Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1c9aaeeb
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1c9aaeeb
编写于
3月 28, 2019
作者:
L
lujun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move imperative to dygraph, test=develop
上级
cc29bec6
变更
33
隐藏空白更改
内联
并排
Showing
33 changed file
with
209 addition
and
207 deletion
+209
-207
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-2
python/paddle/fluid/dygraph/__init__.py
python/paddle/fluid/dygraph/__init__.py
+0
-0
python/paddle/fluid/dygraph/base.py
python/paddle/fluid/dygraph/base.py
+4
-4
python/paddle/fluid/dygraph/checkpoint.py
python/paddle/fluid/dygraph/checkpoint.py
+5
-5
python/paddle/fluid/dygraph/layer_object_helper.py
python/paddle/fluid/dygraph/layer_object_helper.py
+1
-1
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+1
-1
python/paddle/fluid/dygraph/nn.py
python/paddle/fluid/dygraph/nn.py
+4
-4
python/paddle/fluid/dygraph/profiler.py
python/paddle/fluid/dygraph/profiler.py
+0
-0
python/paddle/fluid/dygraph/tracer.py
python/paddle/fluid/dygraph/tracer.py
+2
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+39
-41
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+8
-8
python/paddle/fluid/install_check.py
python/paddle/fluid/install_check.py
+1
-1
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+3
-3
python/paddle/fluid/layer_helper_base.py
python/paddle/fluid/layer_helper_base.py
+6
-6
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+8
-7
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+0
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+3
-4
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+29
-23
python/paddle/fluid/tests/unittests/test_base_layer.py
python/paddle/fluid/tests/unittests/test_base_layer.py
+5
-5
python/paddle/fluid/tests/unittests/test_gru_op.py
python/paddle/fluid/tests/unittests/test_gru_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+24
-24
python/paddle/fluid/tests/unittests/test_imperative_checkpoint.py
...addle/fluid/tests/unittests/test_imperative_checkpoint.py
+8
-8
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+14
-14
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+6
-6
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
+6
-6
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+6
-6
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+6
-6
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+8
-8
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
...ddle/fluid/tests/unittests/test_imperative_transformer.py
+3
-3
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+3
-3
python/paddle/fluid/tests/unittests/test_variable.py
python/paddle/fluid/tests/unittests/test_variable.py
+1
-2
python/setup.py.in
python/setup.py.in
+1
-1
tools/print_signatures.py
tools/print_signatures.py
+1
-1
未找到文件。
python/paddle/fluid/__init__.py
浏览文件 @
1c9aaeeb
...
...
@@ -34,7 +34,7 @@ from . import io
from
.
import
evaluator
from
.
import
initializer
from
.
import
layers
from
.
import
imperative
from
.
import
dygraph
from
.
import
contrib
from
.
import
nets
from
.
import
optimizer
...
...
@@ -71,7 +71,7 @@ __all__ = framework.__all__ + executor.__all__ + \
'initializer'
,
'layers'
,
'contrib'
,
'
imperative
'
,
'
dygraph
'
,
'transpiler'
,
'nets'
,
'optimizer'
,
...
...
python/paddle/fluid/
imperative
/__init__.py
→
python/paddle/fluid/
dygraph
/__init__.py
浏览文件 @
1c9aaeeb
文件已移动
python/paddle/fluid/
imperative
/base.py
→
python/paddle/fluid/
dygraph
/base.py
浏览文件 @
1c9aaeeb
...
...
@@ -22,7 +22,7 @@ __all__ = ['enabled', 'guard', 'to_variable']
def
enabled
():
return
framework
.
_in_
imperative
_mode
()
return
framework
.
_in_
dygraph
_mode
()
@
signature_safe_contextmanager
...
...
@@ -39,14 +39,14 @@ def guard(place=None):
with
framework
.
program_guard
(
train
,
startup
):
with
framework
.
unique_name
.
guard
():
with
framework
.
_
imperative
_guard
(
tracer
):
with
framework
.
_
imperative
_place_guard
(
place
):
with
framework
.
_
dygraph
_guard
(
tracer
):
with
framework
.
_
dygraph
_place_guard
(
place
):
yield
def
to_variable
(
value
,
block
=
None
,
name
=
None
):
if
isinstance
(
value
,
np
.
ndarray
):
assert
enabled
(),
"to_variable could only be called in
imperative
mode"
assert
enabled
(),
"to_variable could only be called in
dygraph
mode"
if
not
block
:
block
=
framework
.
default_main_program
().
current_block
()
...
...
python/paddle/fluid/
imperative
/checkpoint.py
→
python/paddle/fluid/
dygraph
/checkpoint.py
浏览文件 @
1c9aaeeb
...
...
@@ -68,7 +68,7 @@ def save_persistables(vardict, dirname, filename=None):
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
param_path = "./my_paddle_model"
fluid.
imperative.checkpoint
.save_persistables(ptb_model.state_dict(), dirname=param_path,
fluid.
dygraph
.save_persistables(ptb_model.state_dict(), dirname=param_path,
layer=ptb_model)
"""
if
isinstance
(
vardict
,
collections
.
OrderedDict
):
...
...
@@ -97,17 +97,17 @@ def load_persistables(vardict, dirname, filename=None):
Examples:
.. code-block:: python
my_layer = layer(fluid.
imperative
.Layer)
my_layer = layer(fluid.
dygraph
.Layer)
param_path = "./my_paddle_model"
param_dict = fluid.
imperative.checkpoint
.load_persistables(my_layer.parameters(), param_path)
param_dict = fluid.
dygraph
.load_persistables(my_layer.parameters(), param_path)
param_1 = param_dict['PtbModel_0.w_1']
or:
my_layer = layer(fluid.
imperative
.Layer)
my_layer = layer(fluid.
dygraph
.Layer)
param_path = "./my_paddle_model"
filename = "model.file"
param_dict = fluid.
imperative.checkpoint
.load_persistables(my_layer.state_dict(), param_path,
param_dict = fluid.
dygraph
.load_persistables(my_layer.state_dict(), param_path,
filename=filename)
param_1 = param_dict['PtbModel_0.w_1']
...
...
python/paddle/fluid/
imperative
/layer_object_helper.py
→
python/paddle/fluid/
dygraph
/layer_object_helper.py
浏览文件 @
1c9aaeeb
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
copy
import
six
from
..framework
import
Parameter
,
_in_
imperative
_mode
from
..framework
import
Parameter
,
_in_
dygraph
_mode
from
..param_attr
import
ParamAttr
from
..
import
core
from
six.moves
import
zip
...
...
python/paddle/fluid/
imperative
/layers.py
→
python/paddle/fluid/
dygraph
/layers.py
浏览文件 @
1c9aaeeb
...
...
@@ -283,7 +283,7 @@ class PyLayer(core.PyLayer):
@
classmethod
def
__call__
(
cls
,
*
inputs
):
tracer
=
framework
.
_
imperative
_tracer
()
tracer
=
framework
.
_
dygraph
_tracer
()
block
=
framework
.
default_main_program
().
current_block
()
ivar_inputs
=
[
x
.
_ivar
for
x
in
inputs
]
...
...
python/paddle/fluid/
imperative
/nn.py
→
python/paddle/fluid/
dygraph
/nn.py
浏览文件 @
1c9aaeeb
...
...
@@ -133,7 +133,7 @@ class Conv2D(layers.Layer):
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
# Currently, we don't support inplace in
imperative
mode
# Currently, we don't support inplace in
dygraph
mode
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
...
...
@@ -265,7 +265,7 @@ class FC(layers.Layer):
attrs
=
{
'axis'
:
self
.
_num_flatten_dims
})
else
:
pre_activation
=
pre_bias
# Currently, we don't support inplace in
imperative
mode
# Currently, we don't support inplace in
dygraph
mode
return
self
.
_helper
.
append_activation
(
pre_activation
,
act
=
self
.
_act
)
...
...
@@ -387,7 +387,7 @@ class BatchNorm(layers.Layer):
"use_global_stats"
:
self
.
_use_global_stats
})
# Currently, we don't support inplace in
imperative
mode
# Currently, we don't support inplace in
dygraph
mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
,
self
.
_act
)
...
...
@@ -426,7 +426,7 @@ class Embedding(layers.Layer):
dict_size = len(dataset.ids)
input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
embedding = fluid.
imperative
.Embedding(size=[dict_size, 16])
embedding = fluid.
dygraph
.Embedding(size=[dict_size, 16])
fc = embedding(input)
"""
...
...
python/paddle/fluid/
imperative
/profiler.py
→
python/paddle/fluid/
dygraph
/profiler.py
浏览文件 @
1c9aaeeb
文件已移动
python/paddle/fluid/
imperative
/tracer.py
→
python/paddle/fluid/
dygraph
/tracer.py
浏览文件 @
1c9aaeeb
...
...
@@ -24,12 +24,12 @@ __all__ = ['Tracer']
def
release_op
(
op
):
del
framework
.
_
imperative
_tracer
().
_ops
[
op
.
_trace_id
]
del
framework
.
_
dygraph
_tracer
().
_ops
[
op
.
_trace_id
]
class
Tracer
(
core
.
Tracer
):
"""
Python wrapper of
imperative
tracer
Python wrapper of
dygraph
tracer
"""
def
__init__
(
self
,
block
):
...
...
python/paddle/fluid/framework.py
浏览文件 @
1c9aaeeb
...
...
@@ -75,20 +75,20 @@ GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX
=
core
.
kZeroVarSuffix
()
CONTROL_DEP_VAR_PREFIX
=
core
.
kControlDepVarName
()
_
imperative
_tracer_
=
None
_
imperative
_current_expected_place_
=
None
_
dygraph
_tracer_
=
None
_
dygraph
_current_expected_place_
=
None
def
_in_
imperative
_mode
():
return
_
imperative
_tracer_
is
not
None
def
_in_
dygraph
_mode
():
return
_
dygraph
_tracer_
is
not
None
def
_
imperative
_tracer
():
return
_
imperative
_tracer_
def
_
dygraph
_tracer
():
return
_
dygraph
_tracer_
def
_current_expected_place
():
return
_
imperative
_current_expected_place_
return
_
dygraph
_current_expected_place_
def
_cpu_num
():
...
...
@@ -396,7 +396,7 @@ class Variable(object):
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
# record vars in tracer rather than blocks
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
if
not
self
.
_ivar
:
...
...
@@ -406,7 +406,7 @@ class Variable(object):
_current_expected_place
(),
stop_gradient
,
True
if
persistable
else
False
)
if
persistable
:
_
imperative
_tracer
().
trace_var
(
name
,
self
)
_
dygraph
_tracer
().
trace_var
(
name
,
self
)
else
:
self
.
error_clip
=
error_clip
...
...
@@ -515,8 +515,8 @@ class Variable(object):
Returns:
str: The debug string.
"""
if
_in_
imperative
_mode
():
# TODO(panyx0718): add more
imperative
debug info.
if
_in_
dygraph
_mode
():
# TODO(panyx0718): add more
dygraph
debug info.
return
'name %s, dtype: %s shape: %s'
%
(
self
.
name
,
self
.
dtype
,
self
.
shape
)
...
...
@@ -548,42 +548,42 @@ class Variable(object):
@
property
def
_stop_gradient
(
self
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
stop_gradient
else
:
return
self
.
stop_gradient
@
_stop_gradient
.
setter
def
_stop_gradient
(
self
,
s
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
self
.
_ivar
.
stop_gradient
=
s
else
:
self
.
stop_gradient
=
s
@
property
def
persistable
(
self
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
persistable
else
:
return
self
.
desc
.
persistable
()
@
persistable
.
setter
def
persistable
(
self
,
p
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
persistable
else
:
self
.
desc
.
set_persistable
(
p
)
@
property
def
name
(
self
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
name
else
:
return
cpt
.
to_text
(
self
.
desc
.
name
())
@
name
.
setter
def
name
(
self
,
new_name
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
self
.
_ivar
.
name
=
new_name
else
:
self
.
desc
.
set_name
(
new_name
)
...
...
@@ -591,26 +591,26 @@ class Variable(object):
@
property
def
shape
(
self
):
# convert to tuple, make it as same as numpy API.
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
shape
else
:
return
tuple
(
self
.
desc
.
shape
())
@
property
def
dtype
(
self
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
dtype
else
:
return
self
.
desc
.
dtype
()
@
property
def
lod_level
(
self
):
# TODO(minqiyang): Support lod_level in
imperative
mode
# TODO(minqiyang): Support lod_level in
dygraph
mode
return
self
.
desc
.
lod_level
()
@
property
def
type
(
self
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
_ivar
.
dtype
else
:
return
self
.
desc
.
type
()
...
...
@@ -918,7 +918,7 @@ class Operator(object):
inputs
=
None
,
outputs
=
None
,
attrs
=
None
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
if
type
is
None
:
raise
ValueError
(
"`type` to initialized an Operator can not be None."
)
...
...
@@ -1037,7 +1037,7 @@ class Operator(object):
for
arg
in
out_args
:
out_arg_names
.
append
(
cpt
.
to_text
(
arg
.
name
))
# TODO(minqiyang): could we remove variable's op in static mode?
if
not
_in_
imperative
_mode
():
if
not
_in_
dygraph
_mode
():
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
...
...
@@ -1083,7 +1083,7 @@ class Operator(object):
@
property
def
type
(
self
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
return
self
.
iop
.
type
else
:
return
self
.
desc
.
type
()
...
...
@@ -1626,7 +1626,7 @@ class Block(object):
Returns:
Operator: the append Operator.
"""
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
op
=
Operator
(
block
=
self
,
desc
=
None
,
...
...
@@ -1638,9 +1638,8 @@ class Block(object):
# record ops in tracer rather than blocks
#
# TODO(minqiyang): add op stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
_imperative_tracer
().
trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
# currently, we only support stop_gradient in dygraph mode.
_dygraph_tracer
().
trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
else
:
op_desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
...
...
@@ -1699,7 +1698,7 @@ class Block(object):
return
self
.
ops
[
start
:
end
]
def
_prepend_op
(
self
,
*
args
,
**
kwargs
):
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
op
=
Operator
(
self
,
None
,
...
...
@@ -1707,8 +1706,7 @@ class Block(object):
inputs
=
kwargs
.
get
(
"inputs"
,
None
),
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
_imperative_tracer
().
trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
_dygraph_tracer
().
trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
else
:
op_desc
=
self
.
desc
.
_prepend_op
()
op
=
Operator
(
...
...
@@ -3541,22 +3539,22 @@ def _get_var(name, program=None):
@
signature_safe_contextmanager
def
_
imperative
_guard
(
tracer
):
global
_
imperative
_tracer_
tmp_trace
=
_
imperative
_tracer_
_
imperative
_tracer_
=
tracer
def
_
dygraph
_guard
(
tracer
):
global
_
dygraph
_tracer_
tmp_trace
=
_
dygraph
_tracer_
_
dygraph
_tracer_
=
tracer
yield
_
imperative
_tracer_
=
tmp_trace
_
dygraph
_tracer_
=
tmp_trace
@
signature_safe_contextmanager
def
_
imperative
_place_guard
(
place
):
global
_
imperative
_current_expected_place_
tmp_place
=
_
imperative
_current_expected_place_
_
imperative
_current_expected_place_
=
place
def
_
dygraph
_place_guard
(
place
):
global
_
dygraph
_current_expected_place_
tmp_place
=
_
dygraph
_current_expected_place_
_
dygraph
_current_expected_place_
=
place
yield
_
imperative
_current_expected_place_
=
tmp_place
_
dygraph
_current_expected_place_
=
tmp_place
python/paddle/fluid/initializer.py
浏览文件 @
1c9aaeeb
...
...
@@ -165,7 +165,7 @@ class ConstantInitializer(Initializer):
'force_cpu'
:
self
.
_force_cpu
or
force_init_on_cpu
()
},
stop_gradient
=
True
)
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -245,7 +245,7 @@ class UniformInitializer(Initializer):
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
})
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -324,7 +324,7 @@ class NormalInitializer(Initializer):
outputs
=
{
"Out"
:
var
},
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
})
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -403,7 +403,7 @@ class TruncatedNormalInitializer(Initializer):
outputs
=
{
"Out"
:
var
},
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
})
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -509,7 +509,7 @@ class XavierInitializer(Initializer):
"seed"
:
self
.
_seed
},
stop_gradient
=
True
)
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -610,7 +610,7 @@ class MSRAInitializer(Initializer):
"seed"
:
self
.
_seed
},
stop_gradient
=
True
)
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -709,7 +709,7 @@ class BilinearInitializer(Initializer):
'shape'
:
list
(
shape
),
value_name
:
values
})
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
@@ -768,7 +768,7 @@ class NumpyArrayInitializer(Initializer):
value_name
:
values
},
stop_gradient
=
True
)
if
not
framework
.
_in_
imperative
_mode
():
if
not
framework
.
_in_
dygraph
_mode
():
var
.
op
=
op
return
op
...
...
python/paddle/fluid/install_check.py
浏览文件 @
1c9aaeeb
...
...
@@ -17,7 +17,7 @@ from .param_attr import ParamAttr
from
.initializer
import
Constant
from
.
import
layers
from
.
import
backward
from
.
imperative
import
Layer
,
nn
from
.
dygraph
import
Layer
,
nn
from
.
import
executor
from
.
import
core
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
1c9aaeeb
...
...
@@ -17,7 +17,7 @@ from __future__ import print_function
import
copy
import
six
from
.framework
import
Parameter
,
dtype_is_floating
,
_in_
imperative
_mode
from
.framework
import
Parameter
,
dtype_is_floating
,
_in_
dygraph
_mode
from
.
import
unique_name
from
paddle.fluid.initializer
import
Constant
,
Xavier
from
.param_attr
import
ParamAttr
...
...
@@ -30,9 +30,9 @@ class LayerHelper(LayerHelperBase):
def
__init__
(
self
,
layer_type
,
**
kwargs
):
self
.
kwargs
=
kwargs
name
=
self
.
kwargs
.
get
(
'name'
,
None
)
# TODO(panyx0718, minqiyang):
imperative
mode
# TODO(panyx0718, minqiyang):
dygraph
mode
# can not use both `layer_type` and `name`. Deprecate LayerHelper
# and write a Helper for
imperative
mode.
# and write a Helper for
dygraph
mode.
if
name
is
None
:
self
.
kwargs
[
'name'
]
=
unique_name
.
generate
(
layer_type
)
...
...
python/paddle/fluid/layer_helper_base.py
浏览文件 @
1c9aaeeb
...
...
@@ -17,7 +17,7 @@ from __future__ import print_function
import
copy
import
numpy
as
np
from
.framework
import
Variable
,
default_main_program
,
default_startup_program
,
_in_
imperative
_mode
,
_current_expected_place
from
.framework
import
Variable
,
default_main_program
,
default_startup_program
,
_in_
dygraph
_mode
,
_current_expected_place
from
.
import
unique_name
from
.param_attr
import
ParamAttr
,
WeightNormParamAttr
from
.
import
core
...
...
@@ -54,8 +54,8 @@ class LayerHelperBase(object):
Return Variable construct from value
"""
if
isinstance
(
value
,
np
.
ndarray
):
assert
_in_
imperative
_mode
(
),
"to_variable could only be called in
imperative
mode"
assert
_in_
dygraph
_mode
(
),
"to_variable could only be called in
dygraph
mode"
if
not
block
:
block
=
default_main_program
().
current_block
()
...
...
@@ -302,8 +302,8 @@ class LayerHelperBase(object):
param
=
self
.
_create_weight_normalize
(
attr
,
shape
,
dtype
)
WeightNormParamAttr
.
params_with_weight_norm
.
append
(
param
)
return
param
if
_in_
imperative
_mode
():
# In
imperative
mode, we want the returned parameter to be
if
_in_
dygraph
_mode
():
# In
dygraph
mode, we want the returned parameter to be
# initialized so that it can be used imperatively.
return
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
...
...
@@ -370,7 +370,7 @@ class LayerHelperBase(object):
initializer: initializer to use
"""
assert
isinstance
(
var
,
Variable
)
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
initializer
(
var
,
var
.
block
)
else
:
self
.
startup_program
.
global_block
().
create_var
(
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
1c9aaeeb
...
...
@@ -23,8 +23,8 @@ import os
import
inspect
from
..layer_helper
import
LayerHelper
from
..initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
..framework
import
Variable
,
OpProtoHolder
,
_in_
imperative
_mode
from
..
imperative
import
base
from
..framework
import
Variable
,
OpProtoHolder
,
_in_
dygraph
_mode
from
..
dygraph
import
base
from
..param_attr
import
ParamAttr
from
.layer_function_generator
import
autodoc
,
templatedoc
,
_generate_doc_string_
from
.tensor
import
concat
,
assign
...
...
@@ -32,7 +32,7 @@ from . import utils
from
..
import
unique_name
from
functools
import
reduce
from
..
import
core
from
..
imperative
import
layers
from
..
dygraph
import
layers
__all__
=
[
'fc'
,
...
...
@@ -296,7 +296,6 @@ def fc(input,
data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
"""
helper
=
LayerHelper
(
"fc"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -3279,6 +3278,8 @@ def layer_norm(input,
>>> dtype='float32')
>>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
"""
assert
_in_dygraph_mode
(
)
is
not
True
,
"please use FC instead of fc in dygraph mode!"
helper
=
LayerHelper
(
'layer_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -6405,8 +6406,8 @@ def squeeze(input, axes, name=None):
x = layers.data(name='x', shape=[5, 1, 10])
y = layers.sequeeze(input=x, axes=[1])
"""
assert
not
_in_
imperative
_mode
(),
(
"squeeze layer is not supported in
imperative
mode yet."
)
assert
not
_in_
dygraph
_mode
(),
(
"squeeze layer is not supported in
dygraph
mode yet."
)
helper
=
LayerHelper
(
"squeeze"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
...
...
@@ -9144,7 +9145,7 @@ def _elementwise_op(helper):
op_type
=
helper
.
layer_type
x
=
helper
.
kwargs
.
get
(
'x'
,
None
)
y
=
helper
.
kwargs
.
get
(
'y'
,
None
)
if
_in_
imperative
_mode
():
if
_in_
dygraph
_mode
():
x
=
base
.
to_variable
(
x
)
y
=
base
.
to_variable
(
y
)
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
1c9aaeeb
...
...
@@ -20,7 +20,6 @@ from ..framework import convert_np_dtype_to_dtype_
from
..framework
import
Variable
from
..initializer
import
Constant
,
force_init_on_cpu
from
..core
import
VarDesc
from
..imperative
import
base
as
imperative_base
from
.layer_function_generator
import
templatedoc
import
numpy
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
1c9aaeeb
...
...
@@ -30,7 +30,6 @@ from .initializer import Constant
from
.layer_helper
import
LayerHelper
from
.layers
import
ops
from
.regularizer
import
append_regularization_ops
from
.imperative
import
base
as
imperative_base
from
paddle.fluid
import
core
from
paddle.fluid.layers
import
tensor
from
functools
import
reduce
...
...
@@ -169,7 +168,7 @@ class Optimizer(object):
name
=
self
.
_name
+
"_"
+
name
if
(
name
in
self
.
_accumulators
and
param
.
name
in
self
.
_accumulators
[
name
]):
if
framework
.
_in_
imperative
_mode
():
if
framework
.
_in_
dygraph
_mode
():
return
self
.
_accumulators
[
name
][
param
.
name
]
raise
Exception
(
"Accumulator {} already exists for parameter {}"
.
format
(
name
,
param
.
name
))
...
...
@@ -396,11 +395,11 @@ class Optimizer(object):
"""
self
.
_dtype
=
loss
.
dtype
optimize_ops
=
[]
if
framework
.
_in_
imperative
_mode
():
if
framework
.
_in_
dygraph
_mode
():
if
parameter_list
is
not
None
:
parameters
=
parameter_list
else
:
parameters
=
framework
.
_
imperative
_tracer
().
all_parameters
()
parameters
=
framework
.
_
dygraph
_tracer
().
all_parameters
()
params_grads
=
[]
for
param
in
parameters
:
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
1c9aaeeb
...
...
@@ -262,14 +262,14 @@ class OpTest(unittest.TestCase):
if
isinstance
(
value
,
tuple
):
data
=
value
[
0
]
lod
=
value
[
1
]
v
=
fluid
.
imperative
.
base
.
to_variable
(
value
=
data
)
v
=
fluid
.
dygraph
.
base
.
to_variable
(
value
=
data
)
v
.
_ivar
.
value
().
get_tensor
().
set_recursive_sequence_lengths
(
lod
)
return
v
else
:
return
fluid
.
imperative
.
base
.
to_variable
(
value
)
return
fluid
.
dygraph
.
base
.
to_variable
(
value
)
def
_calc_
imperative
_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
with
fluid
.
imperative
.
base
.
guard
(
place
=
place
):
def
_calc_
dygraph
_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
with
fluid
.
dygraph
.
base
.
guard
(
place
=
place
):
block
=
fluid
.
default_main_program
().
global_block
()
# prepare input variable
...
...
@@ -316,7 +316,7 @@ class OpTest(unittest.TestCase):
return
outputs
def
_calc_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
def
_calc_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
,
loss
=
None
):
program
=
Program
()
block
=
program
.
global_block
()
self
.
_append_ops
(
block
)
...
...
@@ -329,8 +329,14 @@ class OpTest(unittest.TestCase):
use_cuda
=
False
if
isinstance
(
place
,
fluid
.
CUDAPlace
(
0
)):
use_cuda
=
True
executor
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
loss_name
=
loss
.
name
,
main_program
=
program
)
if
loss
:
executor
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
loss_name
=
loss
.
name
,
main_program
=
program
)
else
:
executor
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
main_program
=
program
)
else
:
executor
=
Executor
(
place
)
...
...
@@ -364,9 +370,9 @@ class OpTest(unittest.TestCase):
atol
,
no_check_set
=
None
,
equal_nan
=
False
,
check_
imperative
=
False
):
if
check_
imperative
:
imperative_outs
=
self
.
_calc_imperative
_output
(
check_
dygraph
=
False
):
if
check_
dygraph
:
dygraph_outs
=
self
.
_calc_dygraph
_output
(
place
,
no_check_set
=
no_check_set
)
outs
,
fetch_list
=
self
.
_calc_output
(
place
,
no_check_set
=
no_check_set
)
...
...
@@ -393,8 +399,8 @@ class OpTest(unittest.TestCase):
type
(
sub_out
))
for
item
in
sub_out
:
sub_out_name
,
expect
=
item
[
0
],
item
[
1
]
if
check_
imperative
:
imperative_actual
=
imperative
_outs
[
sub_out_name
][
0
]
if
check_
dygraph
:
imperative_actual
=
dygraph
_outs
[
sub_out_name
][
0
]
imperative_actual_t
=
np
.
array
(
imperative_actual
.
_ivar
.
value
().
get_tensor
())
idx
=
find_actual
(
sub_out_name
,
fetch_list
)
...
...
@@ -407,7 +413,7 @@ class OpTest(unittest.TestCase):
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
sub_out_name
+
") has diff at "
+
str
(
place
))
if
check_
imperative
:
if
check_
dygraph
:
self
.
assertTrue
(
np
.
allclose
(
imperative_actual_t
,
...
...
@@ -415,21 +421,21 @@ class OpTest(unittest.TestCase):
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
sub_out_name
+
") has diff at "
+
str
(
place
)
+
" in
imperative
mode"
)
str
(
place
)
+
" in
dygraph
mode"
)
if
isinstance
(
expect
,
tuple
):
self
.
assertListEqual
(
actual
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
sub_out_name
+
") has different lod at "
+
str
(
place
))
if
check_
imperative
:
if
check_
dygraph
:
self
.
assertListEqual
(
imperative_actual
.
_ivar
.
value
().
get_tensor
()
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
") has different lod at "
+
str
(
place
)
+
" in
imperative
mode"
)
str
(
place
)
+
" in
dygraph
mode"
)
else
:
if
check_
imperative
:
imperative_actual
=
imperative
_outs
[
out_name
][
0
]
if
check_
dygraph
:
imperative_actual
=
dygraph
_outs
[
out_name
][
0
]
imperative_actual_t
=
np
.
array
(
imperative_actual
.
_ivar
.
value
().
get_tensor
())
idx
=
find_actual
(
out_name
,
fetch_list
)
...
...
@@ -443,7 +449,7 @@ class OpTest(unittest.TestCase):
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
)
+
" in class "
+
self
.
__class__
.
__name__
)
if
check_
imperative
:
if
check_
dygraph
:
self
.
assertTrue
(
np
.
allclose
(
imperative_actual_t
,
...
...
@@ -458,12 +464,12 @@ class OpTest(unittest.TestCase):
self
.
assertListEqual
(
actual
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
") has different lod at "
+
str
(
place
))
if
check_
imperative
:
if
check_
dygraph
:
self
.
assertListEqual
(
imperative_actual
.
_ivar
.
value
().
get_tensor
()
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
") has different lod at "
+
str
(
place
)
+
" in
imperative
mode"
)
str
(
place
)
+
" in
dygraph
mode"
)
def
_get_places
(
self
):
if
self
.
dtype
==
np
.
float16
:
...
...
@@ -490,11 +496,11 @@ class OpTest(unittest.TestCase):
atol
=
1e-5
,
no_check_set
=
None
,
equal_nan
=
False
,
check_
imperative
=
False
):
check_
dygraph
=
False
):
places
=
self
.
_get_places
()
for
place
in
places
:
self
.
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
,
check_
imperative
)
check_
dygraph
)
def
check_output_customized
(
self
,
checker
):
places
=
self
.
_get_places
()
...
...
python/paddle/fluid/tests/unittests/test_base_layer.py
浏览文件 @
1c9aaeeb
...
...
@@ -18,7 +18,7 @@ import numpy as np
import
paddle.fluid
as
fluid
class
L1
(
fluid
.
imperative
.
Layer
):
class
L1
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
prefix
):
super
(
L1
,
self
).
__init__
(
prefix
)
self
.
_param_attr
=
fluid
.
ParamAttr
(
...
...
@@ -32,7 +32,7 @@ class L1(fluid.imperative.Layer):
return
self
.
w1
+
self
.
w2
class
L2
(
fluid
.
imperative
.
Layer
):
class
L2
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
prefix
):
super
(
L2
,
self
).
__init__
(
prefix
)
self
.
layer1
=
L1
(
self
.
full_name
())
...
...
@@ -42,7 +42,7 @@ class L2(fluid.imperative.Layer):
return
self
.
layer1
()
+
self
.
layer2
()
class
L3
(
fluid
.
imperative
.
Layer
):
class
L3
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
prefix
):
super
(
L3
,
self
).
__init__
(
prefix
)
self
.
layer1
=
L2
(
self
.
full_name
())
...
...
@@ -54,7 +54,7 @@ class L3(fluid.imperative.Layer):
class
TestBaseLayer
(
unittest
.
TestCase
):
def
test_one_level
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
l
=
L1
(
'test_one_level'
)
ret
=
l
()
self
.
assertEqual
(
l
.
w1
.
name
,
"test_one_level/L1_0.w_0"
)
...
...
@@ -62,7 +62,7 @@ class TestBaseLayer(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.2
*
np
.
ones
([
2
,
2
])))
def
test_three_level
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
l
=
L3
(
'test_three_level'
)
names
=
[
p
.
name
for
p
in
l
.
parameters
()]
ret
=
l
()
...
...
python/paddle/fluid/tests/unittests/test_gru_op.py
浏览文件 @
1c9aaeeb
...
...
@@ -156,7 +156,7 @@ class TestGRUOp(OpTest):
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
,
check_
imperative
=
True
)
self
.
check_output
(
atol
=
1e-8
,
check_
dygraph
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
...
...
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
1c9aaeeb
...
...
@@ -18,11 +18,11 @@ import numpy as np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.
imperative
.nn
import
FC
from
paddle.fluid.
dygraph
.nn
import
FC
from
test_imperative_base
import
new_program_scope
class
MyLayer
(
fluid
.
imperative
.
Layer
):
class
MyLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MyLayer
,
self
).
__init__
(
name_scope
)
...
...
@@ -34,7 +34,7 @@ class MyLayer(fluid.imperative.Layer):
return
[
x
]
class
MyPyLayer
(
fluid
.
imperative
.
PyLayer
):
class
MyPyLayer
(
fluid
.
dygraph
.
PyLayer
):
def
__init__
(
self
):
super
(
MyPyLayer
,
self
).
__init__
()
...
...
@@ -48,7 +48,7 @@ class MyPyLayer(fluid.imperative.PyLayer):
return
np
.
array
(
dout
)
*
(
1
-
np
.
square
(
np
.
array
(
out
)))
class
MLP
(
fluid
.
imperative
.
Layer
):
class
MLP
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
self
.
full_name
(),
...
...
@@ -71,7 +71,7 @@ class MLP(fluid.imperative.Layer):
return
x
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
class
SimpleRNNCell
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
step_input_size
,
hidden_size
,
output_size
,
param_attr
):
super
(
SimpleRNNCell
,
self
).
__init__
(
name_scope
)
...
...
@@ -159,7 +159,7 @@ class SimpleRNNCell(fluid.imperative.Layer):
return
reduce_out
,
hidden
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleRNN
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
SimpleRNN
,
self
).
__init__
(
name_scope
)
self
.
seq_len
=
4
...
...
@@ -194,10 +194,10 @@ class SimpleRNN(fluid.imperative.Layer):
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
x
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
inputs
=
[]
for
_
in
range
(
10
):
inputs
.
append
(
fluid
.
imperative
.
base
.
to_variable
(
x
))
inputs
.
append
(
fluid
.
dygraph
.
base
.
to_variable
(
x
))
ret
=
fluid
.
layers
.
sums
(
inputs
)
loss
=
fluid
.
layers
.
reduce_sum
(
ret
)
loss
.
_backward
()
...
...
@@ -205,17 +205,17 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
inputs
[
0
].
_gradient
(),
x
))
def
test_layer
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
cl
=
core
.
Layer
()
cl
.
forward
([])
l
=
fluid
.
imperative
.
Layer
(
"l"
)
l
=
fluid
.
dygraph
.
Layer
(
"l"
)
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
def
test_pylayer_func_id
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
class
PyLayer1
(
fluid
.
imperative
.
PyLayer
):
class
PyLayer1
(
fluid
.
dygraph
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer1
,
self
).
__init__
()
...
...
@@ -227,7 +227,7 @@ class TestImperative(unittest.TestCase):
def
backward
(
input
):
return
input
class
PyLayer2
(
fluid
.
imperative
.
PyLayer
):
class
PyLayer2
(
fluid
.
dygraph
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer2
,
self
).
__init__
()
...
...
@@ -241,21 +241,21 @@ class TestImperative(unittest.TestCase):
py_layer_1
=
PyLayer1
()
py_layer_2
=
PyLayer2
()
py_layer_1
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
py_layer_2
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
py_layer_1
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
py_layer_2
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
id
=
py_layer_1
.
forward_id
self
.
assertGreater
(
id
,
0
)
self
.
assertEqual
(
py_layer_1
.
backward_id
,
id
+
1
)
self
.
assertEqual
(
py_layer_2
.
forward_id
,
id
+
2
)
self
.
assertEqual
(
py_layer_2
.
backward_id
,
id
+
3
)
py_layer_1
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
py_layer_1
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
self
.
assertEqual
(
py_layer_1
.
forward_id
,
id
)
def
test_pylayer
(
self
):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
my_py_layer
=
MyPyLayer
()
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
outs
=
my_py_layer
(
var_inp
)
dy_out
=
np
.
sum
(
outs
[
0
].
_numpy
())
outs
[
0
].
_backward
()
...
...
@@ -282,8 +282,8 @@ class TestImperative(unittest.TestCase):
def
test_layer_in_out
(
self
):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
with
fluid
.
dygraph
.
guard
():
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
var_inp
)[
0
]
self
.
assertIsNotNone
(
x
)
...
...
@@ -310,8 +310,8 @@ class TestImperative(unittest.TestCase):
def
test_mlp
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
with
fluid
.
dygraph
.
guard
():
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
var_inp
)
dy_out
=
out
.
_numpy
()
...
...
@@ -353,8 +353,8 @@ class TestImperative(unittest.TestCase):
[
10.0
,
11.0
,
12.0
]])
np_inp
=
np_inp
.
reshape
((
1
,
4
,
3
))
np_inp
=
np_inp
.
astype
(
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
with
fluid
.
dygraph
.
guard
():
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_checkpoint.py
浏览文件 @
1c9aaeeb
...
...
@@ -18,11 +18,11 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.
imperative
.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.
dygraph
.base
import
to_variable
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
...
...
@@ -71,7 +71,7 @@ class SimpleImgConvPool(fluid.imperative.Layer):
return
x
class
MNIST
(
fluid
.
imperative
.
Layer
):
class
MNIST
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MNIST
,
self
).
__init__
(
name_scope
)
...
...
@@ -98,12 +98,12 @@ class MNIST(fluid.imperative.Layer):
return
x
class
Test
Imperative
Checkpoint
(
unittest
.
TestCase
):
class
Test
Dygraph
Checkpoint
(
unittest
.
TestCase
):
def
save_load_persistables
(
self
):
seed
=
90
epoch_num
=
1
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -135,14 +135,14 @@ class TestImperativeCheckpoint(unittest.TestCase):
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
fluid
.
imperative
.
save_persistables
(
mnist
,
"save_dir"
)
fluid
.
dygraph
.
save_persistables
(
mnist
,
"save_dir"
)
mnist
.
clear_gradients
()
for
param
in
mnist
.
parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
mnist
.
load_dict
(
fluid
.
imperative
.
load_persistables
(
mnist
,
"save_dir"
))
fluid
.
dygraph
.
load_persistables
(
mnist
,
"save_dir"
))
restore
=
mnist
.
parameters
()
...
...
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
浏览文件 @
1c9aaeeb
...
...
@@ -22,7 +22,7 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.base
import
to_variable
# Can use Amusic dataset as the DeepCF describes.
DATA_PATH
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
...
...
@@ -32,11 +32,11 @@ NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
NUM_EPOCHES
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
class
DMF
(
fluid
.
imperative
.
Layer
):
class
DMF
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DMF
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_user_latent
=
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
256
)
self
.
_user_layers
=
[]
self
.
_item_layers
=
[]
...
...
@@ -45,12 +45,12 @@ class DMF(fluid.imperative.Layer):
self
.
_user_layers
.
append
(
self
.
add_sublayer
(
'user_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
self
.
_item_layers
.
append
(
self
.
add_sublayer
(
'item_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
def
forward
(
self
,
users
,
items
):
...
...
@@ -63,18 +63,18 @@ class DMF(fluid.imperative.Layer):
return
fluid
.
layers
.
elementwise_mul
(
users
,
items
)
class
MLP
(
fluid
.
imperative
.
Layer
):
class
MLP
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_user_latent
=
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
256
)
self
.
_match_layers
=
[]
self
.
_hid_sizes
=
[
128
,
64
]
for
i
in
range
(
len
(
self
.
_hid_sizes
)):
self
.
_match_layers
.
append
(
self
.
add_sublayer
(
'match_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
self
.
_mat
...
...
@@ -88,7 +88,7 @@ class MLP(fluid.imperative.Layer):
return
match_vec
class
DeepCF
(
fluid
.
imperative
.
Layer
):
class
DeepCF
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_users
,
num_items
,
matrix
):
super
(
DeepCF
,
self
).
__init__
(
name_scope
)
self
.
_num_users
=
num_users
...
...
@@ -103,7 +103,7 @@ class DeepCF(fluid.imperative.Layer):
self
.
_mlp
=
MLP
(
self
.
full_name
())
self
.
_dmf
=
DMF
(
self
.
full_name
())
self
.
_match_fc
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
1
,
act
=
'sigmoid'
)
self
.
_match_fc
=
fluid
.
dygraph
.
FC
(
self
.
full_name
(),
1
,
act
=
'sigmoid'
)
def
forward
(
self
,
users
,
items
):
# users_emb = self._user_emb(users)
...
...
@@ -191,7 +191,7 @@ def load_data(DATA_PATH):
np
.
expand_dims
(
labels_np
,
-
1
),
num_users
,
num_items
,
matrix
class
Test
Imperative
DeepCF
(
unittest
.
TestCase
):
class
Test
Dygraph
DeepCF
(
unittest
.
TestCase
):
def
test_deefcf
(
self
):
seed
=
90
if
DATA_PATH
:
...
...
@@ -237,7 +237,7 @@ class TestImperativeDeepCF(unittest.TestCase):
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
1c9aaeeb
...
...
@@ -22,12 +22,12 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.
imperative
.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.
dygraph
.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.base
import
to_variable
class
Discriminator
(
fluid
.
imperative
.
Layer
):
class
Discriminator
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
Discriminator
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
self
.
full_name
(),
size
=
32
,
act
=
'elu'
)
...
...
@@ -38,7 +38,7 @@ class Discriminator(fluid.imperative.Layer):
return
self
.
_fc2
(
x
)
class
Generator
(
fluid
.
imperative
.
Layer
):
class
Generator
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
Generator
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
self
.
full_name
(),
size
=
64
,
act
=
'elu'
)
...
...
@@ -51,7 +51,7 @@ class Generator(fluid.imperative.Layer):
return
self
.
_fc3
(
x
)
class
Test
Imperative
GAN
(
unittest
.
TestCase
):
class
Test
Dygraph
GAN
(
unittest
.
TestCase
):
def
test_gan_float32
(
self
):
seed
=
90
...
...
@@ -130,7 +130,7 @@ class TestImperativeGAN(unittest.TestCase):
scope
.
find_var
(
param
.
name
).
get_tensor
())
dy_params
=
dict
()
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
浏览文件 @
1c9aaeeb
...
...
@@ -22,16 +22,16 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddle.fluid.
imperative
.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.
dygraph
.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.base
import
to_variable
def
gen_data
():
pass
class
GraphConv
(
fluid
.
imperative
.
Layer
):
class
GraphConv
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
in_features
,
out_features
):
super
(
GraphConv
,
self
).
__init__
(
name_scope
)
...
...
@@ -50,7 +50,7 @@ class GraphConv(fluid.imperative.Layer):
return
fluid
.
layers
.
matmul
(
adj
,
support
)
+
self
.
bias
class
GCN
(
fluid
.
imperative
.
Layer
):
class
GCN
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_hidden
):
super
(
GCN
,
self
).
__init__
(
name_scope
)
self
.
gc
=
GraphConv
(
self
.
full_name
(),
num_hidden
,
32
)
...
...
@@ -61,7 +61,7 @@ class GCN(fluid.imperative.Layer):
return
self
.
gc2
(
x
,
adj
)
class
Test
Imperative
GNN
(
unittest
.
TestCase
):
class
Test
Dygraph
GNN
(
unittest
.
TestCase
):
def
test_gnn_float32
(
self
):
seed
=
90
...
...
@@ -115,7 +115,7 @@ class TestImperativeGNN(unittest.TestCase):
static_weight
=
np
.
array
(
scope
.
find_var
(
model
.
gc
.
weight
.
name
).
get_tensor
())
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
1c9aaeeb
...
...
@@ -23,12 +23,12 @@ import paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.
imperative
.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.
dygraph
.base
import
to_variable
from
test_imperative_base
import
new_program_scope
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
...
...
@@ -77,7 +77,7 @@ class SimpleImgConvPool(fluid.imperative.Layer):
return
x
class
MNIST
(
fluid
.
imperative
.
Layer
):
class
MNIST
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MNIST
,
self
).
__init__
(
name_scope
)
...
...
@@ -104,11 +104,11 @@ class MNIST(fluid.imperative.Layer):
return
x
class
Test
Imperative
Mnist
(
unittest
.
TestCase
):
class
Test
Dygraph
Mnist
(
unittest
.
TestCase
):
def
test_mnist_float32
(
self
):
seed
=
90
epoch_num
=
1
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
1c9aaeeb
...
...
@@ -16,17 +16,17 @@ from __future__ import print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.
imperative
.nn
import
Embedding
from
paddle.fluid.
dygraph
.nn
import
Embedding
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.base
import
to_variable
from
test_imperative_base
import
new_program_scope
import
numpy
as
np
import
six
from
paddle.fluid.backward
import
append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleLSTMRNN
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
hidden_size
,
...
...
@@ -131,7 +131,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
return
real_res
,
last_hidden
,
last_cell
class
PtbModel
(
fluid
.
imperative
.
Layer
):
class
PtbModel
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
hidden_size
,
...
...
@@ -214,7 +214,7 @@ class PtbModel(fluid.imperative.Layer):
return
loss
,
last_hidden
,
last_cell
class
Test
Imperative
PtbRnn
(
unittest
.
TestCase
):
class
Test
Dygraph
PtbRnn
(
unittest
.
TestCase
):
def
test_ptb_rnn_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
...
...
@@ -224,7 +224,7 @@ class TestImperativePtbRnn(unittest.TestCase):
init_scale
=
0.1
batch_size
=
4
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
1c9aaeeb
...
...
@@ -21,8 +21,8 @@ import paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.
imperative
.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.
imperative
.base
import
to_variable
from
paddle.fluid.
dygraph
.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.
dygraph
.base
import
to_variable
from
test_imperative_base
import
new_program_scope
batch_size
=
8
...
...
@@ -57,7 +57,7 @@ def optimizer_setting(params):
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
# TODO(minqiyang): Add learning rate scheduler support to
imperative
mode
# TODO(minqiyang): Add learning rate scheduler support to
dygraph
mode
# optimizer = fluid.optimizer.Momentum(
# learning_rate=params["lr"],
# learning_rate=fluid.layers.piecewise_decay(
...
...
@@ -68,7 +68,7 @@ def optimizer_setting(params):
return
optimizer
class
ConvBNLayer
(
fluid
.
imperative
.
Layer
):
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
...
...
@@ -99,7 +99,7 @@ class ConvBNLayer(fluid.imperative.Layer):
return
y
class
BottleneckBlock
(
fluid
.
imperative
.
Layer
):
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
...
...
@@ -156,7 +156,7 @@ class BottleneckBlock(fluid.imperative.Layer):
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
fluid
.
imperative
.
Layer
):
class
ResNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
(
name_scope
)
...
...
@@ -226,13 +226,13 @@ class ResNet(fluid.imperative.Layer):
return
y
class
Test
Imperative
Resnet
(
unittest
.
TestCase
):
class
Test
Dygraph
Resnet
(
unittest
.
TestCase
):
def
test_resnet_float32
(
self
):
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
20
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
浏览文件 @
1c9aaeeb
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.
imperative
import
Embedding
,
LayerNorm
,
FC
,
to_variable
,
Layer
,
guard
from
paddle.fluid.
dygraph
import
Embedding
,
LayerNorm
,
FC
,
to_variable
,
Layer
,
guard
from
test_imperative_base
import
new_program_scope
from
paddle.fluid
import
core
import
numpy
as
np
...
...
@@ -623,7 +623,7 @@ class PrepareEncoderDecoderLayer(Layer):
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
pos_inp
),
trainable
=
False
))
# use in
imperative
_mode to fit different length batch
# use in
dygraph
_mode to fit different length batch
# self._pos_emb._w = to_variable(
# position_encoding_init(self._src_max_len, self._src_emb_dim))
...
...
@@ -946,7 +946,7 @@ class TransFormer(Layer):
return
sum_cost
,
avg_cost
,
predict
,
token_num
class
Test
Imperative
Transformer
(
unittest
.
TestCase
):
class
Test
Dygraph
Transformer
(
unittest
.
TestCase
):
def
test_transformer_float32
(
self
):
seed
=
90
with
guard
():
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
1c9aaeeb
...
...
@@ -29,8 +29,8 @@ from paddle.fluid import core
from
paddle.fluid.initializer
import
Constant
import
paddle.fluid.layers
as
layers
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.
imperative
import
nn
from
paddle.fluid.
imperative
import
base
from
paddle.fluid.
dygraph
import
nn
from
paddle.fluid.
dygraph
import
base
class
LayerTest
(
unittest
.
TestCase
):
...
...
@@ -68,7 +68,7 @@ class LayerTest(unittest.TestCase):
@
contextlib
.
contextmanager
def
dynamic_graph
(
self
,
force_to_use_cpu
=
False
):
with
fluid
.
imperative
.
guard
(
with
fluid
.
dygraph
.
guard
(
self
.
_get_place
(
force_to_use_cpu
=
force_to_use_cpu
)):
fluid
.
default_startup_program
().
random_seed
=
self
.
seed
fluid
.
default_main_program
().
random_seed
=
self
.
seed
...
...
python/paddle/fluid/tests/unittests/test_variable.py
浏览文件 @
1c9aaeeb
...
...
@@ -19,7 +19,6 @@ from paddle.fluid.framework import default_main_program, Program, convert_np_dty
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
from
test_imperative_base
import
new_program_scope
class
TestVariable
(
unittest
.
TestCase
):
...
...
@@ -153,7 +152,7 @@ class TestVariableImperative(unittest.TestCase):
self
.
assertEqual
([
1
,
1
,
100
],
nw
.
shape
)
def
test_slice
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
dygraph
.
guard
():
self
.
_test_slice
()
...
...
python/setup.py.in
浏览文件 @
1c9aaeeb
...
...
@@ -102,7 +102,7 @@ packages=['paddle',
'paddle.reader',
'paddle.distributed',
'paddle.fluid',
'paddle.fluid.
imperative
',
'paddle.fluid.
dygraph
',
'paddle.fluid.proto',
'paddle.fluid.proto.profiler',
'paddle.fluid.distributed',
...
...
tools/print_signatures.py
浏览文件 @
1c9aaeeb
...
...
@@ -28,7 +28,7 @@ import hashlib
member_dict
=
collections
.
OrderedDict
()
experimental_namespace
=
{
"paddle.fluid.
imperative
"
}
experimental_namespace
=
{
"paddle.fluid.
dygraph
"
}
def
md5
(
doc
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录