nn.py 246.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
67
    'sequence_slice',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161 162
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
163
       is_test=False,
164
       name=None):
Y
Yu Yang 已提交
165
    """
166
    **Fully Connected Layer**
Y
Yu Yang 已提交
167

168 169 170 171 172 173 174 175
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
176
    to the output as well.
C
caoying03 已提交
177

C
caoying03 已提交
178
    This process can be formulated as follows:
179 180 181

    .. math::

182
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
183 184 185

    In the above equation:

C
caoying03 已提交
186 187 188 189
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
190
    * :math:`Act`: The activation function.
C
caoying03 已提交
191
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
192 193

    Args:
R
ranqiu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
209 210
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
211
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
212
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
213
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
214

215
    Returns:
F
fengjiayi 已提交
216
        Variable: The transformation result.
217 218

    Raises:
C
caoying03 已提交
219
        ValueError: If rank of the input tensor is less than 2.
220 221 222 223

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
224
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
225
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
226
    """
C
caoying03 已提交
227

C
caoying03 已提交
228
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
229 230 231 232

    dtype = helper.input_dtype()

    mul_results = []
233 234
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
235 236 237
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
238

Y
Yu Yang 已提交
239
        w = helper.create_parameter(
240 241
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
242
        helper.append_op(
243 244 245
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
246
            outputs={"Out": tmp},
M
mozga-intel 已提交
247 248
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
249 250 251 252
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
253
    else:
254 255
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
256 257 258
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
259
            attrs={"use_mkldnn": False})
260 261 262 263
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
264 265


266 267 268
def embedding(input,
              size,
              is_sparse=False,
269
              is_distributed=False,
270 271 272
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
273
    """
274 275
    **Embedding Layer**

276
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
277 278
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
279 280 281

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
282 283

    Args:
284 285 286 287 288
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
289
        is_distributed(bool): Whether to run lookup table from remote parameter server.
290 291
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
292
            with zeros whenever lookup encounters it in :attr:`input`. If
293
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
294 295
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
296
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
297

298 299 300
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
301

302 303
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
304

C
chengduoZH 已提交
305
          dict_size = len(dataset.ids)
306
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
307
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
308 309 310 311 312 313
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
314 315
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
316 317 318 319 320
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
321 322 323 324 325
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
326 327 328
    return tmp


Y
yi.wu 已提交
329
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
330 331
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
332 333
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
334 335 336 337 338 339 340
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
341 342
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
343
    """
Y
yi.wu 已提交
344
    ${comment}
Y
Yibing Liu 已提交
345 346

    Args:
Y
yi.wu 已提交
347 348
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
349 350 351 352 353 354 355
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

356
        param_attr(ParamAttr|None): The parameter attribute for the learnable
357
                               hidden-hidden weights.
Y
Yibing Liu 已提交
358 359 360

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
361 362
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
363
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
364 365 366
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
367

368
                              1. `use_peepholes = False`
Y
yi.wu 已提交
369 370
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
371
                              2. `use_peepholes = True`
Y
yi.wu 已提交
372
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
373
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
374
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
375 376 377 378 379 380 381 382
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
383 384

    Returns:
Y
Yibing Liu 已提交
385 386
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
387

Y
Yibing Liu 已提交
388
    Examples:
Y
Yibing Liu 已提交
389 390
        .. code-block:: python

Y
Yibing Liu 已提交
391 392
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
393
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
394 395
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
396
    """
397

Y
Yu Yang 已提交
398
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
399
    size = size // 4
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407 408 409 410 411
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
412 413 414 415 416 417 418 419 420 421
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
422 423 424

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
425
        inputs=inputs,
Y
Yu Yang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
442 443 444 445 446 447 448 449 450 451 452
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
453 454
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
455 456 457
    """
    **Dynamic LSTMP Layer**

458 459 460 461 462 463
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
464 465 466 467 468

    The formula is as follows:

    .. math::

469
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
470

471
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
472

473
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
474

475
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
476

477
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
478

479
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
480

481
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
482

Y
Yibing Liu 已提交
483 484 485 486 487 488
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
489
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
490
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
491
          bias vector).
Y
Yibing Liu 已提交
492 493 494
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
495
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
496
    * :math:`h`: The hidden state.
497
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
498 499
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
500
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
501
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
502
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
503 504
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
505 506 507 508

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
509

Y
Yibing Liu 已提交
510 511 512 513 514 515 516 517 518 519 520 521
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
522
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
523 524
                               hidden-hidden weight and projection weight.

525 526
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
527 528
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
529 530
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
531 532
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
533 534 535 536 537 538
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
539
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
540 541 542
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
543
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
544 545 546 547 548 549 550 551 552
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
553
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
554 555
                              default "tanh".
        proj_activation(str): The activation for projection output.
556
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
557 558
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
559 560
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
561 562

    Returns:
563 564 565 566
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
567 568

    Examples:
569

Y
Yibing Liu 已提交
570 571
        .. code-block:: python

572 573 574 575
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
576
            hidden_dim, proj_dim = 512, 256
577
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
578
                                     act=None, bias_attr=None)
579 580 581
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
582 583 584 585
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
586
    """
587

Y
Yibing Liu 已提交
588
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
589
    size = size // 4
Y
Yibing Liu 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
634 635 636 637 638 639 640 641 642
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
643
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
644

645
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
646
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
647

G
guosheng 已提交
648 649 650 651 652 653 654 655 656
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
657

G
guosheng 已提交
658
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
659

G
guosheng 已提交
660
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
661 662
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
663 664 665 666
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
667
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
668 669

    Args:
670 671
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
672
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
673
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
674 675
            is the hidden size.
        size(int): The dimension of the gru cell.
676
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
677 678
            hidden-hidden weight matrix. Note:

679
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
680
              :math:`D` is the hidden size.
681
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
682
              The first part are weights of the update gate and reset gate with
683
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
684
              candidate hidden state with shape :math:`(D \\times D)`.
685
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
686
            hidden-hidden bias.
687
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
688 689 690
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
691
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
692
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
693 694 695 696
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
697 698

    Returns:
G
guosheng 已提交
699
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
700
            and sequence length is the same with the input.
701

G
guosheng 已提交
702
    Examples:
703

G
guosheng 已提交
704 705
        .. code-block:: python

706 707 708 709
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
710
            hidden_dim = 512
711
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
712 713 714 715 716 717 718 719 720 721
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
722
    batch_size = input.shape[0]
G
guosheng 已提交
723 724 725
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
726 727 728
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
752 753 754
def gru_unit(input,
             hidden,
             size,
755 756
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
757
             activation='tanh',
758
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
759
    """
760
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
761

762 763
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
764

765
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
766

767
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
768

769
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
770 771

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
772 773 774
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
775 776
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

777 778
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
779 780 781
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
782 783 784 785 786

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
787 788
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
789 790 791 792
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
793

794 795 796 797 798 799
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
800

801
             # assuming we have x_t_data and prev_hidden of size=10
802
             x_t = fluid.layers.fc(input=x_t_data, size=30)
803 804
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
805 806 807 808 809 810 811 812 813 814 815 816

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
817
    size = size // 3
Y
Yu Yang 已提交
818 819

    # create weight
820 821
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
822

823 824 825 826
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
827
    # create bias
828
    if helper.bias_attr:
Y
Yu Yang 已提交
829 830 831
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
832
        inputs['Bias'] = bias
Y
Yu Yang 已提交
833 834 835

    helper.append_op(
        type='gru_unit',
836
        inputs=inputs,
Y
Yu Yang 已提交
837 838 839 840 841 842
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
843 844
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
845 846 847 848 849
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
850
@templatedoc()
851
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
852 853 854 855 856 857 858
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
859
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
860 861 862 863
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
864 865 866
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
867 868

    """
Y
Yu Yang 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
894
@templatedoc()
895
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
896 897 898 899 900
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
901

Y
yuyang18 已提交
902
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
903

Y
yuyang18 已提交
904 905 906
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
907
        Variable: ${viterbi_path_comment}
908

Y
yi.wu 已提交
909 910 911 912 913
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
914
    """
Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
928
@templatedoc()
F
fengjiayi 已提交
929
def cos_sim(X, Y):
Y
Yu Yang 已提交
930
    """
Y
yi.wu 已提交
931 932 933
    ${comment}

    Args:
934 935
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
936

Y
yi.wu 已提交
937
    Returns:
938
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
939
    """
F
fengjiayi 已提交
940
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


954
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
955 956 957 958 959
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
960
    training. The dropout operator randomly sets (according to the given dropout
961 962 963 964
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
965 966
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
967 968 969 970 971 972 973
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
974 975

    Returns:
976
        Variable: A tensor variable is the shape with `x`.
977 978

    Examples:
979

980 981
        .. code-block:: python

982 983
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
984 985
    """

F
fengjiayi 已提交
986
    helper = LayerHelper('dropout', **locals())
987 988
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
989 990 991 992

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

993 994 995 996 997
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
998 999 1000 1001 1002 1003
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1004 1005 1006
    return out


1007
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1008
    """
Y
Yibing Liu 已提交
1009 1010
    **Cross Entropy Layer**

1011 1012 1013
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1014 1015

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1016
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1017

Y
Yibing Liu 已提交
1018
        .. math::
Y
yangyaming 已提交
1019

Y
Yibing Liu 已提交
1020 1021 1022
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1023 1024
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1025 1026 1027 1028 1029

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1030
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1031 1032 1033
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1034 1035
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1036
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1037

Y
Yibing Liu 已提交
1038
    Args:
Y
yangyaming 已提交
1039
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1040 1041 1042 1043
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1044
        label (Variable|list): the ground truth which is a 2-D tensor. When
1045 1046 1047 1048
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1049
        soft_label (bool): a flag indicating whether to
1050
                                           interpretate the given labels as soft
1051
                                           labels. Default: `False`.
M
minqiyang 已提交
1052 1053
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1054
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1055 1056 1057 1058 1059

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1060 1061 1062 1063 1064
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1065 1066 1067 1068 1069 1070

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1071
    """
F
fengjiayi 已提交
1072
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1079 1080
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1081 1082 1083
    return out


F
fengjiayi 已提交
1084
def square_error_cost(input, label):
Y
Yu Yang 已提交
1085
    """
1086 1087
    **Square error cost layer**

1088 1089
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1104 1105
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1106 1107

    Returns:
G
guosheng 已提交
1108
        Variable: The tensor variable storing the element-wise squared error \
1109
                  difference of input and label.
1110 1111 1112 1113 1114 1115 1116 1117

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1118
    """
F
fengjiayi 已提交
1119
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1129 1130
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1131 1132 1133
    return square_out


Y
yi.wu 已提交
1134
@templatedoc()
Y
Yu Yang 已提交
1135 1136 1137 1138
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1139
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1140
    """
Y
yi.wu 已提交
1141
    **Chunk Evaluator**
Y
yi.wu 已提交
1142

Y
yangyaming 已提交
1143
    This function computes and outputs the precision, recall and
1144
    F1-score of chunk detection.
Y
yi.wu 已提交
1145

Y
yi.wu 已提交
1146 1147 1148 1149 1150 1151 1152 1153
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1154

Y
yi.wu 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1180

Y
yi.wu 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1205
    Args:
1206 1207 1208 1209 1210
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1211

Y
yi.wu 已提交
1212
    Returns:
Y
update  
yi.wu 已提交
1213 1214 1215
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1216

Y
yi.wu 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1229
    """
F
fengjiayi 已提交
1230
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1231 1232 1233 1234 1235

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1236 1237 1238
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244 1245 1246

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1247 1248 1249 1250
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1251 1252 1253
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1254 1255
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1256
        })
1257 1258
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1259 1260


1261
@templatedoc()
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267 1268
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1269
                  act=None):
Y
Yu Yang 已提交
1270 1271 1272 1273
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1284

1285 1286
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1305
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1312
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1313 1314 1315
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1316
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1335
        library is installed. Default: False
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1359
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1360
    """
1361
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1362
    has the same shape as the input.
Q
qiaolongfei 已提交
1363

1364 1365 1366 1367 1368 1369
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1370
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1371 1372 1373 1374 1375 1376 1377

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1378
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1413 1414 1415
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1416 1417
           stride=1,
           padding=0,
1418
           dilation=1,
Y
Yu Yang 已提交
1419 1420 1421
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1422
           use_cudnn=True,
1423 1424
           act=None,
           name=None):
Y
Yu Yang 已提交
1425
    """
C
chengduoZH 已提交
1426
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1427 1428
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1429
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1430 1431 1432 1433 1434 1435 1436
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1437 1438 1439
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1440

1441
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1442

C
chengduoZH 已提交
1443 1444
    .. math::

C
refine  
chengduoZH 已提交
1445
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1446

T
tensor-tang 已提交
1447
    Where:
C
chengduoZH 已提交
1448

1449 1450 1451 1452 1453
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1454
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1455 1456 1457

    Example:

1458 1459
        - Input:

W
weixing02 已提交
1460
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1461

W
weixing02 已提交
1462
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1463

1464
        - Output:
T
tensor-tang 已提交
1465

W
weixing02 已提交
1466
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1467

C
chengduoZH 已提交
1468
        Where
1469 1470

        .. math::
C
chengduoZH 已提交
1471

W
weixing02 已提交
1472 1473
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1474 1475

    Args:
1476
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1477
        num_filters(int): The number of filter. It is as same as the output
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1503 1504

    Returns:
G
guosheng 已提交
1505
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1506 1507
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1508
    Raises:
1509 1510
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1511

C
chengduoZH 已提交
1512 1513 1514
    Examples:
        .. code-block:: python

1515 1516
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1517 1518 1519
    """

    num_channels = input.shape[1]
1520 1521

    l_type = 'conv2d'
X
xzl 已提交
1522 1523
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1524
        l_type = 'depthwise_conv2d'
1525 1526 1527 1528

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1529 1530 1531 1532 1533
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1534
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1535

C
chengduoZH 已提交
1536 1537 1538
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1539
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1540

C
chengduoZH 已提交
1541 1542
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1543 1544

    input_shape = input.shape
M
minqiyang 已提交
1545
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1560
        type=l_type,
Y
Yu Yang 已提交
1561 1562 1563 1564 1565
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1566 1567 1568
        attrs={
            'strides': stride,
            'paddings': padding,
1569
            'dilations': dilation,
C
chengduoZH 已提交
1570
            'groups': groups,
1571
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1572
            'use_mkldnn': False
C
chengduoZH 已提交
1573
        })
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1597 1598 1599 1600 1601 1602
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1612 1613
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1614 1615 1616
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1617
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1643
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1644 1645
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1646
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1647 1648
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1649
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1650 1651
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1652
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1678 1679
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1694
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1732
            'use_mkldnn': False
C
chengduoZH 已提交
1733 1734
        })

1735
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1736 1737 1738 1739

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1740
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1741
    """
Y
yangyaming 已提交
1742 1743 1744
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1756
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1757 1758 1759 1760 1761
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1762
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1763 1764 1765 1766 1767 1768 1769

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1770 1771
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1772

L
Luo Tao 已提交
1773 1774
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1775
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1776 1777 1778 1779 1780 1781 1782 1783
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1784

Y
yangyaming 已提交
1785
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1786 1787 1788 1789 1790
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1791 1792
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1793
    """
F
fengjiayi 已提交
1794
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1806 1807 1808 1809 1810
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1811 1812 1813
    return pool_out


C
add doc  
chengduoZH 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1839
def sequence_first_step(input):
L
Luo Tao 已提交
1840
    """
L
Luo Tao 已提交
1841
    This function gets the first step of sequence.
L
Luo Tao 已提交
1842 1843 1844 1845

    .. code-block:: text

       x is a 1-level LoDTensor:
1846
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1847 1848 1849 1850 1851
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1852
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1853
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1854

L
Luo Tao 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1864

Y
yangyaming 已提交
1865
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1866 1867 1868
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1869 1870 1871
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1872
def sequence_last_step(input):
L
Luo Tao 已提交
1873
    """
L
Luo Tao 已提交
1874
    This function gets the last step of sequence.
L
Luo Tao 已提交
1875 1876 1877 1878

    .. code-block:: text

       x is a 1-level LoDTensor:
1879
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1880 1881 1882 1883 1884
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1885
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1886
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1887

L
Luo Tao 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1897

Y
yangyaming 已提交
1898
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1899 1900 1901
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1902 1903 1904
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:
            Given the input Variable **input**,
	        input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
	        input.lod = [[0, 3, 5]], input.dims = (5, 2)

	    with offset.data = [[0], [1]], length.data = [[2], [1]],

            the output Variable will be

	        out.data = [[a1, a2], [b1, b2], [e1, e2]],
	        out.lod = [[0, 2, 3]], out.dims = (3, 2)
	
Y
Yibing Liu 已提交
1928
    NOTE: The first dimension size of input, the size of offset and Length 
Y
Yibing Liu 已提交
1929 1930 1931 1932
          should be equal. The offset start from 0.
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
1933
                         sequences.
Y
Yibing Liu 已提交
1934 1935 1936 1937 1938 1939
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
1940
        Variable: The output subsequences.
Y
Yibing Liu 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
1971
@templatedoc()
Y
Yu Yang 已提交
1972
def pool2d(input,
C
chengduoZH 已提交
1973 1974
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1975 1976
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1977
           global_pooling=False,
C
chengduoZH 已提交
1978
           use_cudnn=True,
1979
           ceil_mode=False,
C
caoying03 已提交
1980
           name=None):
Y
Yu Yang 已提交
1981
    """
F
fengjiayi 已提交
1982
    ${comment}
1983 1984

    Args:
1985 1986 1987
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1988
                          feature, and W is the width of the feature.
1989
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1990
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1991
        pool_type: ${pooling_type_comment}
1992 1993
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1994 1995 1996
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1997
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1998 1999
                        layer will be named automatically.

2000
    Returns:
F
fengjiayi 已提交
2001
        Variable: The pooling result.
F
fengjiayi 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2015 2016 2017 2018
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2019
                            global_pooling=False)
Y
Yu Yang 已提交
2020 2021 2022 2023 2024
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2025

C
chengduoZH 已提交
2026 2027 2028 2029 2030
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2031 2032 2033 2034
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2035 2036
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2037

C
Add doc  
chengduoZH 已提交
2038
    l_type = 'pool2d'
2039 2040

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2041 2042 2043 2044
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2056
            "use_mkldnn": False
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2073
    pooling configurations mentioned in input parameters.
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2086

2087
    Returns:
2088
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2089 2090 2091 2092 2093
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2094

C
chengduoZH 已提交
2095 2096 2097 2098 2099
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2100 2101 2102
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2103

C
chengduoZH 已提交
2104 2105
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2106

2107 2108
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2109 2110 2111 2112
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2113
        type=l_type,
Y
Yu Yang 已提交
2114 2115 2116 2117 2118 2119 2120
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2121
            "paddings": pool_padding,
2122
            "use_cudnn": use_cudnn,
2123
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2124
            "use_mkldnn": False
Y
Yu Yang 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2137
               data_layout='NCHW',
Y
Yang Yang 已提交
2138
               in_place=False,
2139 2140
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2141
               moving_variance_name=None,
2142 2143
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2144
    """
Q
qiaolongfei 已提交
2145 2146 2147 2148
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2149

Q
qiaolongfei 已提交
2150
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2151

Q
qiaolongfei 已提交
2152 2153
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2154 2155 2156
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2169 2170

    Args:
Q
qiaolongfei 已提交
2171
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2172 2173 2174 2175
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2176 2177 2178
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2179
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2180 2181 2182 2183
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2184
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2185
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2186 2187

    Returns:
Q
qiaolongfei 已提交
2188
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2189 2190 2191 2192 2193 2194 2195

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2219
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2220

2221 2222
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2223 2224 2225
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2226
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2227
        shape=param_shape,
2228 2229 2230 2231 2232 2233 2234
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2235
            trainable=False,
W
wanghaoshuang 已提交
2236
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2237
        shape=param_shape,
2238 2239
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2240 2241 2242 2243 2244 2245

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2246 2247
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2248

2249
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2267 2268 2269 2270
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2271
            "use_mkldnn": False,
2272
            "fuse_with_relu": fuse_with_relu
2273
        })
Y
Yu Yang 已提交
2274 2275 2276 2277

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2278
@templatedoc()
G
guosheng 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2289
    ${comment}
G
guosheng 已提交
2290 2291 2292

    The formula is as follows:

Y
yuyang18 已提交
2293
    ..  math::
G
guosheng 已提交
2294 2295 2296 2297 2298 2299 2300

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2301 2302 2303 2304 2305 2306 2307 2308
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2309

G
guosheng 已提交
2310 2311
    Args:
        input(Variable): The input tensor variable.
2312
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2313
            normalization.
2314
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2315
            normalization.
2316
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2317
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2318
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2319 2320 2321 2322 2323 2324
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2325
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2326 2327

    Returns:
Y
yuyang18 已提交
2328
        ${y_comment}
G
guosheng 已提交
2329 2330 2331

    Examples:

Y
yuyang18 已提交
2332 2333 2334
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2350
    if shift:
G
guosheng 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2375 2376 2377 2378
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2379 2380 2381
                     padding=0,
                     stride=1,
                     dilation=1,
2382
                     groups=None,
C
caoying03 已提交
2383
                     param_attr=None,
2384
                     bias_attr=None,
C
chengduoZH 已提交
2385
                     use_cudnn=True,
2386
                     act=None,
C
caoying03 已提交
2387
                     name=None):
Y
Yu Yang 已提交
2388
    """
2389 2390 2391 2392 2393 2394 2395 2396
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2397 2398
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2399 2400 2401
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2402 2403 2404 2405 2406

    For each input :math:`X`, the equation is:

    .. math::

2407
        Out = \sigma (W \\ast X + b)
2408

2409
    Where:
2410 2411 2412

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2413 2414 2415 2416
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2417

2418 2419 2420 2421
    Example:

        - Input:

2422
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2423

2424
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2425 2426 2427

        - Output:

2428
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2429 2430

        Where
Y
Yu Yang 已提交
2431

2432 2433
        .. math::

2434 2435 2436 2437
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2438 2439

    Args:
2440 2441 2442 2443
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2444 2445 2446 2447
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2475 2476

    Returns:
2477
        Variable: The tensor variable storing the convolution transpose result.
2478 2479

    Raises:
2480 2481
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2482 2483 2484 2485

    Examples:
       .. code-block:: python

2486 2487
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2488
    """
2489 2490 2491 2492 2493 2494 2495 2496 2497

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2498 2499 2500
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2501 2502 2503
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2504

C
chengduoZH 已提交
2505 2506
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2507

Y
Yu Yang 已提交
2508 2509 2510 2511 2512
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2513

Y
Yu Yang 已提交
2514 2515
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2516

C
chengduoZH 已提交
2517
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2518
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2519
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2520
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2521
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2522 2523 2524
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2525 2526 2527 2528 2529 2530 2531
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2532
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2533
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2534 2535 2536
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2537
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2538
    helper.append_op(
2539
        type=op_type,
Y
Yu Yang 已提交
2540 2541
        inputs={'Input': [input],
                'Filter': [img_filter]},
2542
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2543
        attrs={
2544
            'output_size': output_size,
2545 2546 2547 2548 2549
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2550 2551
        })

2552 2553 2554
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2555 2556


2557
def conv3d_transpose(input,
Y
Yu Yang 已提交
2558 2559 2560
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2561 2562 2563
                     padding=0,
                     stride=1,
                     dilation=1,
2564
                     groups=None,
C
caoying03 已提交
2565
                     param_attr=None,
2566
                     bias_attr=None,
C
chengduoZH 已提交
2567
                     use_cudnn=True,
2568
                     act=None,
C
caoying03 已提交
2569
                     name=None):
Y
Yu Yang 已提交
2570
    """
2571
    **Convlution3D transpose layer**
2572

2573
    The convolution3D transpose layer calculates the output based on the input,
2574
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2575 2576 2577 2578 2579 2580
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2581 2582 2583
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2584 2585 2586 2587 2588

    For each input :math:`X`, the equation is:

    .. math::

2589
        Out = \sigma (W \\ast X + b)
2590 2591 2592

    In the above equation:

2593 2594
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2595 2596 2597 2598
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2599

2600 2601 2602 2603
    Example:

        - Input:

2604
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2605

2606
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2607 2608 2609

        - Output:

2610
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2611 2612

        Where
Y
Yu Yang 已提交
2613

2614 2615
        .. math::

2616 2617 2618
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2619 2620

    Args:
2621
        input(Variable): The input image with [N, C, D, H, W] format.
2622 2623 2624
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2625
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2626 2627
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2628
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2629 2630 2631
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2632 2633
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2634
        stride(int|tuple): The stride size. If stride is a tuple, it must
2635 2636
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2637
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2638 2639 2640
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2641 2642 2643 2644 2645
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2646 2647 2648
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2649 2650 2651 2652 2653
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2654 2655

    Returns:
2656
        Variable: The tensor variable storing the convolution transpose result.
2657 2658

    Raises:
2659 2660
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2661 2662 2663 2664

    Examples:
       .. code-block:: python

2665 2666
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2667
    """
2668 2669
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2670
    if not isinstance(input, Variable):
2671
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2672 2673
    input_channel = input.shape[1]

2674 2675 2676
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2677

C
chengduoZH 已提交
2678 2679 2680
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2681 2682 2683 2684 2685 2686
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2687 2688 2689
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2690

2691
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2692
                         padding[0] - 1) // dilation[0] + 1
2693
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2694
                         padding[1] - 1) // dilation[1] + 1
2695
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2696
                         padding[2] - 1) // dilation[2] + 1
2697
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2698
    else:
2699 2700
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2701

2702
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2703
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2704 2705 2706
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2707
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2708
    helper.append_op(
2709
        type=l_type,
Y
Yu Yang 已提交
2710 2711
        inputs={'Input': [input],
                'Filter': [img_filter]},
2712
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2713 2714 2715 2716
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2717
            'groups': groups,
C
chengduoZH 已提交
2718 2719
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2720

2721 2722
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2723
    return out
Y
yangyaming 已提交
2724 2725


Y
yangyaming 已提交
2726
def sequence_expand(x, y, ref_level=-1, name=None):
2727
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2728 2729 2730 2731
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2732 2733 2734 2735 2736

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2737
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2738
                x.data = [[a], [b], [c], [d]]
2739 2740 2741
                x.dims = [4, 1]

            y is a LoDTensor:
2742 2743
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2744

Y
yangyaming 已提交
2745
            ref_level: 0
2746

Y
yangyaming 已提交
2747
            then output is a 1-level LoDTensor:
2748
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2749
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2750 2751 2752 2753
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2754
                x.data = [[a], [b], [c]]
2755 2756 2757
                x.dims = [3, 1]

            y is a LoDTensor:
2758
                y.lod = [[2, 0, 3]]
2759

Y
yangyaming 已提交
2760
            ref_level: -1
2761

Y
yangyaming 已提交
2762 2763 2764
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2765 2766 2767
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2768 2769
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2770
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2771
                        will be named automatically.
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2782
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2783
    """
Y
yangyaming 已提交
2784
    helper = LayerHelper('sequence_expand', input=x, **locals())
2785 2786 2787
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2788 2789 2790 2791 2792
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2793
    return tmp
2794 2795


C
chengduo 已提交
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2861 2862 2863 2864 2865 2866 2867
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2868 2869 2870
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2871
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2872 2873 2874 2875
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2876
            longest original sequence."
M
minqiyang 已提交
2877

F
fengjiayi 已提交
2878
    Returns:
M
minqiyang 已提交
2879
        Variable: The padded sequence batch and the original lengths before
2880
                  padding. All sequences has the same length.
M
minqiyang 已提交
2881

F
fengjiayi 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2896 2897 2898 2899 2900
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2901 2902 2903 2904 2905 2906
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2907 2908
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2909
        attrs={'padded_length': maxlen})
2910
    return out, length
F
fengjiayi 已提交
2911 2912


2913 2914 2915 2916 2917 2918 2919 2920 2921
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2922 2923
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2924 2925 2926

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2927 2928

    This layer does the search in beams for one time step. Specifically, it
2929 2930 2931 2932 2933 2934
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2935

2936 2937 2938 2939 2940 2941 2942 2943
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2944

2945
    Args:
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2971

2972
    Returns:
2973 2974
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2975 2976 2977 2978

    Examples:
        .. code-block:: python

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3007
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3025 3026 3027 3028 3029 3030 3031
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3042

3043 3044 3045 3046 3047 3048
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3075 3076 3077 3078
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3079
              param_attr=None,
C
caoying03 已提交
3080 3081
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3082 3083 3084 3085
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3086
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3087

3088
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3089

3090
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3091

3092
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3093 3094 3095

            h_t & = o_t tanh(c_t)

3096 3097 3098 3099 3100 3101
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3102 3103 3104

        .. math::

3105
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3106 3107 3108 3109 3110 3111 3112 3113

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3114
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3115 3116

    Args:
Y
yangyaming 已提交
3117 3118 3119 3120 3121 3122
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3123
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3124 3125
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3126 3127
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3128 3129
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3130 3131

    Returns:
Y
yangyaming 已提交
3132
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3133 3134

    Raises:
3135 3136 3137 3138
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3139 3140 3141 3142 3143 3144

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3145
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3146
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3147
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3164
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3165 3166 3167 3168
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3169 3170
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3171 3172 3173
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3174
    size = cell_t_prev.shape[1]
3175
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3176 3177
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3178
                param_attr=param_attr,
3179
                bias_attr=bias_attr)
Y
yangyaming 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3192
    return h, c
G
guosheng 已提交
3193 3194


C
caoying03 已提交
3195
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3196
    """
Y
yangyaming 已提交
3197
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3198 3199 3200

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3201
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3202 3203
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3204 3205
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3206
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3207
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3208
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3209 3210
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3211 3212 3213

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3214

G
guosheng 已提交
3215 3216 3217 3218 3219 3220
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3221
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3222 3223 3224 3225
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3226 3227 3228 3229

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3230
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3231 3232 3233
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3234 3235 3236
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3237 3238
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3239 3240 3241 3242 3243
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3244
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3245 3246 3247 3248
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3249 3250


C
caoying03 已提交
3251
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3252
    """
Y
Yibing Liu 已提交
3253
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3254 3255 3256

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3257 3258 3259
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3260
            must be in the range :math:`[-rank(input), rank(input))`. If
3261
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3262
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3263 3264
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3265
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3266
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3267
                       will be named automatically.
G
guosheng 已提交
3268 3269

    Returns:
Y
Yibing Liu 已提交
3270
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3271

G
guosheng 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3282 3283
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3284 3285 3286 3287 3288 3289 3290

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3291 3292 3293
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3294 3295
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3296 3297 3298 3299 3300
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3301
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3302 3303 3304 3305
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3306 3307


C
caoying03 已提交
3308
def reduce_max(input, dim=None, keep_dim=False, name=None):
3309
    """
Y
yangyaming 已提交
3310
    Computes the maximum of tensor elements over the given dimension.
3311 3312 3313

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3314
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3315 3316 3317
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3318
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3319 3320
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3321
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3322 3323
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3324 3325 3326

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3339 3340 3341 3342 3343 3344 3345

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3346 3347 3348
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3349 3350
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3351 3352 3353 3354 3355
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3356
            'dim': dim if dim != None else [0],
3357 3358 3359 3360 3361 3362
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3363
def reduce_min(input, dim=None, keep_dim=False, name=None):
3364
    """
Y
yangyaming 已提交
3365
    Computes the minimum of tensor elements over the given dimension.
3366 3367 3368

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3369
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3370 3371 3372
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3373
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3374 3375
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3376
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3377 3378
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3379 3380 3381

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3394 3395 3396 3397 3398 3399 3400

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3401 3402 3403
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3404 3405
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3406 3407 3408 3409 3410
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3411
            'dim': dim if dim != None else [0],
3412 3413 3414 3415
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3416 3417


3418 3419 3420 3421 3422 3423
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3424
        dim (list|int|None): The dimensions along which the product is performed. If
3425 3426
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3427 3428
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3429 3430 3431
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3432
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3433
            layer will be named automatically.
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3448
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3449
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3450 3451 3452 3453 3454 3455 3456

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3457 3458 3459
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3460 3461
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3462 3463 3464 3465 3466
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3467
            'dim': dim if dim != None else [0],
3468 3469 3470 3471 3472 3473
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3474
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3475
    """
C
caoying03 已提交
3476
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3477 3478 3479

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3480 3481 3482 3483 3484
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3485
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3486
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3487
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3488 3489
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3490 3491

    Returns:
D
dzhwinter 已提交
3492
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3502 3503
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3542
    .. math::
3543 3544

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3545 3546 3547 3548 3549

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3550
        x(Variable|list): The input tensor to l2_normalize layer.
3551
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3552 3553
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3554
        epsilon(float): The epsilon value is used to avoid division by zero, \
3555
            the defalut value is 1e-10.
3556
        name(str|None): A name for this layer(optional). If set None, the layer \
3557
            will be named automatically.
C
caoying03 已提交
3558 3559

    Returns:
3560
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3561 3562

    Examples:
3563

C
caoying03 已提交
3564 3565
        .. code-block:: python

3566 3567 3568 3569
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3570 3571
    """

F
fengjiayi 已提交
3572 3573
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3574 3575
    helper = LayerHelper("l2_normalize", **locals())

3576 3577
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3578
    helper.append_op(
3579 3580 3581 3582
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3583
        attrs={
3584 3585
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3586 3587
        })
    return out
3588 3589


S
sneaxiy 已提交
3590
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3591
    """
Y
ying 已提交
3592 3593 3594 3595
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3596

C
chengduoZH 已提交
3597
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3598
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3599

3600 3601 3602 3603 3604
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3605
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3606

C
chengduoZH 已提交
3607
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3608
      performs in the following way.
G
guosheng 已提交
3609

3610
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3611
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3612
        last two dimensions and a batched matrix multiply supporting broadcast
3613
        applies on the two tensors.
G
guosheng 已提交
3614

Y
ying 已提交
3615 3616
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3617
    removed after matrix multiplication.
G
guosheng 已提交
3618 3619 3620

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3621 3622 3623
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3624
        alpha (float): The scale of output. Default 1.0.
3625
        name(str|None): A name for this layer(optional). If set None, the layer
3626
            will be named automatically.
G
guosheng 已提交
3627 3628

    Returns:
3629
        Variable: The product Tensor variable.
G
guosheng 已提交
3630

G
guosheng 已提交
3631 3632 3633
    Examples:
        .. code-block:: python

3634
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3635 3636
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3637

3638 3639
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3640

3641 3642
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3643

3644 3645
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3646 3647 3648 3649

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3650 3651
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3652

Y
ying 已提交
3653
            # x: [M], y: [N]
3654
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3655
    """
Y
ying 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3668
            y_shape = y_shape + [1]
Y
ying 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3685
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3686
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3687
    helper.append_op(
3688 3689 3690 3691
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3692 3693 3694
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3695
            'alpha': float(alpha),
S
sneaxiy 已提交
3696
        })
3697
    return out
3698 3699


3700
def topk(input, k, name=None):
Q
qingqing01 已提交
3701 3702 3703 3704
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3705
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3706 3707 3708 3709 3710 3711
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3733 3734 3735
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3736
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3737
                 of input.
3738
        name(str|None): A name for this layer(optional). If set None, the layer
3739
                       will be named automatically.
F
fengjiayi 已提交
3740
                       Default: None
Q
qingqing01 已提交
3741 3742

    Returns:
3743 3744 3745
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3746
        within the last dimension of input.
Q
qingqing01 已提交
3747

F
fengjiayi 已提交
3748 3749
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3770
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3771
    """
Y
ying 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3781

Y
ying 已提交
3782
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3783

3784
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3785 3786
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3787
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3788

3789
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3790 3791
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3792

3793 3794 3795
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3796
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3797
                          the length of reference string.
3798
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3799
                                     calculating edit distance.
3800
        name (str): The name of this layer. It is optional.
3801

W
wanghaoshuang 已提交
3802
    Returns:
W
wanghaoshuang 已提交
3803
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3804 3805 3806 3807 3808

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3809
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3810
            cost = fluid.layers.edit_distance(input=x,label=y)
3811
    """
3812
    helper = LayerHelper("edit_distance", **locals())
3813

3814
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3815
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3816 3817 3818 3819 3820 3821 3822
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3823
            attrs={"tokens": ignored_tokens})
3824 3825 3826 3827 3828
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3829
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3830
            attrs={"tokens": ignored_tokens})
3831 3832
        label = erased_label

3833 3834
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3835
    sequence_num = helper.create_tmp_variable(dtype="int64")
3836 3837 3838 3839
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3840 3841
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3842 3843
        attrs={"normalized": normalized})

3844
    return edit_distance_out, sequence_num
3845 3846 3847 3848 3849


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3850

Y
ying 已提交
3851 3852 3853 3854
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3872
        input.lod = [[4, 4]]
3873 3874 3875 3876 3877 3878 3879

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3880
        output.lod = [[2, 1]]
3881 3882 3883

    Args:

Y
ying 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3893
        name (str): The name of this layer. It is optional.
3894 3895

    Returns:
3896
        Variable: CTC greedy decode result. If all the sequences in result were
3897
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3898 3899 3900 3901 3902

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3903

3904
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3905
    """
3906
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3907
    _, topk_indices = topk(input, k=1)
3908 3909 3910 3911 3912 3913

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3914
        outputs={"Output": [ctc_out]},
3915 3916
        attrs={"merge_repeated": True,
               "blank": blank})
3917
    return ctc_out
3918 3919


F
fengjiayi 已提交
3920
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3921
    """
3922 3923
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3924
    to compute Connectionist Temporal Classification (CTC) loss.
3925 3926
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3927 3928 3929
    input tensor.

    Args:
3930
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3931 3932 3933 3934
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3935
       label (Variable): The ground truth of variable-length sequence,
3936 3937 3938
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3939 3940
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3941 3942 3943
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3944
         follewed by a mean_op.
W
wanghaoshuang 已提交
3945 3946

    Returns:
3947 3948
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3949 3950

    Examples:
3951

W
wanghaoshuang 已提交
3952
        .. code-block:: python
3953

3954 3955 3956
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3957 3958

    """
F
fengjiayi 已提交
3959
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3986 3987 3988
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3989 3990 3991 3992 3993
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3994

3995
            out.lod  = [[0, 1, 3]]
3996 3997 3998 3999

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4000 4001 4002 4003 4004 4005 4006
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4007 4008 4009

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4010 4011

    Returns:
4012

4013 4014 4015 4016 4017
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4018
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4019
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4020 4021 4022 4023 4024 4025 4026 4027 4028
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4029 4030


4031 4032 4033 4034
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4035 4036 4037 4038 4039 4040 4041
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4042 4043 4044 4045 4046 4047 4048
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4049 4050
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4051
            sample is 1.0.
4052 4053 4054
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4055

4056
    Returns:
Y
Yibing Liu 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4084
    """
Y
Yang Yu 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4129
    return cost / (num_neg_samples + 1)
4130 4131


G
guosheng 已提交
4132
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4133 4134
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4135
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4145

W
weixing02 已提交
4146
    Args:
M
minqiyang 已提交
4147
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4148 4149 4150 4151 4152
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4153 4154
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4155
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4156 4157
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4158 4159 4160 4161 4162 4163 4164 4165

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4166 4167 4168
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4169 4170 4171 4172 4173 4174 4175 4176
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4177
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4178 4179 4180 4181 4182
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4183 4184 4185 4186 4187 4188 4189 4190
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4191 4192
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4193
        inputs=inputs,
W
weixing02 已提交
4194 4195 4196 4197 4198 4199
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4200
def transpose(x, perm, name=None):
Y
ying 已提交
4201 4202 4203 4204 4205 4206 4207
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4208 4209 4210
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4211 4212 4213 4214 4215 4216 4217 4218

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4219
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4220 4221
    """

Y
fix ci.  
ying 已提交
4222
    if len(perm) != len(x.shape):
Y
ying 已提交
4223 4224 4225
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4226 4227 4228 4229 4230 4231
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4232 4233

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4234
    out = helper.create_tmp_variable(x.dtype)
4235
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4236
    helper.append_op(
4237
        type='transpose2',
Y
fix ci.  
ying 已提交
4238
        inputs={'X': [x]},
4239 4240
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4241 4242
        attrs={'axis': perm})
    return out
4243 4244


4245 4246 4247 4248 4249 4250 4251
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4252
    """
4253 4254 4255 4256 4257 4258 4259
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4288 4289 4290 4291 4292 4293 4294 4295 4296
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4297 4298 4299
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4300 4301 4302 4303 4304
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4332 4333 4334
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4347
            output.dims = {8, 8}
4348

4349
            output.lod = [[4, 4]]
4350

D
dzhwinter 已提交
4351
     Examples:
4352 4353 4354

        .. code-block:: python

4355 4356
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4357 4358

    """
W
wanghaoshuang 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4369 4370 4371 4372 4373 4374 4375
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4376
    helper = LayerHelper('im2sequence', **locals())
4377 4378
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4379
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4380
    return out
4381 4382


Y
yuyang18 已提交
4383
@templatedoc()
4384
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4385 4386
    """
    ${comment}
4387 4388

    Args:
Y
yuyang18 已提交
4389
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4390 4391
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4392 4393 4394 4395 4396
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4397
        ${out_comment}.
4398 4399

    Examples:
Y
yuyang18 已提交
4400 4401 4402 4403
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4416
    return helper.append_activation(out)
4417 4418


Y
yuyang18 已提交
4419
@templatedoc()
4420 4421
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4422 4423 4424 4425 4426 4427 4428
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4429 4430

    Args:
Y
yuyang18 已提交
4431 4432
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4433 4434

    Returns:
Y
yuyang18 已提交
4435
        ${out_comment}.
4436 4437
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4438 4439 4440 4441 4442 4443

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4444 4445 4446 4447 4448 4449
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4450 4451


4452 4453 4454 4455
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4456 4457
    """
    **Softmax With Cross Entropy Operator.**
4458

4459 4460 4461 4462
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4463

4464 4465 4466
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4467

4468 4469 4470
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4471

4472
    The equation is as follows:
4473

4474
    1) Hard label (one-hot label, so every sample has exactly one class)
4475

4476 4477 4478 4479
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4480

4481 4482 4483
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4484

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4497 4498
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4499 4500
                            if soft_label is set to False. Default: -100

4501 4502 4503 4504 4505 4506 4507 4508 4509
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4510 4511
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4522 4523
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4524 4525 4526 4527 4528
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4529 4530
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4531
    For each instance, it computes the smooth L1 loss element by element first
4532
    and then sums all the losses. So the shape of ouput Variable is
4533
    [batch_size, 1].
4534

4535 4536
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4537
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4538
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4539
            L1 loss op with same shape as :attr:`x`.
4540
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4541 4542
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4543
            by this tensor element by element.
4544
        outside_weight (Variable|None): A tensor with rank at least 2. This
4545 4546
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4547
            element by element.
4548
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4549 4550
           scalar with default value 1.0.

4551
    Returns:
4552
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4553 4554 4555 4556 4557

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4558 4559
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4560
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4561
            out = fluid.layers.smooth_l1(x=fc, y=label)
4562
    """
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4579 4580 4581 4582


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4583
    This layer creates the one-hot representations for input indices.
4584 4585

    Args:
Y
Yibing Liu 已提交
4586 4587
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4588 4589

    Returns:
Y
Yibing Liu 已提交
4590
        Variable: The one-hot representations of input.
4591 4592

    Examples:
C
caoying03 已提交
4593
        .. code-block:: python
4594

Y
Yibing Liu 已提交
4595 4596
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4597 4598 4599 4600 4601 4602 4603 4604 4605
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4606 4607


Y
Yu Yang 已提交
4608
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4609
    """
Y
yi.wu 已提交
4610 4611 4612
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4613 4614 4615 4616 4617 4618

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4619 4620
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4621 4622 4623 4624 4625 4626

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4627 4628
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4629 4630
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4631 4632 4633 4634 4635
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4636
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4637
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4638 4639
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4640 4641
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4642 4643 4644
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4645 4646


4647
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4648
    """
C
caoying03 已提交
4649 4650
    Gives a new shape to the input Tensor without changing its data.

4651 4652 4653 4654 4655
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4656

4657
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4658

4659 4660 4661 4662
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4663
    2. 0 means the actual dimension value is going to be copied from the
4664 4665 4666 4667
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4668 4669

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4670
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4671
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4672

4673
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4674 4675
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4676 4677
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4678
    dimensions.
C
caoying03 已提交
4679

4680
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4681 4682 4683 4684
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4685 4686

    Args:
4687
        x(variable): The input tensor.
C
caoying03 已提交
4688 4689
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4690 4691 4692 4693 4694
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4695
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4696 4697 4698 4699
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4700
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4701

4702 4703
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4704

X
Xin Pan 已提交
4705 4706 4707
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4708 4709
    Examples:
        .. code-block:: python
G
guosheng 已提交
4710

4711
            data = fluid.layers.data(
4712
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4713
            reshaped = fluid.layers.reshape(
4714
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4715 4716 4717
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4718
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4719 4720 4721 4722 4723
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4724

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4740
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4741
    out = helper.create_tmp_variable(dtype=x.dtype)
4742
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4743
    helper.append_op(
4744
        type="reshape2",
X
Xin Pan 已提交
4745
        inputs=inputs,
D
dzhwinter 已提交
4746
        attrs={"shape": shape},
4747 4748
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4749

D
dzhwinter 已提交
4750
    return helper.append_activation(out)
4751

4752

4753
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4754
    """
M
minqiyang 已提交
4755 4756 4757
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4758
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4759

Y
Yibing Liu 已提交
4760 4761
    Examples:
    Case 1:
M
minqiyang 已提交
4762
      Given
Y
Yibing Liu 已提交
4763 4764 4765 4766 4767 4768 4769 4770
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4771
        and
Y
Yibing Liu 已提交
4772 4773 4774
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4775

Y
Yibing Liu 已提交
4776
    Args:
4777
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4778
        axes (list): List of integers, indicating the dimensions to be squeezed.
4779
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4780 4781 4782 4783 4784 4785 4786 4787

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4788
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4789 4790
    """
    helper = LayerHelper("squeeze", **locals())
4791
    out = helper.create_tmp_variable(dtype=input.dtype)
4792
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4793
    helper.append_op(
4794
        type="squeeze2",
4795
        inputs={"X": input},
Y
Yibing Liu 已提交
4796
        attrs={"axes": axes},
4797 4798
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4799

4800 4801 4802
    return out


4803
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4804
    """
M
minqiyang 已提交
4805 4806 4807
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4808

M
minqiyang 已提交
4809 4810
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4811
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4812

Y
Yibing Liu 已提交
4813
    Args:
4814
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4815
        axes (list): List of integers, indicating the dimensions to be inserted.
4816
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4817 4818 4819 4820 4821 4822 4823 4824

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4825
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4826 4827
    """
    helper = LayerHelper("unsqueeze", **locals())
4828
    out = helper.create_tmp_variable(dtype=input.dtype)
4829
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4830
    helper.append_op(
4831
        type="unsqueeze2",
4832
        inputs={"X": input},
Y
Yibing Liu 已提交
4833
        attrs={"axes": axes},
4834 4835
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4836

4837 4838
    return out

4839

Y
yangyaming 已提交
4840
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4841
    """
Y
Yibing Liu 已提交
4842
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4843 4844 4845 4846
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4847
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4848 4849 4850 4851 4852 4853

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4854
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4855 4856 4857
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4858
            target_lod: [4, 2]
Y
yangyaming 已提交
4859 4860

            then we get a 1-level LoDTensor:
4861
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4862 4863 4864 4865 4866 4867
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4868
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4869 4870 4871 4872
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4873
                y.data = [[2, 4]]
Y
yangyaming 已提交
4874 4875 4876
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4877
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4878 4879 4880 4881 4882 4883
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4884
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4885 4886 4887 4888
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4889
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4890 4891 4892 4893
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4894
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4895 4896 4897 4898 4899
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4900
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4901
                           from :attr:`y`.
Y
yangyaming 已提交
4902
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4903
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4904 4905

    Returns:
Y
Yibing Liu 已提交
4906
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4907 4908

    Raises:
Y
Yibing Liu 已提交
4909
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4945
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4974 4975
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5003 5004 5005 5006


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5007
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5008
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5009

G
guosheng 已提交
5010 5011 5012 5013
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5036
                         The length of :attr:paddings must be
G
guosheng 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5047

G
guosheng 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5062 5063


C
chengduo 已提交
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5144 5145 5146 5147 5148 5149 5150
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5151 5152
    called label-smoothing regularization (LSR).

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5176
                              be :math:`(1, class\_num)`.
5177 5178
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5179
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5207 5208


Y
yi.wu 已提交
5209
@templatedoc()
5210 5211
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5212
    ${comment}
5213 5214

    Args:
Y
yi.wu 已提交
5215 5216
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5217 5218 5219
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5220 5221

    Returns:
Y
update  
yi.wu 已提交
5222
        Variable: ${out_comment}.
5223 5224

    Examples:
5225 5226
        .. code-block:: python

5227
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5273 5274
        .. code-block:: python

W
whs 已提交
5275 5276 5277 5278
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5279
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5280 5281 5282 5283 5284 5285
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5286 5287


5288 5289 5290 5291 5292
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5293
    """
Q
qiaolongfei 已提交
5294
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5295

5296
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5297 5298 5299
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5300

5301
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5302

5303
    Args:
5304
        input (Variable): The input tensor of image resize layer,
5305 5306
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5307
        out_shape(list|tuple|Variable|None): Output shape of image resize
5308 5309
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5310
        scale(float|None): The multiplier for the input height or width.
5311 5312 5313
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5314 5315
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5316 5317
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5318 5319

    Returns:
Q
update  
qiaolongfei 已提交
5320 5321
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5322

5323 5324 5325
    Examples:
        .. code-block:: python

5326
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5327
    """
5328 5329 5330 5331
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5332 5333
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5334 5335
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5336 5337 5338 5339

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5340 5341 5342
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5343
    if out_shape is not None:
B
baiyf 已提交
5344 5345 5346
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5347 5348 5349 5350 5351 5352
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5353 5354 5355 5356
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5357 5358
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5359
        type=resample_methods[resample],
5360
        inputs=inputs,
5361 5362 5363 5364
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5365 5366


Y
yuyang18 已提交
5367
@templatedoc(op_type="bilinear_interp")
5368 5369
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5370 5371 5372 5373 5374 5375
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5376

Y
yuyang18 已提交
5377 5378 5379 5380 5381 5382 5383 5384
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5385 5386 5387 5388 5389 5390 5391
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5392 5393 5394
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5395 5396 5397 5398 5399 5400 5401
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5402
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5403

5404
    Returns:
Q
update  
qiaolongfei 已提交
5405
        Variable: The output is a 4-D tensor of the shape
5406
        (num_batches, channls, out_h, out_w).
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5417 5418 5419
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5420 5421 5422
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5423 5424
def gather(input, index):
    """
Q
qiaolongfei 已提交
5425 5426
    **Gather Layer**

5427
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5428 5429 5430 5431
    of X indexed by `index` and concatenate them together.

    .. math::

5432
        Out = X[Index]
W
whs 已提交
5433 5434 5435 5436 5437 5438 5439


    .. code-block:: text


                Given:

5440 5441
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5452
        input (Variable): The source input with rank>=1.
W
whs 已提交
5453 5454 5455 5456 5457 5458
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5459

W
whs 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5589

5590 5591 5592
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5593
    """
F
stash  
fengjiayi 已提交
5594
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5595
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5596
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5597
    if seed is None:
5598
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5599
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5600
    if isinstance(seed, int):
F
fengjiayi 已提交
5601 5602 5603 5604 5605
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5606 5607 5608 5609
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5610
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5611 5612
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5613 5614
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5615
    return out
W
whs 已提交
5616 5617


5618
def log(x, name=None):
W
wanghaoshuang 已提交
5619 5620 5621 5622 5623
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5624
        Out = \\ln(x)
W
wanghaoshuang 已提交
5625 5626

    Args:
5627
        x (Variable): Input tensor.
5628 5629
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5630 5631 5632 5633 5634 5635 5636 5637

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5638
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5639 5640
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5641
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5642
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5643
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5644 5645 5646
    return out


5647
def relu(x, name=None):
W
wanghaoshuang 已提交
5648 5649
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5650
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5651 5652 5653 5654
    the tensor elementwise.

    .. math::

5655
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5656 5657

    Args:
5658
        x (Variable): The input tensor.
5659 5660
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5661 5662 5663 5664 5665 5666 5667 5668

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5669
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5670 5671
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5672
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5673
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5674
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5675
    return out
5676 5677


W
whs 已提交
5678 5679 5680
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5681 5682 5683 5684
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5685
    .. math::
5686 5687

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5688

5689
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5690 5691 5692 5693 5694
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5695
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5696
                           Its shape should be the same as input.
5697
        num_classes (int): The possible number of labels.
W
whs 已提交
5698 5699 5700 5701

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5702
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5703 5704 5705 5706

    Examples:

        .. code-block:: python
5707

W
whs 已提交
5708 5709 5710 5711 5712 5713 5714 5715 5716
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5717 5718
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5719
        outputs={
W
whs 已提交
5720 5721 5722
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5723 5724 5725
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5800
                    isinstance(shape, Variable)):
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5834

5835 5836
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5837

5838 5839 5840 5841
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5842

5843 5844 5845 5846 5847
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5848 5849 5850

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5895 5896


W
whs 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5911

W
whs 已提交
5912 5913
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5914

W
whs 已提交
5915
      Case 0:
M
minqiyang 已提交
5916

W
whs 已提交
5917 5918 5919
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5920

W
whs 已提交
5921 5922 5923
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5924

W
whs 已提交
5925
      Case 1:
M
minqiyang 已提交
5926

W
whs 已提交
5927 5928
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5929

W
whs 已提交
5930 5931 5932
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5933

W
whs 已提交
5934
      Case 2:
M
minqiyang 已提交
5935

W
whs 已提交
5936 5937
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5938

W
whs 已提交
5939 5940 5941
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5942 5943


W
whs 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6141
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6142
                        will be named automatically.
J
jerrywgz 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6261

6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6272 6273
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6289
        ValueError: If axis is not in range [0, rank(x)].
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6307
    x_shape = helper.create_tmp_variable(x.dtype)
6308
    helper.append_op(
6309
        type='flatten2',
6310
        inputs={"X": x},
6311 6312
        outputs={'Out': out,
                 'XShape': x_shape},
6313 6314
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6315 6316


C
chenweihang 已提交
6317
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6318
    """
C
chenweihang 已提交
6319
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6320
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6321 6322
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6323

C
chenweihang 已提交
6324 6325 6326 6327
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6328
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6329 6330 6331 6332 6333 6334
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6335
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6336 6337 6338
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6339 6340 6341
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6353
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6354 6355 6356 6357 6358 6359
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6360

6361

S
sneaxiy 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6371

S
sneaxiy 已提交
6372
    .. math::
6373

S
sneaxiy 已提交
6374 6375 6376
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6377
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6378 6379 6380 6381
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6382 6383 6384
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6385 6386
    Returns:
        Variable: The output sequence mask.
6387

S
sneaxiy 已提交
6388 6389
    """

Q
qingqing01 已提交
6390
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6391 6392 6393 6394 6395
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6396 6397 6398
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6399 6400
        outputs={'Y': out},
        attrs={
6401
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6402 6403 6404
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6405 6406


X
Xin Pan 已提交
6407
def stack(x, axis=0):
S
sneaxiy 已提交
6408 6409 6410 6411
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6412 6413 6414 6415 6416 6417 6418

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6419
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6420
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6421 6422

    Args:
6423
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6424
        axis (int|None): The axis along which all inputs are stacked.
6425

S
sneaxiy 已提交
6426 6427
    Returns:
        Variable: The stacked variable.
6428

S
sneaxiy 已提交
6429 6430
    """

X
Xin Pan 已提交
6431 6432 6433 6434 6435 6436 6437 6438
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6439 6440
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6441

X
Xin Pan 已提交
6442
    return out
D
dzhwinter 已提交
6443 6444 6445 6446 6447 6448 6449


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6450

D
dzhwinter 已提交
6451 6452 6453
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6454
    raised.
D
dzhwinter 已提交
6455 6456

    Args:
M
minqiyang 已提交
6457
        x (Variable): Input variable.
D
dzhwinter 已提交
6458 6459
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6460

D
dzhwinter 已提交
6461 6462
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6463

D
dzhwinter 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6496

W
whs 已提交
6497 6498 6499 6500
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6501

W
whs 已提交
6502
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6503

W
whs 已提交
6504
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6505

W
whs 已提交
6506 6507 6508 6509
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6510

W
whs 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6534 6535


G
fix  
gongweibao 已提交
6536 6537 6538
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6539
@templatedoc()
G
fix  
gongweibao 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6549
    ${comment}
G
fix  
gongweibao 已提交
6550 6551

    Args:
G
gongweibao 已提交
6552 6553 6554
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6555
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6556 6557 6558
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6559 6560
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6561
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6583 6584


G
gongweibao 已提交
6585
@templatedoc()
X
Xin Pan 已提交
6586
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6587
    """
G
gongweibao 已提交
6588
    ${comment}
G
fix  
gongweibao 已提交
6589 6590

    Args:
G
gongweibao 已提交
6591 6592 6593 6594
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6595 6596 6597
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6598
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6614
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6615 6616 6617 6618 6619
        })

    return out


G
gongweibao 已提交
6620
@templatedoc()
G
fix  
gongweibao 已提交
6621
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6622
    """
G
gongweibao 已提交
6623
    ${comment}
G
fix  
gongweibao 已提交
6624 6625

    Args:
G
gongweibao 已提交
6626 6627 6628 6629
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6630
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6631 6632

    Returns:
G
gongweibao 已提交
6633
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6634 6635 6636 6637

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6638
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6650
@templatedoc()
G
fix  
gongweibao 已提交
6651 6652 6653 6654 6655 6656 6657 6658 6659
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6660
    ${comment}
G
fix  
gongweibao 已提交
6661 6662

    Args:
G
gongweibao 已提交
6663 6664
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6665
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6666 6667 6668 6669
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6670
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6671 6672

    Returns:
G
gongweibao 已提交
6673
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6696
@templatedoc()
X
Xin Pan 已提交
6697
def sum(x):
G
fix  
gongweibao 已提交
6698
    """
G
gongweibao 已提交
6699
    ${comment}
G
fix  
gongweibao 已提交
6700 6701

    Args:
G
gongweibao 已提交
6702
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6703 6704

    Returns:
G
gongweibao 已提交
6705
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6706 6707 6708
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6709
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6710 6711 6712 6713
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6714
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6715 6716 6717 6718

    return out


G
gongweibao 已提交
6719
@templatedoc()
G
fix  
gongweibao 已提交
6720 6721
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6722
    ${comment}
G
fix  
gongweibao 已提交
6723 6724

    Args:
G
gongweibao 已提交
6725 6726 6727 6728
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6729 6730

    Returns:
G
gongweibao 已提交
6731
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6732 6733 6734 6735

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6736
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6748
@templatedoc()
G
fix  
gongweibao 已提交
6749 6750
def shape(input):
    """
G
gongweibao 已提交
6751
    ${comment}
G
fix  
gongweibao 已提交
6752 6753

    Args:
G
gongweibao 已提交
6754
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6755 6756

    Returns:
G
gongweibao 已提交
6757
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6758 6759 6760 6761

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6762
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6763
    helper.append_op(
G
fix  
gongweibao 已提交
6764
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6765 6766

    return out
G
merge  
gongweibao 已提交
6767 6768


S
sneaxiy 已提交
6769 6770 6771 6772 6773 6774 6775 6776
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6777 6778 6779 6780 6781 6782
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6783

S
sneaxiy 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6795
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6796 6797 6798 6799 6800 6801 6802 6803
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6804
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6805
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6806 6807 6808 6809 6810 6811

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6812 6813 6814 6815 6816
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6827
    return helper.append_activation(out)
S
sneaxiy 已提交
6828 6829


X
Xin Pan 已提交
6830
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6831 6832 6833
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6834
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6835 6836 6837
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6838
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6839 6840 6841
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6842
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6843 6844 6845
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6846
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6847 6848 6849
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6850
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6851 6852 6853
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
6854
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6866 6867
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6868
        ])
M
minqiyang 已提交
6869 6870


6871
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
6872 6873
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
6874 6875
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
6895
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6914
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6933
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6952
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7089 7090
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out