9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9024 9025 9026
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9027
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9039
@templatedoc()
G
fix  
gongweibao 已提交
9040 9041 9042 9043 9044 9045 9046 9047 9048
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9049
    ${comment}
G
fix  
gongweibao 已提交
9050 9051

    Args:
G
gongweibao 已提交
9052 9053
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9054
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9055 9056 9057 9058
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9059
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9060 9061

    Returns:
G
gongweibao 已提交
9062
        out (Variable): ${out_comment}
9063 9064 9065 9066 9067 9068 9069 9070

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9071 9072 9073
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9074
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9093
@templatedoc()
X
Xin Pan 已提交
9094
def sum(x):
G
fix  
gongweibao 已提交
9095
    """
G
gongweibao 已提交
9096
    ${comment}
G
fix  
gongweibao 已提交
9097 9098

    Args:
G
gongweibao 已提交
9099
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9100 9101

    Returns:
G
gongweibao 已提交
9102
        out (Variable): ${out_comment}
9103 9104 9105 9106 9107 9108

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9109 9110 9111
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9112 9113
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9114 9115 9116 9117
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9118
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9119 9120 9121 9122

    return out


G
gongweibao 已提交
9123
@templatedoc()
G
fix  
gongweibao 已提交
9124 9125
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9126
    ${comment}
G
fix  
gongweibao 已提交
9127 9128

    Args:
G
gongweibao 已提交
9129 9130 9131 9132
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9133 9134

    Returns:
G
gongweibao 已提交
9135
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9136

9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9148 9149 9150
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9151 9152
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9166 9167
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9168
    Get the shape of the input.
G
fix  
gongweibao 已提交
9169 9170

    Args:
C
chengduozh 已提交
9171
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9172 9173

    Returns:
C
fix doc  
chengduozh 已提交
9174
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9175

9176 9177 9178 9179 9180 9181
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9182 9183 9184
    """

    helper = LayerHelper('shape', **locals())
9185
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9186
    helper.append_op(
G
fix  
gongweibao 已提交
9187
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9188 9189

    return out
G
merge  
gongweibao 已提交
9190 9191


S
sneaxiy 已提交
9192 9193 9194 9195
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9196
    if _in_dygraph_mode():
X
Xin Pan 已提交
9197 9198 9199
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9200 9201 9202 9203
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9204 9205
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9206
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9207 9208 9209
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9210

S
sneaxiy 已提交
9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9222
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9223 9224 9225 9226 9227 9228 9229 9230
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9231
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9232
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9233 9234 9235 9236 9237 9238

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9239
    if name is None:
X
Xin Pan 已提交
9240
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9241 9242 9243
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9244 9245 9246 9247 9248 9249 9250 9251 9252 9253

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9254
    return helper.append_activation(out)
S
sneaxiy 已提交
9255 9256


X
Xin Pan 已提交
9257
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9258 9259 9260
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9261
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9262 9263 9264
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9265
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9266 9267 9268
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9269
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9270 9271 9272
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9273
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9274 9275 9276
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9277
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9278 9279 9280
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9281
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9282 9283 9284
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9285 9286 9287 9288 9289 9290 9291 9292
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9293
for func in [
9294 9295 9296 9297 9298 9299 9300 9301 9302
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9303 9304 9305 9306 9307
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9308 9309
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9310
        ])
M
minqiyang 已提交
9311 9312


9313
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9314 9315
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9316 9317
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9318 9319 9320

    if out is None:
        if name is None:
X
Xin Pan 已提交
9321
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9337
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9349 9350 9351 9352 9353 9354 9355 9356 9357

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9358 9359 9360 9361 9362 9363 9364
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9365
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9377 9378 9379 9380 9381 9382 9383 9384 9385

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9386 9387 9388 9389 9390 9391 9392
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9393
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9405 9406 9407 9408 9409 9410 9411 9412 9413

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9414 9415 9416 9417 9418 9419 9420
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9421
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9422 9423 9424 9425 9426 9427 9428 9429 9430 9431
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9432 9433 9434 9435 9436 9437 9438

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9439 9440 9441 9442
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9458 9459 9460 9461 9462 9463 9464

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9465 9466 9467 9468 9469
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9470 9471 9472 9473
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9497 9498 9499 9500 9501 9502 9503

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9504 9505 9506 9507 9508
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9509 9510 9511 9512
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9513 9514 9515 9516 9517 9518 9519 9520

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9539
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9540 9541 9542 9543 9544 9545 9546 9547 9548 9549
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9592
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9593 9594 9595 9596 9597 9598 9599 9600 9601
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9602 9603
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9604 9605 9606 9607 9608 9609
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9610 9611 9612
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9613 9614
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9615 9616 9617 9618 9619 9620
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9621
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9622
        name(basestring|None): Name of the output.
9623 9624
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9625 9626 9627

    Returns:
        out(${out_type}): ${out_comment}
9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9642 9643 9644 9645 9646
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9647
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9648 9649 9650 9651 9652 9653 9654 9655
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9656 9657
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9678
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9679 9680 9681 9682 9683 9684 9685 9686 9687 9688
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9689 9690


J
JiabinYang 已提交
9691
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9692
    """
J
JiabinYang 已提交
9693
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9694 9695 9696

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9697
    The attr blocksize indicates the input block size.
9698 9699

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9700
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9701 9702

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9703
    (but keeping all data)
J
JiabinYang 已提交
9704

J
JiabinYang 已提交
9705
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9706
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9707 9708 9709 9710 9711
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9712
    Args:
J
JiabinYang 已提交
9713
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9714
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9715 9716

    Returns:
J
JiabinYang 已提交
9717
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9718 9719

    Raises:
J
JiabinYang 已提交
9720
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9721 9722 9723 9724 9725

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9726
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9727
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9728
                x=data, blocksize=2)
9729 9730 9731 9732 9733 9734

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9735 9736
    """

J
JiabinYang 已提交
9737
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9738

J
JiabinYang 已提交
9739 9740
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9741 9742

    if name is None:
J
JiabinYang 已提交
9743 9744
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9745 9746 9747 9748 9749
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9750
        type="space_to_depth",
J
JiabinYang 已提交
9751
        inputs={"X": x},
J
JiabinYang 已提交
9752
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9753
        outputs={"Out": out})
J
JiabinYang 已提交
9754 9755
    return out

J
JiabinYang 已提交
9756

S
sneaxiy 已提交
9757 9758
@templatedoc()
def sequence_reverse(x, name=None):
9759
    """
S
sneaxiy 已提交
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9771
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9782 9783


9784 9785 9786 9787 9788 9789
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9790 9791 9792 9793 9794
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9795

9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9808
        act (str, default None): Activation to be applied to the output of this layer.
9809 9810 9811 9812 9813 9814 9815

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9816
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9828
    return helper.append_activation(out)
9829 9830


B
barrierye 已提交
9831
def similarity_focus(input, axis, indexes, name=None):
9832
    """
B
barrierye 已提交
9833
    SimilarityFocus Operator
B
barrierye 已提交
9834 9835

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9836

9837 9838 9839
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9840
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9841 9842 9843 9844 9845 9846 9847
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9848
       each index.
B
barrierye 已提交
9849 9850 9851 9852
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9902
    Args:
9903
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9904
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9905
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9906
            1, 2 or 3.
B
barrierye 已提交
9907
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9908 9909

    Returns:
H
haowang101779990 已提交
9910 9911
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9912

B
barrierye 已提交
9913 9914
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9915

B
barrierye 已提交
9916
            data = fluid.layers.data(
B
barrierye 已提交
9917 9918
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9919

B
barrierye 已提交
9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9932 9933 9934 9935 9936
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9937 9938 9939 9940 9941 9942 9943
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9944 9945


M
minqiyang 已提交
9946 9947
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9948 9949
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9950 9951
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9990
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9991
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9992 9993 9994 9995 9996 9997

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9998

M
minqiyang 已提交
9999 10000 10001
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10002 10003
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10004 10005
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10006 10007 10008 10009 10010 10011 10012
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10013 10014


D
dengkaipeng 已提交
10015
@templatedoc()
10016 10017
def grid_sampler(x, grid, name=None):
    """
10018
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10019
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10020 10021 10022 10023
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10024
    interpolation value of 4 nearest corner points.
10025

H
haowang101779990 已提交
10026
    .. code-block:: text
10027

H
haowang101779990 已提交
10028 10029
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10030

H
haowang101779990 已提交
10031 10032
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10033

H
haowang101779990 已提交
10034 10035 10036
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10037

H
haowang101779990 已提交
10038 10039 10040 10041 10042 10043 10044 10045 10046
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10047

H
haowang101779990 已提交
10048 10049 10050 10051
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10052

H
haowang101779990 已提交
10053 10054 10055 10056
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10057

H
haowang101779990 已提交
10058 10059 10060 10061
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10062

H
haowang101779990 已提交
10063 10064
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10065 10066

    Args:
10067 10068 10069
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10070 10071

    Returns:
H
haowang101779990 已提交
10072
        Variable: Output of shape [N, C, H, W] data samples input X
10073 10074
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10075 10076 10077 10078 10079 10080 10081 10082
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10083

D
dengkaipeng 已提交
10084 10085 10086 10087 10088 10089 10090 10091 10092
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10093
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10094 10095
    ipts = {'X': x, 'Grid': grid}

10096
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10097 10098 10099
    return out


G
gmcather 已提交
10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10166
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10167 10168 10169 10170 10171 10172 10173
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10174

H
heqiaozhi 已提交
10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10189 10190 10191 10192
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10193
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10194 10195
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10196
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10197 10198

    .. math::
H
haowang101779990 已提交
10199 10200 10201
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10202 10203

    Where:
H
haowang101779990 已提交
10204 10205
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10220

G
gmcather 已提交
10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10237 10238 10239 10240 10241 10242 10243 10244 10245 10246


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10247
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10248

Q
Qiao Longfei 已提交
10249
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10250 10251 10252
    For example:

    .. math::
H
haowang101779990 已提交
10253
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10254

Q
Qiao Longfei 已提交
10255
    In this formula:
10256 10257
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10258
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10259
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10260 10261 10262
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10263 10264
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10265 10266 10267
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10268
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10269
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10270
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10271 10272 10273 10274
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10275
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10276 10277 10278 10279

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10280
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10281 10282
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10283
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10284 10285 10286 10287

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10288
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10329 10330


S
shippingwang 已提交
10331
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10332 10333
    """
    **Shuffle Channel Operator**
10334

S
shippingwang 已提交
10335 10336 10337 10338 10339 10340
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10341
    
S
shippingwang 已提交
10342
    .. code-block:: text
10343

S
shippingwang 已提交
10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10372
    Args: 
S
shippingwang 已提交
10373 10374
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10375 10376

    Returns:
S
shippingwang 已提交
10377 10378
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10379 10380

    Raises:
S
shippingwang 已提交
10381
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10382 10383 10384

    Examples:
        .. code-block:: python
10385 10386

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10387
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10388 10389 10390
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10391
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10392 10393 10394 10395 10396 10397 10398 10399 10400

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10401
    return out
S
Add  
shippingwang 已提交
10402 10403


10404
@templatedoc()
D
dengkaipeng 已提交
10405
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10406 10407 10408 10409 10410 10411 10412 10413
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10414
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10415
        name (str, default None): The name of this layer.
10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10428
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10441 10442
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10443 10444 10445
    return out


S
sneaxiy 已提交
10446
class PyFuncRegistry(object):
S
sneaxiy 已提交
10447 10448 10449
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10450
        if func is None or not callable(func):
S
sneaxiy 已提交
10451 10452 10453
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10454
        # find named args using reflection
S
sneaxiy 已提交
10455 10456 10457 10458 10459 10460 10461
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10462 10463 10464
        '''
        Why record self here?

M
minqiyang 已提交
10465 10466
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10467
           to find the registered function corresponding
M
minqiyang 已提交
10468
           to :code:`idx`.
S
sneaxiy 已提交
10469

M
minqiyang 已提交
10470 10471
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10472
           whose reference count is 1 would cause
M
minqiyang 已提交
10473
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10474 10475
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10476
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10491 10492 10493 10494 10495 10496 10497 10498 10499
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10500

S
sneaxiy 已提交
10501 10502
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10503 10504

        ret = []
S
sneaxiy 已提交
10505 10506 10507
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10508 10509
                continue

S
sneaxiy 已提交
10510 10511
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10512

S
sneaxiy 已提交
10513 10514 10515
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10516

S
sneaxiy 已提交
10517
        return tuple(ret)
S
sneaxiy 已提交
10518 10519


S
sneaxiy 已提交
10520 10521 10522 10523
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10524

S
sneaxiy 已提交
10525 10526 10527 10528 10529 10530 10531 10532
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10533
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10534

S
sneaxiy 已提交
10535 10536
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10537 10538 10539 10540
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10541
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10542
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10543 10544
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10545 10546 10547 10548 10549
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10550
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10551
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10552
                                       None means no backward. Default None.
S
sneaxiy 已提交
10553
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10554
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10555 10556
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10557
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10558 10559 10560

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10561 10562

    Examples:
M
minqiyang 已提交
10563

S
sneaxiy 已提交
10564 10565 10566 10567 10568
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10569
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10570 10571
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10572
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10573 10574 10575
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10576
        >>>
S
sneaxiy 已提交
10577 10578 10579 10580 10581
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10582
        >>>     print(x)
S
sneaxiy 已提交
10583 10584 10585 10586 10587 10588
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10589
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10590 10591
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10592 10593
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10594 10595 10596 10597 10598 10599 10600 10601
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10602
    """
S
sneaxiy 已提交
10603
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10604 10605 10606
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10607
        x = [x]
S
sneaxiy 已提交
10608 10609
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10610

S
sneaxiy 已提交
10611 10612 10613
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10614
        out_list = [out]
S
sneaxiy 已提交
10615
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10616
        out_list = out
S
sneaxiy 已提交
10617 10618 10619
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10620

S
sneaxiy 已提交
10621 10622
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10623
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10624 10625

    for each_out in out_list:
S
sneaxiy 已提交
10626 10627
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10628 10629
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10630

S
sneaxiy 已提交
10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10646 10647 10648 10649

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10650 10651
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10652 10653 10654
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10655
        })
S
sneaxiy 已提交
10656
    return out
S
sneaxiy 已提交
10657 10658 10659


# For debug usage
S
sneaxiy 已提交
10660 10661 10662 10663
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10716

M
minqiyang 已提交
10717

M
minqiyang 已提交
10718
def huber_loss(input, label, delta):
10719
    """
M
minqiyang 已提交
10720 10721 10722
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10723 10724 10725 10726

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10727
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10728 10729 10730 10731

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10732
        huber\_loss = 0.5 * (label - input) * (label - input)
10733 10734 10735 10736 10737 10738 10739


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10740
        delta (float): The parameter of huber loss, which controls
10741 10742 10743
                       the range of outliers

    Returns:
M
minqiyang 已提交
10744
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10745 10746 10747 10748 10749

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10750
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10751
    """
M
minqiyang 已提交
10752
    helper = LayerHelper('huber_loss', **locals())
10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10764 10765


D
dengkaipeng 已提交
10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10866 10867


C
ceci3 已提交
10868
from .ops import square
C
ceci3 已提交
10869
from .control_flow import equal
C
ceci3 已提交
10870 10871


C
ceci3 已提交
10872 10873 10874
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10875

C
ceci3 已提交
10876
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10877 10878

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10879
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10880 10881 10882 10883 10884
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10885 10886
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10887 10888 10889 10890 10891 10892 10893

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10894 10895 10896 10897 10898 10899 10900 10901
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10902 10903 10904 10905 10906 10907 10908
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10909
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10910 10911
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10912 10913
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10914 10915 10916 10917
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10918 10919 10920
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10921 10922 10923
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966


def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out