nn.py 338.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
M
minqiyang 已提交
32
from ..imperative import layers
Y
Yu Yang 已提交
33 34

__all__ = [
X
Xin Pan 已提交
35 36 37 38 39 40 41 42 43 44
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
45
    'bpr_loss',
X
Xin Pan 已提交
46 47 48 49 50 51 52 53 54 55
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
56 57
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
58 59 60 61 62 63 64
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
65
    'sequence_unpad',
X
Xin Pan 已提交
66 67 68 69 70 71 72 73
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
74
    'sequence_slice',
X
Xin Pan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
92
    'group_norm',
X
Xin Pan 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
106
    'roi_align',
X
Xin Pan 已提交
107 108 109 110
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
111
    'resize_nearest',
X
Xin Pan 已提交
112 113 114 115 116 117
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
118
    'selu',
X
Xin Pan 已提交
119 120 121
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
122
    'margin_rank_loss',
X
Xin Pan 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
166
    'space_to_depth',
W
whs 已提交
167
    'affine_grid',
S
sneaxiy 已提交
168
    'sequence_reverse',
169
    'affine_channel',
B
barrierye 已提交
170
    'similarity_focus',
M
minqiyang 已提交
171
    'hash',
D
dengkaipeng 已提交
172
    'grid_sampler',
G
gmcather 已提交
173 174
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
175
    'bilinear_tensor_product',
C
chengduo 已提交
176 177
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
178
    'lstm',
179
    'psroi_pool',
M
minqiyang 已提交
180
    'huber_loss',
Y
Yu Yang 已提交
181 182
]

J
jerrywgz 已提交
183 184
kIgnoreIndex = -100

Y
Yu Yang 已提交
185 186 187 188 189 190 191

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
192
       is_test=False,
193
       name=None):
Y
Yu Yang 已提交
194
    """
195
    **Fully Connected Layer**
Y
Yu Yang 已提交
196

197 198 199 200 201 202 203 204
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
205
    to the output as well.
C
caoying03 已提交
206

C
caoying03 已提交
207
    This process can be formulated as follows:
208 209 210

    .. math::

211
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
212 213 214

    In the above equation:

C
caoying03 已提交
215 216 217 218
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
219
    * :math:`Act`: The activation function.
C
caoying03 已提交
220
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
221 222

    Args:
R
ranqiu 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
238 239
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
240
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
241
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
242
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
243

244
    Returns:
F
fengjiayi 已提交
245
        Variable: The transformation result.
246 247

    Raises:
C
caoying03 已提交
248
        ValueError: If rank of the input tensor is less than 2.
249 250 251 252

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
253
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
254
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
255
    """
C
caoying03 已提交
256

C
caoying03 已提交
257
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
258 259 260 261

    dtype = helper.input_dtype()

    mul_results = []
262 263
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
264 265 266
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
267

Y
Yu Yang 已提交
268
        w = helper.create_parameter(
269
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
270
        tmp = helper.create_variable_for_type_inference(dtype)
271
        helper.append_op(
272 273 274
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
275
            outputs={"Out": tmp},
M
mozga-intel 已提交
276 277
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
278 279 280 281
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
282
    else:
X
Xin Pan 已提交
283
        pre_bias = helper.create_variable_for_type_inference(dtype)
284
        helper.append_op(
285 286 287
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
288
            attrs={"use_mkldnn": False})
289 290 291 292
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
293 294


295 296 297
def embedding(input,
              size,
              is_sparse=False,
298
              is_distributed=False,
299 300 301
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
302
    """
303 304
    **Embedding Layer**

305
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
306 307
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
308 309 310

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
311 312

    Args:
313 314 315 316 317
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
318
        is_distributed(bool): Whether to run lookup table from remote parameter server.
319 320
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
321
            with zeros whenever lookup encounters it in :attr:`input`. If
322
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
323 324
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
325
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
326

327 328 329
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
330

331 332
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
333

C
chengduoZH 已提交
334
          dict_size = len(dataset.ids)
335
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
336
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
337 338 339
    """

    helper = LayerHelper('embedding', **locals())
340 341 342
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
343 344
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
345 346
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
347
    tmp = helper.create_variable_for_type_inference(dtype)
348 349
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
350 351 352 353 354
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
355 356 357
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
358
            'remote_prefetch': remote_prefetch,
359 360
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
361 362 363
    return tmp


W
wopeizl 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
380

W
wopeizl 已提交
381 382 383 384 385 386 387 388 389 390 391
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
392

W
wopeizl 已提交
393 394 395 396
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
484 485


P
phlrain 已提交
486 487 488 489 490 491
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
492
         dropout_prob=0.0,
P
phlrain 已提交
493 494 495 496 497
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
498
    """
P
phlrain 已提交
499
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
500 501

    A four-gate Long Short-Term Memory network with no peephole connections.
502
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
503 504
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
528

529
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
L
liuhongyu 已提交
530 531 532 533 534
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
535
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
536 537 538 539 540
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
541
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
542 543
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
544 545
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
546 547 548 549 550 551
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
552
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
553

L
liuhongyu 已提交
554 555 556 557 558 559

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
560
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
561 562
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
563
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
579
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
580 581 582 583 584 585
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
586 587 588
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
648 649 650 651 652 653 654 655 656 657 658
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
659 660
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
661 662 663
    """
    **Dynamic LSTMP Layer**

664 665 666 667 668 669
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
670 671 672 673 674

    The formula is as follows:

    .. math::

675
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
676

677
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
678

679
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
680

681
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
682

683
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
684

685
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
686

687
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
688

Y
Yibing Liu 已提交
689 690 691 692 693 694
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
695
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
696
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
697
          bias vector).
Y
Yibing Liu 已提交
698 699 700
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
701
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
702
    * :math:`h`: The hidden state.
703
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
704 705
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
706
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
707
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
708
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
709 710
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
711 712 713 714

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
715

Y
Yibing Liu 已提交
716 717 718 719 720 721 722 723 724 725 726 727
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
728
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
729 730
                               hidden-hidden weight and projection weight.

731 732
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
733 734
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
735 736
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
737
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
738 739 740 741 742

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
743
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
744 745 746 747 748 749
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
750
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
751 752 753
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
754
                                - The shape is (1 x 7D).
C
chengduo 已提交
755 756 757 758 759

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
760 761 762 763 764 765 766 767 768
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
769
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
770 771
                              default "tanh".
        proj_activation(str): The activation for projection output.
772
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
773 774
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
775 776
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
777 778

    Returns:
779 780 781 782
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
783 784

    Examples:
785

Y
Yibing Liu 已提交
786 787
        .. code-block:: python

788 789 790 791
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
792
            hidden_dim, proj_dim = 512, 256
793
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
794
                                     act=None, bias_attr=None)
795 796 797
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
798 799 800 801
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
802
    """
803

C
chengduo 已提交
804
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
805
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
806
    size = size // 4
Y
Yibing Liu 已提交
807 808 809 810 811 812 813 814 815 816
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
817 818 819 820 821 822
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
851 852 853 854 855 856 857 858 859
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
860
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
861

862
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
863
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
864

G
guosheng 已提交
865 866 867 868 869 870 871 872 873
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
874

G
guosheng 已提交
875
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
876

G
guosheng 已提交
877
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
878 879
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
880 881 882 883
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
884
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
885 886

    Args:
887 888
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
889
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
890
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
891 892
            is the hidden size.
        size(int): The dimension of the gru cell.
893
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
894 895
            hidden-hidden weight matrix. Note:

896
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
897
              :math:`D` is the hidden size.
898
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
899
              The first part are weights of the update gate and reset gate with
900
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
901
              candidate hidden state with shape :math:`(D \\times D)`.
902 903 904 905 906

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
907
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
908
            the bias in the update gate, reset gate and candidate calculations.
909 910 911
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
912 913
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
914
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
915 916 917
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
918
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
919
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
920 921 922 923
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
924 925

    Returns:
G
guosheng 已提交
926
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
927
            and sequence length is the same with the input.
928

G
guosheng 已提交
929
    Examples:
930

G
guosheng 已提交
931 932
        .. code-block:: python

933 934 935 936
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
937
            hidden_dim = 512
938
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
939
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
940 941 942 943 944 945 946 947 948
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
949
    batch_size = input.shape[0]
G
guosheng 已提交
950
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
951
    if h_0:
G
guosheng 已提交
952
        assert h_0.shape == (
Y
Yancey 已提交
953 954 955
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
956

X
Xin Pan 已提交
957 958 959 960
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
979 980 981
def gru_unit(input,
             hidden,
             size,
982 983
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
984
             activation='tanh',
985
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
986
    """
987
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
988

989 990
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
991

992
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
993

994
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
995

996
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
997 998

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
999 1000 1001
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1002 1003
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1004 1005
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1006 1007 1008
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1009 1010 1011

    Args:
        input (Variable): The fc transformed input value of current step.
1012
        hidden (Variable): The hidden value of gru unit from previous step.
1013
        size (integer): The input dimension value.
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1028
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1029
            the bias in the update gate, reset gate and candidate calculations.
1030 1031 1032
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1033 1034
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1035 1036 1037 1038
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1039

1040 1041 1042 1043 1044 1045
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1046

1047
             # assuming we have x_t_data and prev_hidden of size=10
1048
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1049 1050
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1063
    size = size // 3
Y
Yu Yang 已提交
1064 1065

    # create weight
1066 1067
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1068

X
Xin Pan 已提交
1069 1070 1071
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1072
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1073
    # create bias
1074
    if helper.bias_attr:
Y
Yu Yang 已提交
1075 1076 1077
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1078
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1079 1080 1081

    helper.append_op(
        type='gru_unit',
1082
        inputs=inputs,
Y
Yu Yang 已提交
1083 1084 1085 1086 1087 1088
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1089 1090
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1091 1092 1093 1094 1095
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1096
@templatedoc()
1097
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1098 1099 1100 1101 1102 1103 1104
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1105
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1106 1107 1108 1109
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1110 1111 1112
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1113 1114

    """
Y
Yu Yang 已提交
1115 1116 1117 1118 1119 1120
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1121 1122 1123 1124 1125 1126 1127 1128
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1144 1145 1146 1147
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149 1150
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1151

W
wopeizl 已提交
1152
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1153

W
wopeizl 已提交
1154
        label(${label_type}): ${label_comment}
1155

W
wopeizl 已提交
1156 1157
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1158

W
wopeizl 已提交
1159 1160
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1161

W
wopeizl 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1172
                "Transition": transition,
W
wopeizl 已提交
1173 1174
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1175

W
wopeizl 已提交
1176
    return viterbi_path
Y
Yu Yang 已提交
1177 1178


Y
yi.wu 已提交
1179
@templatedoc()
F
fengjiayi 已提交
1180
def cos_sim(X, Y):
Y
Yu Yang 已提交
1181
    """
Y
yi.wu 已提交
1182 1183 1184
    ${comment}

    Args:
1185 1186
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1187

Y
yi.wu 已提交
1188
    Returns:
1189
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1190
    """
F
fengjiayi 已提交
1191
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1192 1193 1194
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1205 1206 1207 1208 1209
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1210
            dropout_implementation="downgrade_in_infer"):
1211 1212 1213 1214 1215
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1216
    training. The dropout operator randomly sets (according to the given dropout
1217 1218 1219 1220
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1221 1222
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1223 1224 1225 1226 1227 1228 1229
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1241
                                           dropout op can be removed from the program.
P
phlrain 已提交
1242
                                           the program will be efficient
1243

P
phlrain 已提交
1244

1245 1246

    Returns:
1247
        Variable: A tensor variable is the shape with `x`.
1248 1249

    Examples:
1250

1251 1252
        .. code-block:: python

1253 1254
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1255 1256
    """

F
fengjiayi 已提交
1257
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1258 1259 1260
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1261 1262 1263 1264

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1265 1266 1267 1268 1269
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1270 1271 1272 1273
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1274 1275
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1276
        })
1277 1278 1279
    return out


J
jerrywgz 已提交
1280
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1281
    """
Y
Yibing Liu 已提交
1282 1283
    **Cross Entropy Layer**

1284 1285 1286
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1287 1288

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1289
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1290

Y
Yibing Liu 已提交
1291
        .. math::
Y
yangyaming 已提交
1292

Y
Yibing Liu 已提交
1293 1294 1295
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1296 1297
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1298 1299 1300 1301 1302

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1303
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1304 1305 1306
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1307 1308
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1309
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1310

Y
Yibing Liu 已提交
1311
    Args:
Y
yangyaming 已提交
1312
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1313 1314 1315 1316
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1317
        label (Variable|list): the ground truth which is a 2-D tensor. When
1318 1319 1320 1321
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1322
        soft_label (bool): a flag indicating whether to
1323
                                           interpretate the given labels as soft
1324
                                           labels. Default: `False`.
M
minqiyang 已提交
1325 1326
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1327
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1328 1329 1330 1331 1332

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1333 1334 1335 1336 1337
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1338 1339 1340 1341 1342 1343

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1344
    """
F
fengjiayi 已提交
1345
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1346
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1347 1348 1349 1350 1351
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1352 1353
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1354 1355 1356
    return out


F
frankwhzhang 已提交
1357
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1358 1359 1360
    """
    Bayesian Personalized Ranking Loss Operator.

1361
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1362 1363 1364 1365 1366 1367
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1368 1369 1370 1371 1372 1373
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1374 1375
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1376 1377 1378
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1379 1380 1381
    Examples:
        .. code-block:: python

1382
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1383
    """
1384 1385 1386 1387 1388 1389

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1390
                'Label': [label]},
1391 1392 1393 1394
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1395
def square_error_cost(input, label):
Y
Yu Yang 已提交
1396
    """
1397 1398
    **Square error cost layer**

1399 1400
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1415 1416
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1417 1418

    Returns:
G
guosheng 已提交
1419
        Variable: The tensor variable storing the element-wise squared error \
1420
                  difference of input and label.
1421 1422 1423 1424 1425 1426 1427 1428

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1429
    """
F
fengjiayi 已提交
1430
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1431
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1432 1433 1434 1435 1436 1437
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1438
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1439
    helper.append_op(
F
fengjiayi 已提交
1440 1441
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1442 1443 1444
    return square_out


Y
yi.wu 已提交
1445
@templatedoc()
Y
Yu Yang 已提交
1446 1447 1448 1449
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1450
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1451
    """
Y
yi.wu 已提交
1452
    **Chunk Evaluator**
Y
yi.wu 已提交
1453

Y
yangyaming 已提交
1454
    This function computes and outputs the precision, recall and
1455
    F1-score of chunk detection.
Y
yi.wu 已提交
1456

Y
yi.wu 已提交
1457 1458 1459 1460 1461 1462 1463 1464
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1465

Y
yi.wu 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1491

Y
yi.wu 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1516
    Args:
1517 1518 1519 1520 1521
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1522

Y
yi.wu 已提交
1523
    Returns:
Y
update  
yi.wu 已提交
1524 1525 1526
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1527

Y
yi.wu 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1540
    """
F
fengjiayi 已提交
1541
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1542 1543

    # prepare output
X
Xin Pan 已提交
1544 1545 1546 1547 1548 1549 1550
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1551 1552 1553 1554 1555 1556 1557 1558

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1559 1560 1561 1562
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1563 1564 1565
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1566 1567
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1568
        })
1569 1570
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1571 1572


1573
@templatedoc()
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579 1580
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1581 1582
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1583 1584 1585 1586
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1587 1588 1589 1590 1591 1592 1593

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1607

1608 1609
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1610 1611 1612 1613 1614 1615 1616
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1617
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1628
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1629 1630 1631 1632 1633 1634
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1635
def sequence_softmax(input, use_cudnn=False, name=None):
1636 1637 1638
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1639
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1656 1657 1658
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1671 1672
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1673
    softmax_out = helper.create_variable_for_type_inference(dtype)
1674 1675 1676 1677 1678 1679 1680 1681
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1682
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1683
    """
1684
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1685
    has the same shape as the input.
Q
qiaolongfei 已提交
1686

1687 1688 1689 1690 1691 1692
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1693
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1694 1695 1696 1697 1698 1699 1700

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1701
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1702 1703 1704 1705 1706 1707 1708 1709

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1710 1711 1712
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1725 1726
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1727
    softmax_out = helper.create_variable_for_type_inference(dtype)
1728 1729 1730 1731 1732 1733 1734 1735
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1736 1737 1738
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1739 1740
           stride=1,
           padding=0,
1741
           dilation=1,
Y
Yu Yang 已提交
1742 1743 1744
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1745
           use_cudnn=True,
1746 1747
           act=None,
           name=None):
Y
Yu Yang 已提交
1748
    """
C
chengduoZH 已提交
1749
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1750 1751
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1752
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1753 1754 1755 1756 1757 1758 1759
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1760 1761 1762
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1763

1764
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1765

C
chengduoZH 已提交
1766 1767
    .. math::

C
refine  
chengduoZH 已提交
1768
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1769

T
tensor-tang 已提交
1770
    Where:
C
chengduoZH 已提交
1771

1772 1773 1774 1775 1776
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1777
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1778 1779 1780

    Example:

1781 1782
        - Input:

W
weixing02 已提交
1783
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1784

W
weixing02 已提交
1785
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1786

1787
        - Output:
T
tensor-tang 已提交
1788

W
weixing02 已提交
1789
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1790

C
chengduoZH 已提交
1791
        Where
1792 1793

        .. math::
C
chengduoZH 已提交
1794

W
weixing02 已提交
1795 1796
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1797 1798

    Args:
1799
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1800
        num_filters(int): The number of filter. It is as same as the output
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1829 1830
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1831 1832
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1833
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1834
            will be named automatically. Default: None
C
chengduoZH 已提交
1835 1836

    Returns:
G
guosheng 已提交
1837
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1838 1839
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1840
    Raises:
1841 1842
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1843

C
chengduoZH 已提交
1844 1845 1846
    Examples:
        .. code-block:: python

1847 1848
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1849 1850 1851
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1852
    assert param_attr is not False, "param_attr should not be False here."
1853
    l_type = 'conv2d'
X
xzl 已提交
1854 1855
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1856
        l_type = 'depthwise_conv2d'
1857 1858 1859 1860

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1861 1862 1863 1864 1865
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1866
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1867

C
chengduoZH 已提交
1868 1869 1870
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1871
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1872

C
chengduoZH 已提交
1873 1874
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1875 1876

    input_shape = input.shape
M
minqiyang 已提交
1877
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1878 1879

    def _get_default_param_initializer():
C
chengduo 已提交
1880 1881
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1882 1883 1884 1885 1886 1887 1888 1889
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1890
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1891

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1906
    helper.append_op(
1907
        type=l_type,
Y
Yu Yang 已提交
1908 1909 1910 1911 1912
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1913 1914 1915
        attrs={
            'strides': stride,
            'paddings': padding,
1916
            'dilations': dilation,
C
chengduoZH 已提交
1917
            'groups': groups,
1918
            'use_cudnn': use_cudnn,
1919
            'use_mkldnn': False,
C
chengduoZH 已提交
1920
        })
Y
Yu Yang 已提交
1921 1922 1923 1924 1925 1926

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1944 1945 1946 1947 1948 1949
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1959 1960
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1961 1962 1963
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1964
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1990
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1991 1992
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1993
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1994 1995
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1996
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1997 1998
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1999
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2000 2001 2002 2003 2004 2005
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2016 2017
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2018 2019
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2020
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2021
            will be named automatically. Default: None.
C
chengduoZH 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2034 2035
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2036 2037 2038
    """

    l_type = 'conv3d'
C
chengduo 已提交
2039
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2050
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2064 2065 2066
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2067 2068 2069 2070 2071 2072 2073 2074
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2075
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2090
            'use_mkldnn': False
C
chengduoZH 已提交
2091 2092
        })

2093
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2094 2095 2096 2097

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2098
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2099
    """
Y
yangyaming 已提交
2100 2101 2102
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2114
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2115 2116 2117 2118 2119
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2120
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2121 2122 2123 2124 2125 2126 2127

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2128 2129
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2130

L
Luo Tao 已提交
2131 2132
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2133
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2134
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2135
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2136 2137 2138 2139 2140 2141 2142

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2143

Y
yangyaming 已提交
2144
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2145 2146 2147 2148 2149
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2150 2151
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2152
    """
F
fengjiayi 已提交
2153
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2154
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2155 2156
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2157 2158 2159 2160 2161 2162

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2163 2164
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2165

Y
yangyaming 已提交
2166 2167 2168 2169 2170
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2171 2172 2173
    return pool_out


C
add doc  
chengduoZH 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2193
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2194 2195 2196 2197 2198
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2199
def sequence_first_step(input):
L
Luo Tao 已提交
2200
    """
L
Luo Tao 已提交
2201
    This function gets the first step of sequence.
L
Luo Tao 已提交
2202 2203 2204 2205

    .. code-block:: text

       x is a 1-level LoDTensor:
2206
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2207 2208 2209 2210 2211
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2212
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2213
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2214

L
Luo Tao 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2224

Y
yangyaming 已提交
2225
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2226 2227 2228
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2229 2230 2231
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2232
def sequence_last_step(input):
L
Luo Tao 已提交
2233
    """
L
Luo Tao 已提交
2234
    This function gets the last step of sequence.
L
Luo Tao 已提交
2235 2236 2237 2238

    .. code-block:: text

       x is a 1-level LoDTensor:
2239
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2240 2241 2242 2243 2244
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2245
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2246
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2247

L
Luo Tao 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2257

Y
yangyaming 已提交
2258
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2259 2260 2261
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2262 2263 2264
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2265 2266 2267 2268
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2269
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2270 2271 2272 2273 2274
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2275

Y
Yibing Liu 已提交
2276 2277
	- Case:

2278
            Given the input Variable **input**:
2279

2280 2281 2282
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2283

2284
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2285

2286
            the output Variable will be
2287

2288 2289 2290
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2291 2292

    NOTE: The first dimension size of **input**, **offset** and **length**
2293
          should be equal. The **offset** should start from 0.
2294

Y
Yibing Liu 已提交
2295
    Args:
2296
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2297
                         sequences.
Y
Yibing Liu 已提交
2298 2299 2300 2301 2302 2303
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2304
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2315
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2316 2317 2318 2319
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2320
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2335
@templatedoc()
Y
Yu Yang 已提交
2336
def pool2d(input,
C
chengduoZH 已提交
2337 2338
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2339 2340
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2341
           global_pooling=False,
C
chengduoZH 已提交
2342
           use_cudnn=True,
2343
           ceil_mode=False,
2344 2345
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2346
    """
F
fengjiayi 已提交
2347
    ${comment}
2348 2349

    Args:
2350 2351 2352
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2353
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2354
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2355 2356
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2357
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2358 2359 2360 2361 2362 2363
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2364 2365 2366
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2367
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2368
                        layer will be named automatically.
2369
        exclusive (bool): Whether to exclude padding points in average pooling
2370
                          mode, default is true
F
fengjiayi 已提交
2371

2372
    Returns:
F
fengjiayi 已提交
2373
        Variable: The pooling result.
F
fengjiayi 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2387 2388 2389 2390
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2391
                            global_pooling=False)
Y
Yu Yang 已提交
2392 2393 2394 2395 2396
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2397

C
chengduoZH 已提交
2398 2399 2400 2401 2402
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2403 2404 2405 2406
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2407 2408
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2409

C
Add doc  
chengduoZH 已提交
2410
    l_type = 'pool2d'
2411 2412

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2413
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2414
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2415 2416

    helper.append_op(
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2428 2429
            "use_mkldnn": False,
            "exclusive": exclusive,
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2443 2444
           name=None,
           exclusive=True):
2445 2446
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2447
    pooling configurations mentioned in input parameters.
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2460
        exclusive (bool): Whether to exclude padding points in average pooling
2461
                          mode, default is true
2462

2463
    Returns:
2464
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2465 2466 2467 2468 2469
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2470

C
chengduoZH 已提交
2471 2472 2473 2474 2475
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2476 2477 2478
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2479

C
chengduoZH 已提交
2480 2481
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2482

2483 2484
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2485
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2486
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2487 2488

    helper.append_op(
2489
        type=l_type,
Y
Yu Yang 已提交
2490 2491 2492 2493 2494 2495 2496
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2497
            "paddings": pool_padding,
2498
            "use_cudnn": use_cudnn,
2499
            "ceil_mode": ceil_mode,
2500 2501
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2502 2503 2504 2505 2506
        })

    return pool_out


2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2554 2555
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2556
          pool_out = fluid.layers.adaptive_pool2d(
2557 2558
                            input=data,
                            pool_size=[3, 3],
2559
                            pool_type='avg')
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2601
    return (pool_out, mask) if require_index else pool_out
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2655 2656
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2657
          pool_out, mask = fluid.layers.adaptive_pool3d(
2658 2659
                            input=data,
                            pool_size=[3, 3],
2660
                            pool_type='avg')
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2702
    return (pool_out, mask) if require_index else pool_out
2703 2704


Y
Yu Yang 已提交
2705 2706 2707 2708 2709 2710 2711
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2712
               data_layout='NCHW',
Y
Yang Yang 已提交
2713
               in_place=False,
2714 2715
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2716
               moving_variance_name=None,
2717
               do_model_average_for_mean_and_var=False,
2718 2719
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2720
    """
Q
qiaolongfei 已提交
2721 2722 2723 2724
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2725

Q
qiaolongfei 已提交
2726
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2727

Q
qiaolongfei 已提交
2728 2729
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2730 2731 2732
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2759
    Args:
Q
qiaolongfei 已提交
2760
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2761 2762 2763 2764
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2765 2766 2767 2768 2769 2770 2771 2772
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2773
        data_layout(string, default NCHW): NCHW|NHWC
2774
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2775 2776 2777 2778
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2779
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2780
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2781 2782 2783 2784 2785
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2786 2787

    Returns:
Q
qiaolongfei 已提交
2788
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2789 2790 2791 2792 2793 2794 2795

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2796
    """
C
chengduo 已提交
2797
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2818 2819 2820
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2821 2822

    bias = helper.create_parameter(
2823
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2824 2825 2826
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2827

2828 2829
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2830 2831 2832
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2833
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2834
        shape=param_shape,
2835 2836 2837 2838 2839 2840 2841
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2842
            trainable=False,
W
wanghaoshuang 已提交
2843
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2844
        shape=param_shape,
2845 2846
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2847 2848 2849 2850 2851 2852

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2853 2854 2855 2856
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2857

X
Xin Pan 已提交
2858 2859
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2877 2878 2879 2880
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2881
            "use_mkldnn": False,
2882 2883
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2884
        })
Y
Yu Yang 已提交
2885 2886 2887 2888

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2889
@templatedoc()
G
guosheng 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2900
    ${comment}
G
guosheng 已提交
2901 2902 2903

    The formula is as follows:

Y
yuyang18 已提交
2904
    ..  math::
G
guosheng 已提交
2905 2906 2907 2908 2909 2910 2911

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2912 2913 2914 2915 2916 2917 2918 2919
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2920

G
guosheng 已提交
2921 2922
    Args:
        input(Variable): The input tensor variable.
2923
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2924
            normalization. Default True.
2925
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2926 2927
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2928
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2929
            Default 1.
2930
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2931
            division by zero. Default 1e-05.
G
guosheng 已提交
2932
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2933 2934
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2935 2936
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2937
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2938 2939
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2940
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2941
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2942
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2943 2944 2945
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2946 2947

    Returns:
Y
yuyang18 已提交
2948
        ${y_comment}
G
guosheng 已提交
2949 2950 2951

    Examples:

Y
yuyang18 已提交
2952 2953 2954
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2970
    if shift:
G
guosheng 已提交
2971 2972 2973 2974 2975 2976
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2977 2978 2979 2980 2981
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3075 3076 3077 3078
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3079 3080 3081
                     padding=0,
                     stride=1,
                     dilation=1,
3082
                     groups=None,
C
caoying03 已提交
3083
                     param_attr=None,
3084
                     bias_attr=None,
C
chengduoZH 已提交
3085
                     use_cudnn=True,
3086
                     act=None,
C
caoying03 已提交
3087
                     name=None):
Y
Yu Yang 已提交
3088
    """
3089 3090 3091 3092 3093 3094 3095 3096
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3097 3098
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3099 3100 3101
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3102 3103 3104 3105 3106

    For each input :math:`X`, the equation is:

    .. math::

3107
        Out = \sigma (W \\ast X + b)
3108

3109
    Where:
3110 3111 3112

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3113 3114 3115 3116
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3117

3118 3119 3120 3121
    Example:

        - Input:

3122
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3123

3124
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3125 3126 3127

        - Output:

3128
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3129 3130

        Where
Y
Yu Yang 已提交
3131

3132 3133
        .. math::

3134 3135 3136 3137
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3138 3139

    Args:
3140 3141 3142 3143
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3144 3145 3146 3147
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3176
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3177 3178 3179
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3180
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3181
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3182 3183

    Returns:
3184
        Variable: The tensor variable storing the convolution transpose result.
3185 3186

    Raises:
3187 3188
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3189 3190 3191 3192

    Examples:
       .. code-block:: python

3193 3194
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3195
    """
C
chengduo 已提交
3196
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3197 3198 3199 3200 3201 3202 3203 3204
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3205 3206 3207
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3208 3209 3210
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3211

C
chengduoZH 已提交
3212 3213
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3214

Y
Yu Yang 已提交
3215 3216 3217 3218 3219
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3220

Y
Yu Yang 已提交
3221 3222
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3223

C
chengduoZH 已提交
3224
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3225
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3226
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3227
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3228
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3229 3230 3231
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3232

3233 3234 3235 3236 3237 3238 3239
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3240
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3241
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3242

Y
Yu Yang 已提交
3243 3244 3245
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3246
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3247
    helper.append_op(
3248
        type=op_type,
Y
Yu Yang 已提交
3249 3250
        inputs={'Input': [input],
                'Filter': [img_filter]},
3251
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3252
        attrs={
3253
            'output_size': output_size,
3254 3255 3256 3257 3258
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3259 3260
        })

3261 3262 3263
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3264 3265


3266
def conv3d_transpose(input,
Y
Yu Yang 已提交
3267 3268 3269
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3270 3271 3272
                     padding=0,
                     stride=1,
                     dilation=1,
3273
                     groups=None,
C
caoying03 已提交
3274
                     param_attr=None,
3275
                     bias_attr=None,
C
chengduoZH 已提交
3276
                     use_cudnn=True,
3277
                     act=None,
C
caoying03 已提交
3278
                     name=None):
Y
Yu Yang 已提交
3279
    """
3280
    **Convlution3D transpose layer**
3281

3282
    The convolution3D transpose layer calculates the output based on the input,
3283
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3284 3285 3286 3287 3288 3289
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3290 3291 3292
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3293 3294 3295 3296 3297

    For each input :math:`X`, the equation is:

    .. math::

3298
        Out = \sigma (W \\ast X + b)
3299 3300 3301

    In the above equation:

3302 3303
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3304 3305 3306 3307
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3308

3309 3310 3311 3312
    Example:

        - Input:

3313
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3314

3315
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3316 3317 3318

        - Output:

3319
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3320 3321

        Where
Y
Yu Yang 已提交
3322

3323 3324
        .. math::

3325 3326 3327
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3328 3329

    Args:
3330
        input(Variable): The input image with [N, C, D, H, W] format.
3331 3332 3333
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3334
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3335 3336
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3337
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3338 3339 3340
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3341 3342
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3343
        stride(int|tuple): The stride size. If stride is a tuple, it must
3344 3345
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3346
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3347 3348 3349
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3350 3351 3352 3353 3354
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3364 3365
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3366 3367
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3368 3369
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3370 3371

    Returns:
3372
        Variable: The tensor variable storing the convolution transpose result.
3373 3374

    Raises:
3375 3376
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3377 3378 3379 3380

    Examples:
       .. code-block:: python

3381 3382
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3383
    """
C
chengduo 已提交
3384
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3385 3386
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3387
    if not isinstance(input, Variable):
3388
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3389 3390
    input_channel = input.shape[1]

3391 3392 3393
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3394

C
chengduoZH 已提交
3395 3396 3397
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3398 3399 3400 3401 3402 3403
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3404 3405 3406
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3407

3408
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3409
                         padding[0] - 1) // dilation[0] + 1
3410
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3411
                         padding[1] - 1) // dilation[1] + 1
3412
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3413
                         padding[2] - 1) // dilation[2] + 1
3414
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3415
    else:
3416 3417
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3418

3419
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3420
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3421 3422 3423
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3424
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3425
    helper.append_op(
3426
        type=l_type,
Y
Yu Yang 已提交
3427 3428
        inputs={'Input': [input],
                'Filter': [img_filter]},
3429
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3430 3431 3432 3433
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3434
            'groups': groups,
C
chengduoZH 已提交
3435 3436
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3437

3438 3439
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3440
    return out
Y
yangyaming 已提交
3441 3442


Y
yangyaming 已提交
3443
def sequence_expand(x, y, ref_level=-1, name=None):
3444
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3445 3446 3447 3448
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3449 3450 3451 3452 3453

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3454
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3455
                x.data = [[a], [b], [c], [d]]
3456 3457 3458
                x.dims = [4, 1]

            y is a LoDTensor:
3459 3460
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3461

Y
yangyaming 已提交
3462
            ref_level: 0
3463

Y
yangyaming 已提交
3464
            then output is a 1-level LoDTensor:
3465
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3466
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3467 3468 3469 3470
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3471
                x.data = [[a], [b], [c]]
3472 3473 3474
                x.dims = [3, 1]

            y is a LoDTensor:
3475
                y.lod = [[2, 0, 3]]
3476

Y
yangyaming 已提交
3477
            ref_level: -1
3478

Y
yangyaming 已提交
3479 3480 3481
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3482 3483 3484
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3485 3486
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3487
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3488
                        will be named automatically.
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3499
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3500
    """
Y
yangyaming 已提交
3501
    helper = LayerHelper('sequence_expand', input=x, **locals())
3502
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3503
    tmp = helper.create_variable_for_type_inference(dtype)
3504
    helper.append_op(
Y
yangyaming 已提交
3505 3506 3507 3508 3509
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3510
    return tmp
3511 3512


C
chengduo 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3569
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3570 3571 3572 3573 3574 3575 3576 3577
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3578
@templatedoc()
3579
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3580 3581 3582 3583 3584
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3585 3586 3587
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3588
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3589 3590 3591 3592
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3593 3594 3595
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3596

F
fengjiayi 已提交
3597
    Returns:
M
minqiyang 已提交
3598
        Variable: The padded sequence batch and the original lengths before
3599
                  padding. All sequences has the same length.
M
minqiyang 已提交
3600

F
fengjiayi 已提交
3601 3602 3603 3604 3605 3606 3607
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3608
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3609
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3610 3611 3612 3613 3614
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3615 3616
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3617 3618 3619 3620

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3621 3622 3623 3624 3625 3626
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3627 3628
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3629
        attrs={'padded_length': maxlen})
3630
    return out, length
F
fengjiayi 已提交
3631 3632


3633
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3634
    """
3635
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3636

3637 3638
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3648 3649 3650
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3651
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3652 3653 3654 3655 3656 3657

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3658
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3659 3660 3661 3662 3663 3664

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3665 3666
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3681
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3693 3694 3695 3696 3697 3698 3699 3700 3701
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3702 3703
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3704 3705 3706

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3707 3708

    This layer does the search in beams for one time step. Specifically, it
3709 3710 3711 3712 3713 3714
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3715

3716 3717 3718 3719 3720 3721 3722 3723
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3724

3725
    Args:
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3751

3752
    Returns:
3753 3754
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3755 3756 3757 3758

    Examples:
        .. code-block:: python

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3776 3777 3778 3779
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3780 3781 3782
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3783 3784 3785 3786 3787

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3788
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3806 3807 3808 3809 3810 3811 3812
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3813

3814 3815 3816 3817 3818 3819 3820 3821 3822
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3823

3824 3825 3826 3827 3828 3829
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3830

3831 3832
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3833

3834 3835 3836 3837 3838 3839
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3840 3841
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3857 3858 3859 3860
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3861
              param_attr=None,
C
caoying03 已提交
3862 3863
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3864 3865 3866 3867
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3868
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3869

3870
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3871

3872
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3873

3874
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3875 3876 3877

            h_t & = o_t tanh(c_t)

3878 3879 3880 3881 3882 3883
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3884 3885 3886

        .. math::

3887
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3888 3889 3890 3891 3892 3893 3894 3895

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3896
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3897 3898

    Args:
Y
yangyaming 已提交
3899 3900 3901 3902 3903 3904
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3905
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3918 3919
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3920 3921

    Returns:
Y
yangyaming 已提交
3922
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3923 3924

    Raises:
3925 3926 3927 3928
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3929 3930 3931 3932 3933 3934

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3935
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3936
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3937
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3954
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3955 3956 3957 3958
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3959 3960
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3961 3962 3963
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3964
    size = cell_t_prev.shape[1]
3965
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3966 3967
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3968
                param_attr=param_attr,
3969
                bias_attr=bias_attr)
Y
yangyaming 已提交
3970
    dtype = x_t.dtype
X
Xin Pan 已提交
3971 3972
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3982
    return h, c
G
guosheng 已提交
3983 3984


C
caoying03 已提交
3985
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3986
    """
Y
yangyaming 已提交
3987
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3988 3989 3990

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3991
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3992 3993
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3994 3995
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3996
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3997
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3998
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3999 4000
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4001 4002 4003

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4004

G
guosheng 已提交
4005 4006 4007 4008 4009 4010
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4011
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4012 4013 4014 4015
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4016 4017 4018 4019

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4020
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4021 4022 4023
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4024 4025
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4026
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4027 4028
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4029 4030 4031 4032 4033
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4034
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4035 4036 4037 4038
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4039 4040


C
caoying03 已提交
4041
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4042
    """
Y
Yibing Liu 已提交
4043
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4044 4045 4046

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4047 4048 4049
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4050
            must be in the range :math:`[-rank(input), rank(input))`. If
4051
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4052
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4053 4054
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4055
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4056
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4057
                       will be named automatically.
G
guosheng 已提交
4058 4059

    Returns:
Y
Yibing Liu 已提交
4060
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4061

G
guosheng 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4072 4073
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4074 4075 4076 4077 4078 4079 4080

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4081 4082
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4083
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4084 4085
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4086 4087 4088 4089 4090
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4091
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4092 4093 4094 4095
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4096 4097


C
caoying03 已提交
4098
def reduce_max(input, dim=None, keep_dim=False, name=None):
4099
    """
Y
yangyaming 已提交
4100
    Computes the maximum of tensor elements over the given dimension.
4101 4102 4103

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4104
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4105 4106 4107
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4108
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4109 4110
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4111
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4112 4113
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4114 4115 4116

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4129 4130 4131 4132 4133 4134 4135

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4136 4137
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4138
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4139 4140
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4141 4142 4143 4144 4145
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4146
            'dim': dim if dim != None else [0],
4147 4148 4149 4150 4151 4152
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4153
def reduce_min(input, dim=None, keep_dim=False, name=None):
4154
    """
Y
yangyaming 已提交
4155
    Computes the minimum of tensor elements over the given dimension.
4156 4157 4158

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4159
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4160 4161 4162
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4163
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4164 4165
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4166
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4167 4168
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4169 4170 4171

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4172

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4184 4185 4186 4187 4188 4189 4190

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4191 4192
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4193
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4194 4195
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4196 4197 4198 4199 4200
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4201
            'dim': dim if dim != None else [0],
4202 4203 4204 4205
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4206 4207


4208 4209 4210 4211 4212 4213
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4214
        dim (list|int|None): The dimensions along which the product is performed. If
4215 4216
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4217 4218
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4219 4220 4221
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4222
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4223
            layer will be named automatically.
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4238
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4239
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4240 4241 4242 4243 4244 4245 4246

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4247 4248
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4249
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4250 4251
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4252 4253 4254 4255 4256
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4257
            'dim': dim if dim != None else [0],
4258 4259 4260 4261 4262 4263
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4264
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4265
    """
C
caoying03 已提交
4266
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4267 4268 4269

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4270 4271 4272 4273 4274
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4275
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4276
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4277
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4278 4279
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4280 4281

    Returns:
D
dzhwinter 已提交
4282
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4292 4293
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4309
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4332
    .. math::
4333 4334

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4335 4336 4337 4338 4339

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4340
        x(Variable|list): The input tensor to l2_normalize layer.
4341
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4342 4343
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4344
        epsilon(float): The epsilon value is used to avoid division by zero, \
4345
            the defalut value is 1e-10.
4346
        name(str|None): A name for this layer(optional). If set None, the layer \
4347
            will be named automatically.
C
caoying03 已提交
4348 4349

    Returns:
4350
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4351 4352

    Examples:
4353

C
caoying03 已提交
4354 4355
        .. code-block:: python

4356 4357 4358 4359
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4360 4361
    """

F
fengjiayi 已提交
4362 4363
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4364 4365
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4366 4367
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4368
    helper.append_op(
4369 4370 4371 4372
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4373
        attrs={
4374 4375
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4376 4377
        })
    return out
4378 4379


S
sneaxiy 已提交
4380
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4381
    """
Y
ying 已提交
4382 4383 4384 4385
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4386

C
chengduoZH 已提交
4387
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4388
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4389

4390 4391 4392 4393 4394
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4395
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4396

C
chengduoZH 已提交
4397
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4398
      performs in the following way.
G
guosheng 已提交
4399

4400
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4401
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4402
        last two dimensions and a batched matrix multiply supporting broadcast
4403
        applies on the two tensors.
G
guosheng 已提交
4404

Y
ying 已提交
4405 4406
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4407
    removed after matrix multiplication.
G
guosheng 已提交
4408 4409 4410

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4411 4412 4413
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4414
        alpha (float): The scale of output. Default 1.0.
4415
        name(str|None): A name for this layer(optional). If set None, the layer
4416
            will be named automatically.
G
guosheng 已提交
4417 4418

    Returns:
4419
        Variable: The product Tensor variable.
G
guosheng 已提交
4420

G
guosheng 已提交
4421 4422 4423
    Examples:
        .. code-block:: python

4424
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4425 4426
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4427

4428 4429
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4430

4431 4432
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4433

4434 4435
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4436 4437 4438 4439

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4440 4441
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4442

Y
ying 已提交
4443
            # x: [M], y: [N]
4444
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4445
    """
Y
ying 已提交
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4458
            y_shape = y_shape + [1]
Y
ying 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4475
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4476
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4477
    helper.append_op(
4478 4479 4480 4481
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4482 4483 4484
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4485
            'alpha': float(alpha),
S
sneaxiy 已提交
4486
        })
4487
    return out
4488 4489


4490
def topk(input, k, name=None):
Q
qingqing01 已提交
4491 4492 4493 4494
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4495
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4496 4497 4498 4499 4500 4501
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4523 4524 4525
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4526
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4527
                 of input.
4528
        name(str|None): A name for this layer(optional). If set None, the layer
4529
                       will be named automatically.
F
fengjiayi 已提交
4530
                       Default: None
Q
qingqing01 已提交
4531 4532

    Returns:
4533 4534 4535
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4536
        within the last dimension of input.
Q
qingqing01 已提交
4537

F
fengjiayi 已提交
4538 4539
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4540 4541 4542 4543 4544 4545 4546

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4547 4548
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4560
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4561
    """
Y
ying 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4571

Y
ying 已提交
4572
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4573

4574
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4575 4576
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4577
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4578

4579
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4580 4581
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4582

4583 4584 4585
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4586
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4587
                          the length of reference string.
4588
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4589
                                     calculating edit distance.
4590
        name (str): The name of this layer. It is optional.
4591

W
wanghaoshuang 已提交
4592
    Returns:
W
wanghaoshuang 已提交
4593
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4594 4595 4596 4597

    Examples:
        .. code-block:: python

T
tink2123 已提交
4598 4599
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4600
            cost = fluid.layers.edit_distance(input=x,label=y)
4601
    """
4602
    helper = LayerHelper("edit_distance", **locals())
4603

4604
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4605
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4606 4607
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4608 4609 4610 4611 4612

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4613
            attrs={"tokens": ignored_tokens})
4614 4615 4616 4617 4618
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4619
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4620
            attrs={"tokens": ignored_tokens})
4621 4622
        label = erased_label

4623
    # edit distance op
X
Xin Pan 已提交
4624 4625
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4626 4627 4628 4629
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4630 4631
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4632 4633
        attrs={"normalized": normalized})

4634
    return edit_distance_out, sequence_num
4635 4636 4637 4638 4639


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4640

Y
ying 已提交
4641 4642 4643 4644
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4662
        input.lod = [[4, 4]]
4663

W
whs 已提交
4664
        Computation:
4665

W
whs 已提交
4666 4667 4668 4669 4670 4671
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4672 4673 4674 4675 4676

        output.data = [[2],
                       [1],
                       [3]]

4677
        output.lod = [[2, 1]]
4678

W
whs 已提交
4679

4680 4681
    Args:

Y
ying 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4691
        name (str): The name of this layer. It is optional.
4692 4693

    Returns:
W
whs 已提交
4694 4695
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
4696
                  in result were empty, the result LoDTensor will be [-1] with
W
whs 已提交
4697
                  LoD [[]] and dims [1, 1].
4698 4699 4700 4701 4702

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4703

4704
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4705
    """
4706
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4707
    _, topk_indices = topk(input, k=1)
4708 4709

    # ctc align op
X
Xin Pan 已提交
4710
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4711 4712 4713
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4714
        outputs={"Output": [ctc_out]},
4715 4716
        attrs={"merge_repeated": True,
               "blank": blank})
4717
    return ctc_out
4718 4719


W
Wu Yi 已提交
4720
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4721
    """
4722 4723
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4724
    to compute Connectionist Temporal Classification (CTC) loss.
4725 4726
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4727 4728 4729
    input tensor.

    Args:
4730
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4731 4732 4733 4734
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4735
       label (Variable): The ground truth of variable-length sequence,
4736 4737 4738
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4739 4740
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4741 4742 4743
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4744
         follewed by a mean_op.
W
Wu Yi 已提交
4745
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4746 4747

    Returns:
4748 4749
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4750 4751

    Examples:
4752

W
wanghaoshuang 已提交
4753
        .. code-block:: python
4754

4755 4756 4757
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4758 4759

    """
F
fengjiayi 已提交
4760
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4761 4762
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4763 4764 4765 4766 4767 4768
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4769 4770 4771 4772 4773
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4774
    return loss_out
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4790 4791 4792
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4793 4794 4795 4796 4797
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4798

4799
            out.lod  = [[0, 1, 3]]
4800 4801 4802 4803

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4804 4805 4806 4807 4808 4809 4810
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4811 4812 4813

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4814 4815

    Returns:
4816

4817 4818 4819 4820 4821
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4822
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4823
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4824 4825
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4826
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4827 4828 4829 4830 4831 4832
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4833 4834


4835 4836 4837 4838
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4839 4840 4841 4842 4843 4844
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4845
        num_neg_samples=None,
4846 4847 4848
        name=None,
        sampler="uniform",
        custom_dist=None,
4849 4850
        seed=0,
        is_sparse=False):
4851 4852 4853 4854 4855 4856 4857
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4858 4859
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4860
            sample is 1.0.
C
chengduo 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4870
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4871 4872
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4873 4874 4875
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4876
        custom_dist (float[]): A float[] with size=num_total_classes.
4877 4878 4879 4880
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4881
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4882

4883
    Returns:
Y
Yibing Liu 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4911 4912 4913 4914 4915 4916 4917 4918 4919

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4920

4921
    """
Y
Yang Yu 已提交
4922 4923 4924
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4925 4926

    dim = input.shape[1]
Y
Yang Yu 已提交
4927 4928 4929 4930 4931 4932
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4933
    inputs = {}
C
chengduo 已提交
4934 4935 4936 4937 4938 4939 4940
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4941 4942 4943
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4944

4945 4946 4947 4948
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4949 4950 4951 4952 4953 4954 4955

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5008 5009 5010 5011
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5012 5013 5014 5015 5016
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5017 5018
    attrs = {
        'num_total_classes': int(num_total_classes),
5019 5020
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5021 5022
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5023
    }
Y
Yang Yu 已提交
5024 5025 5026

    helper.append_op(
        type='nce',
C
chengduo 已提交
5027
        inputs=inputs,
Y
Yang Yu 已提交
5028 5029 5030 5031 5032 5033
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5034
    return cost / (num_neg_samples + 1)
5035 5036


C
chengduo 已提交
5037 5038
def hsigmoid(input,
             label,
5039
             num_classes,
C
chengduo 已提交
5040 5041
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5042
             name=None,
5043 5044 5045
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5046
             is_sparse=False):
W
weixing02 已提交
5047 5048
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5049
    process of language model. This operator organizes the classes into a
5050
    complete binary tree, or you can use is_custom to pass your own tree to
5051
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5052 5053 5054 5055 5056 5057
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5058
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5059
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5060

5061 5062 5063 5064 5065
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
5066
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
5067 5068 5069
        related to the same batch of inputs.


W
weixing02 已提交
5070
    Args:
M
minqiyang 已提交
5071
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5072 5073 5074 5075
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5076 5077
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5078
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5090
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5091
            it should be in leaf -> root order
5092 5093 5094
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5095
            each code consist with every code of parent nodes. it should be in leaf -> root order
5096
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5097
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5098
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5099
             of W and input will be sparse.
W
weixing02 已提交
5100 5101

    Returns:
J
JiabinYang 已提交
5102
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5103 5104 5105 5106 5107

    Examples:

        .. code-block:: python

G
guosheng 已提交
5108 5109 5110
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5111 5112 5113 5114
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5115 5116
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5117
    dim = input.shape[1]
5118
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5119 5120 5121
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5122 5123 5124 5125
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5126 5127
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5128 5129 5130
    else:
        pass

J
JiabinYang 已提交
5131 5132
    weights = None

5133
    if not is_custom:
J
JiabinYang 已提交
5134 5135 5136 5137 5138 5139 5140 5141
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5142
            shape=[num_classes, dim],
J
JiabinYang 已提交
5143 5144
            is_bias=False,
            dtype=input.dtype)
5145 5146 5147
    inputs = {
        "X": input,
        "W": weights,
5148 5149
        "PTable": path_table,
        "PathCode": path_code,
5150 5151
        "Label": label
    }
W
weixing02 已提交
5152
    if helper.bias_attr:
5153
        if not is_custom:
J
JiabinYang 已提交
5154 5155
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5156
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5157 5158 5159 5160 5161 5162
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5163
                shape=[num_classes, 1],
J
JiabinYang 已提交
5164 5165 5166
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5167 5168
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5169
        inputs=inputs,
W
weixing02 已提交
5170 5171
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5172 5173
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5174 5175 5176
    return out


Y
fix ci.  
ying 已提交
5177
def transpose(x, perm, name=None):
Y
ying 已提交
5178 5179 5180 5181 5182 5183 5184
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5185 5186 5187
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5188 5189 5190 5191 5192 5193 5194

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5195
            # use append_batch_size=False to avoid prepending extra
5196
            # batch size in shape
5197
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5198
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5199
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5200 5201
    """

Y
fix ci.  
ying 已提交
5202
    if len(perm) != len(x.shape):
Y
ying 已提交
5203 5204 5205
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5206 5207 5208 5209 5210 5211
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5212 5213

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5214 5215
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5216
    helper.append_op(
5217
        type='transpose2',
Y
fix ci.  
ying 已提交
5218
        inputs={'X': [x]},
5219 5220
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5221 5222
        attrs={'axis': perm})
    return out
5223 5224


5225 5226 5227 5228 5229 5230 5231
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5232
    """
5233 5234 5235 5236 5237 5238 5239
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5268 5269 5270 5271 5272 5273 5274 5275 5276
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5277 5278 5279
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5280 5281 5282 5283 5284
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5312 5313 5314
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5327
            output.dims = {8, 8}
5328

5329
            output.lod = [[4, 4]]
5330

T
Tink_Y 已提交
5331
    Examples:
5332 5333 5334

        .. code-block:: python

5335 5336
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5337 5338

    """
W
wanghaoshuang 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5349 5350 5351 5352 5353 5354 5355
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5356
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5357
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5358
    helper.append_op(
5359
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5360
    return out
5361 5362


Y
yuyang18 已提交
5363
@templatedoc()
5364
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5365 5366
    """
    ${comment}
5367 5368

    Args:
Y
yuyang18 已提交
5369
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5370 5371
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5372 5373 5374 5375 5376
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5377
        ${out_comment}.
5378 5379

    Examples:
Y
yuyang18 已提交
5380 5381 5382 5383
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5384 5385 5386 5387 5388 5389
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5390
    out = helper.create_variable_for_type_inference(dtype)
5391 5392 5393 5394 5395
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5396
    return helper.append_activation(out)
5397 5398


Y
yuyang18 已提交
5399
@templatedoc()
5400 5401
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5402 5403 5404 5405 5406 5407 5408
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5409 5410

    Args:
Y
yuyang18 已提交
5411 5412
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5413 5414

    Returns:
Y
yuyang18 已提交
5415
        ${out_comment}.
5416 5417
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5418 5419 5420 5421 5422

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5423
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5424 5425 5426 5427 5428 5429
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5430 5431


5432 5433 5434
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5435
                               ignore_index=kIgnoreIndex,
5436 5437
                               numeric_stable_mode=False,
                               return_softmax=False):
5438 5439
    """
    **Softmax With Cross Entropy Operator.**
5440

5441 5442 5443 5444
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5445

5446 5447 5448
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5449

5450 5451 5452
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5453

5454
    The equation is as follows:
5455

5456
    1) Hard label (one-hot label, so every sample has exactly one class)
5457

5458 5459 5460 5461
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5462

5463 5464 5465
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5466

5467 5468 5469 5470
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5471 5472 5473
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5474

S
sneaxiy 已提交
5475 5476 5477 5478 5479 5480 5481 5482
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5483 5484 5485 5486 5487 5488 5489 5490
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5491 5492
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5493
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5494 5495 5496
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5497 5498 5499
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5500
                                    stable algorithm. Default: False
5501
        return_softmax (bool): A flag indicating whether to return the softmax
5502
                               along with the cross entropy loss. Default: False
5503

5504
    Returns:
5505 5506 5507 5508
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5509
                              2-D tensor with shape [N x K].
5510 5511 5512 5513 5514 5515 5516

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5517 5518
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5519 5520
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5521 5522
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5523 5524 5525 5526 5527 5528
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5529 5530 5531 5532 5533
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5534 5535 5536 5537

    if return_softmax:
        return loss, softmax

5538 5539 5540 5541 5542
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5543 5544
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5545
    For each instance, it computes the smooth L1 loss element by element first
5546
    and then sums all the losses. So the shape of ouput Variable is
5547
    [batch_size, 1].
5548

5549 5550
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5551
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5552
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5553
            L1 loss op with same shape as :attr:`x`.
5554
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5555 5556
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5557
            by this tensor element by element.
5558
        outside_weight (Variable|None): A tensor with rank at least 2. This
5559 5560
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5561
            element by element.
5562
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5563 5564
           scalar with default value 1.0.

5565
    Returns:
5566
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5567 5568 5569 5570 5571

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5572 5573
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5574
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5575
            out = fluid.layers.smooth_l1(x=fc, y=label)
5576
    """
5577

5578
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5579 5580
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5593 5594 5595 5596


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5597
    This layer creates the one-hot representations for input indices.
5598 5599

    Args:
Y
Yibing Liu 已提交
5600 5601
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5602 5603

    Returns:
Y
Yibing Liu 已提交
5604
        Variable: The one-hot representations of input.
5605 5606

    Examples:
C
caoying03 已提交
5607
        .. code-block:: python
5608

Y
Yibing Liu 已提交
5609 5610
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5611 5612
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5613
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5614 5615 5616 5617 5618 5619
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5620 5621


Y
Yu Yang 已提交
5622
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5623
    """
Y
yi.wu 已提交
5624 5625 5626
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5627 5628 5629 5630 5631 5632

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5633 5634
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5635 5636 5637 5638 5639 5640

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5641 5642
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5643 5644
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5645 5646 5647 5648 5649
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5650
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5651
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5652 5653
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5654 5655
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5656 5657 5658
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5659 5660


5661
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5662
    """
C
caoying03 已提交
5663 5664
    Gives a new shape to the input Tensor without changing its data.

5665 5666 5667 5668 5669
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5670

5671
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5672

5673 5674 5675 5676
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5677
    2. 0 means the actual dimension value is going to be copied from the
5678 5679 5680 5681
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5682 5683

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5684
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5685
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5686

5687
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5688 5689
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5690 5691
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5692
    dimensions.
C
caoying03 已提交
5693

5694
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5695 5696 5697 5698
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5699 5700

    Args:
5701
        x(variable): The input tensor.
C
caoying03 已提交
5702 5703
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5704 5705 5706 5707 5708
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5709 5710
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5711 5712 5713 5714 5715 5716 5717
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5718
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5719

5720
    Returns:
G
guosheng 已提交
5721 5722 5723 5724
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5725

X
Xin Pan 已提交
5726 5727 5728
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5729 5730
    Examples:
        .. code-block:: python
G
guosheng 已提交
5731

5732
            data = fluid.layers.data(
5733
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5734
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5735
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5736 5737 5738
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5739
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5740 5741 5742 5743 5744
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5745

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5761
    helper = LayerHelper("reshape2", **locals())
5762 5763
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5764
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5765
    helper.append_op(
5766
        type="reshape2",
X
Xin Pan 已提交
5767
        inputs=inputs,
D
dzhwinter 已提交
5768
        attrs={"shape": shape},
5769 5770
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5771

D
dzhwinter 已提交
5772
    return helper.append_activation(out)
5773

5774

5775
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5776
    """
M
minqiyang 已提交
5777 5778 5779
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5780
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5781

Y
Yibing Liu 已提交
5782 5783
    Examples:
    Case 1:
M
minqiyang 已提交
5784
      Given
Y
Yibing Liu 已提交
5785 5786 5787 5788 5789 5790 5791 5792
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5793
        and
Y
Yibing Liu 已提交
5794 5795 5796
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5797

Y
Yibing Liu 已提交
5798
    Args:
5799
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5800
        axes (list): List of integers, indicating the dimensions to be squeezed.
5801
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5802 5803 5804 5805 5806 5807 5808 5809

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5810
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5811 5812
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5813 5814
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5815
    helper.append_op(
5816
        type="squeeze2",
5817
        inputs={"X": input},
Y
Yibing Liu 已提交
5818
        attrs={"axes": axes},
5819 5820
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5821

5822 5823 5824
    return out


5825
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5826
    """
M
minqiyang 已提交
5827 5828 5829
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5830

M
minqiyang 已提交
5831 5832
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5833
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5834

Y
Yibing Liu 已提交
5835
    Args:
5836
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5837
        axes (list): List of integers, indicating the dimensions to be inserted.
5838
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5839 5840 5841 5842 5843 5844 5845 5846

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5847
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5848 5849
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5850 5851
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5852
    helper.append_op(
5853
        type="unsqueeze2",
5854
        inputs={"X": input},
Y
Yibing Liu 已提交
5855
        attrs={"axes": axes},
5856 5857
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5858

5859 5860
    return out

5861

Y
yangyaming 已提交
5862
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5863
    """
Y
Yibing Liu 已提交
5864
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5865 5866 5867 5868
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5869
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5870 5871 5872 5873 5874 5875

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5876
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5877 5878 5879
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5880
            target_lod: [4, 2]
Y
yangyaming 已提交
5881 5882

            then we get a 1-level LoDTensor:
5883
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5884 5885 5886 5887 5888 5889
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5890
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5891 5892 5893 5894
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5895
                y.data = [[2, 4]]
Y
yangyaming 已提交
5896 5897 5898
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5899
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5900 5901 5902 5903 5904 5905
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5906
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5907 5908 5909 5910
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5911
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5912 5913 5914 5915
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5916
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5917 5918 5919 5920 5921
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5922
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5923
                           from :attr:`y`.
Y
yangyaming 已提交
5924
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5925
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5926 5927

    Returns:
Y
Yibing Liu 已提交
5928
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5929 5930

    Raises:
Y
Yibing Liu 已提交
5931
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5941
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5967
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5996 5997
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6010 6011 6012
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6026 6027 6028 6029


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6030
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6031
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6032

G
guosheng 已提交
6033 6034 6035 6036
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6059
                         The length of :attr:paddings must be
G
guosheng 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6070

G
guosheng 已提交
6071 6072 6073 6074 6075 6076
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6077
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6078 6079 6080 6081 6082 6083 6084
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6085 6086


C
chengduo 已提交
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6118 6119
		And
            pad_value = -1,
C
chengduo 已提交
6120

T
Tink_Y 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6156
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6157 6158 6159 6160 6161 6162 6163 6164 6165
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6166 6167 6168 6169 6170 6171 6172
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6173 6174
    called label-smoothing regularization (LSR).

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6198
                              be :math:`(1, class\_num)`.
6199 6200
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6201
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6221
    smooth_label = helper.create_variable_for_type_inference(dtype)
6222 6223 6224 6225 6226 6227 6228
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6229 6230


W
wopeizl 已提交
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6267 6268


J
jerrywgz 已提交
6269 6270 6271 6272 6273 6274
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6275 6276
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6293 6294 6295
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6296 6297 6298 6299 6300 6301
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6302
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6343 6344
        .. code-block:: python

W
whs 已提交
6345 6346 6347 6348
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6349
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6350 6351 6352 6353 6354 6355
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6356 6357


6358 6359 6360 6361
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6362 6363
                 resample='BILINEAR',
                 actual_shape=None):
6364
    """
Q
qiaolongfei 已提交
6365
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6366

6367
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6368 6369 6370
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6371

6372
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6373

6374
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6375

6376
    Args:
6377
        input (Variable): The input tensor of image resize layer,
6378 6379
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6380
        out_shape(list|tuple|Variable|None): Output shape of image resize
6381 6382
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6383
        scale(float|None): The multiplier for the input height or width.
6384 6385 6386
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6387 6388
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6389
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6390
                       currently.
6391
                       Default: 'BILINEAR'
6392 6393 6394
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6395
                                :attr:`out_shape` and :attr:`scale` specifying
6396 6397 6398 6399 6400 6401 6402
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6403 6404
                                constructing stage.
                                Default: None
6405 6406

    Returns:
Q
update  
qiaolongfei 已提交
6407 6408
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6409

6410 6411 6412
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6413
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6414 6415 6416 6417
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6418 6419 6420
    Examples:
        .. code-block:: python

6421
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6422
    """
6423 6424 6425 6426
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6427 6428
    if resample not in resample_methods:
        raise ValueError(
6429
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6430
        )
6431
    resample_type = resample_methods[resample]
6432
    if out_shape is None and scale is None:
6433
        raise ValueError("One of out_shape and scale must not be None.")
6434
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6435
    dtype = helper.input_dtype()
6436 6437 6438 6439

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6440 6441 6442
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6443
    if out_shape is not None:
6444 6445 6446 6447
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6448
            inputs['OutSize'] = out_shape
6449 6450 6451 6452 6453 6454 6455 6456
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6457 6458 6459 6460
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6461 6462 6463 6464 6465
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6466
    out = helper.create_variable_for_type_inference(dtype)
6467
    helper.append_op(
6468
        type='{}_interp'.format(resample_type),
6469
        inputs=inputs,
6470
        outputs={"Out": out},
6471 6472 6473
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6474
    return out
F
stash  
fengjiayi 已提交
6475 6476


6477
@templatedoc(op_type="bilinear_interp")
6478 6479 6480 6481 6482
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6483
    """
6484 6485
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6486 6487
    in priority order.

6488 6489 6490 6491
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6492 6493
    again in the other direction.

6494
    For details of bilinear interpolation, please refer to Wikipedia:
6495
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6496 6497 6498 6499 6500

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6501

Y
yuyang18 已提交
6502 6503 6504 6505 6506
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6507 6508 6509
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6510
                                :attr:`out_shape` and :attr:`scale` specifying
6511 6512 6513 6514 6515 6516 6517
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6518 6519
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6520 6521 6522

    Returns:
        ${out_comment}.
6523 6524 6525 6526 6527

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6528 6529
    """

6530
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6531 6532


6533
@templatedoc(op_type="nearest_interp")
6534 6535 6536 6537 6538
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6539
    """
6540
    Resize input by performing nearest neighbor interpolation in both the
6541 6542
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6543 6544
    out_shape and scale in priority order.

6545
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6546
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6547 6548 6549 6550 6551

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6552

Y
yuyang18 已提交
6553 6554 6555 6556 6557
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6558 6559 6560
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6561
                                :attr:`out_shape` and :attr:`scale` specifying
6562 6563 6564 6565 6566 6567 6568
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6569 6570
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6571 6572 6573

    Returns:
        ${out_comment}.
6574 6575 6576 6577 6578

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6579 6580
    """

6581
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6582 6583 6584 6585


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6586 6587 6588
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6589 6590 6591 6592 6593 6594 6595
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6596
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6597

6598
    Returns:
Q
update  
qiaolongfei 已提交
6599
        Variable: The output is a 4-D tensor of the shape
6600
        (num_batches, channls, out_h, out_w).
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6611 6612 6613
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6614 6615 6616
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6617 6618
def gather(input, index):
    """
Q
qiaolongfei 已提交
6619 6620
    **Gather Layer**

6621
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6622 6623 6624 6625
    of X indexed by `index` and concatenate them together.

    .. math::

6626
        Out = X[Index]
W
whs 已提交
6627 6628 6629 6630 6631 6632 6633


    .. code-block:: text


                Given:

6634 6635
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6646
        input (Variable): The source input with rank>=1.
W
whs 已提交
6647 6648 6649 6650 6651 6652
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6653

W
whs 已提交
6654 6655 6656 6657 6658 6659
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6660
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6661 6662 6663 6664 6665 6666 6667 6668
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6700
    out = helper.create_variable_for_type_inference(dtype)
6701 6702 6703 6704 6705 6706 6707 6708 6709
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6760
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6761 6762 6763 6764 6765 6766 6767 6768 6769
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6783

6784 6785 6786
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6787
    """
F
stash  
fengjiayi 已提交
6788
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6789
    dtype = x.dtype
X
Xin Pan 已提交
6790
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6791
    if seed is None:
6792
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6793
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6794
    if isinstance(seed, int):
F
fengjiayi 已提交
6795 6796 6797 6798 6799
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6800 6801 6802 6803
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6804
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6805 6806
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6807 6808
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6809
    return out
W
whs 已提交
6810 6811


6812
def log(x, name=None):
W
wanghaoshuang 已提交
6813 6814 6815 6816 6817
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6818
        Out = \\ln(x)
W
wanghaoshuang 已提交
6819 6820

    Args:
6821
        x (Variable): Input tensor.
6822 6823
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6824 6825 6826 6827 6828 6829 6830 6831

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6832
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6833 6834
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6835
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6836
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6837
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6838 6839 6840
    return out


6841
def relu(x, name=None):
W
wanghaoshuang 已提交
6842 6843
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6844
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6845 6846 6847 6848
    the tensor elementwise.

    .. math::

6849
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6850 6851

    Args:
6852
        x (Variable): The input tensor.
6853 6854
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6855 6856 6857 6858 6859 6860 6861 6862

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6863
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6864 6865
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6866
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6867
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6868 6869
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6870
    return out
6871 6872


C
chengduo 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6914 6915 6916
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6917 6918 6919 6920
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6921
    .. math::
6922 6923

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6924

6925
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6926 6927 6928 6929 6930
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6931
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6932
                           Its shape should be the same as input.
6933
        num_classes (int): The possible number of labels.
W
whs 已提交
6934 6935 6936 6937

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6938
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6939 6940 6941 6942

    Examples:

        .. code-block:: python
6943

W
whs 已提交
6944 6945 6946 6947
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6948 6949 6950
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6951 6952
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6953 6954
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6955
        outputs={
W
whs 已提交
6956 6957 6958
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6959 6960 6961
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7030
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7031 7032 7033 7034 7035

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7036
            isinstance(shape, Variable)):
7037 7038 7039 7040 7041
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7042
    out = helper.create_variable_for_type_inference(x.dtype)
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7060 7061


W
whs 已提交
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7079

W
whs 已提交
7080
              out_shape = [2, 3, 5, 5]
7081

W
whs 已提交
7082
          Step 1:
7083

W
whs 已提交
7084 7085 7086
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7087

W
whs 已提交
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7158
            isinstance(out_shape, Variable)):
W
whs 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7180 7181 7182 7183 7184 7185 7186 7187
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7188

7189 7190
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7191

7192 7193 7194 7195
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7196

7197 7198 7199 7200 7201
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7202 7203 7204

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7240
    out = helper.create_variable_for_type_inference("float32")
7241 7242 7243 7244 7245 7246 7247 7248

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7249 7250


M
minqiyang 已提交
7251 7252
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7253
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7254
    which compares left score and right score passed in.
M
minqiyang 已提交
7255
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7256 7257 7258 7259 7260 7261

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7262
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7263 7264
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7265
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7266 7267 7268
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7269
       Variable: The ranking loss.
M
minqiyang 已提交
7270
    Raises:
M
minqiyang 已提交
7271
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7272 7273 7274 7275 7276 7277 7278
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7279
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7280 7281 7282 7283 7284 7285
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7286 7287
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7311
        .. code-block:: text
W
whs 已提交
7312

T
Tink_Y 已提交
7313
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7314

T
Tink_Y 已提交
7315 7316
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7317

T
Tink_Y 已提交
7318
	      Case 0:
M
minqiyang 已提交
7319

T
Tink_Y 已提交
7320 7321 7322
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7323

T
Tink_Y 已提交
7324 7325 7326
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7327

T
Tink_Y 已提交
7328
	      Case 1:
M
minqiyang 已提交
7329

T
Tink_Y 已提交
7330 7331
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7332

T
Tink_Y 已提交
7333 7334 7335
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7336

T
Tink_Y 已提交
7337
	      Case 2:
M
minqiyang 已提交
7338

T
Tink_Y 已提交
7339 7340
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7341

T
Tink_Y 已提交
7342 7343 7344
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7345 7346


W
whs 已提交
7347 7348
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7349
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7373
    out = helper.create_variable_for_type_inference(dtype)
7374 7375 7376 7377 7378 7379 7380 7381 7382
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7383
    helper.append_op(
7384
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7385 7386 7387 7388

    return out


7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7401 7402 7403 7404 7405

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7406 7407
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7408 7409
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7410
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7431 7432 7433 7434 7435

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7436 7437
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7438 7439
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7440
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7461 7462 7463 7464 7465

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7466 7467
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7468 7469
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7470
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7492 7493 7494 7495 7496

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7497
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7498
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7499 7500
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7501
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7524 7525 7526 7527 7528

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7529 7530
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7531 7532
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7533
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7555 7556 7557 7558 7559

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7560 7561
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7562 7563
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7564
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7565 7566 7567 7568 7569 7570 7571 7572
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7573 7574 7575 7576
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7577
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7578 7579 7580

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7581
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7582
          weight (alpha).
J
jerrywgz 已提交
7583
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7584 7585 7586
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7587
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7588
          will be named automatically.
J
jerrywgz 已提交
7589 7590 7591 7592 7593 7594 7595 7596

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7597
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7611
        attr=helper.param_attr,
J
jerrywgz 已提交
7612 7613 7614 7615
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7616
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7617 7618 7619 7620 7621 7622 7623 7624 7625
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7636
    Returns:
7637
        output(${out_type}): ${out_comment}
7638 7639 7640 7641 7642 7643 7644

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7645 7646
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7647
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7666
    Returns:
7667
        output(${out_type}): ${out_comment}
7668 7669 7670 7671 7672 7673 7674

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7675 7676
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7677
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7695
    Returns:
7696
        output(${out_type}): ${out_comment}
7697 7698 7699 7700 7701 7702 7703

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7704 7705
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7706
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7707 7708 7709 7710 7711 7712 7713 7714
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7728

7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7739 7740
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7756
        ValueError: If axis is not in range [0, rank(x)].
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7773 7774
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7775
    helper.append_op(
7776
        type='flatten2',
7777
        inputs={"X": x},
7778 7779
        outputs={'Out': out,
                 'XShape': x_shape},
7780 7781
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7782 7783


C
chenweihang 已提交
7784
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7785
    """
C
chenweihang 已提交
7786
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7787
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7788 7789
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7790

C
chenweihang 已提交
7791 7792 7793 7794
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7795
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7796 7797 7798 7799 7800 7801
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7802
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7803 7804 7805
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7806 7807 7808
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7820 7821
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7822 7823 7824 7825 7826 7827
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7828
    return out
7829

7830

S
sneaxiy 已提交
7831 7832 7833 7834 7835 7836 7837 7838 7839
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7840

S
sneaxiy 已提交
7841
    .. math::
7842

S
sneaxiy 已提交
7843 7844 7845
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7846
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7847 7848 7849 7850
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7851 7852 7853
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7854 7855
    Returns:
        Variable: The output sequence mask.
7856

S
sneaxiy 已提交
7857 7858
    """

Q
qingqing01 已提交
7859
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7860
    if name is None:
X
Xin Pan 已提交
7861
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7862
    else:
X
Xin Pan 已提交
7863
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7864

Q
qingqing01 已提交
7865 7866 7867
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7868 7869
        outputs={'Y': out},
        attrs={
7870
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7871 7872 7873
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7874 7875


X
Xin Pan 已提交
7876
def stack(x, axis=0):
S
sneaxiy 已提交
7877 7878 7879 7880
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7881 7882 7883 7884 7885 7886 7887

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7888
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7889
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7890 7891

    Args:
7892
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7893
        axis (int|None): The axis along which all inputs are stacked.
7894

S
sneaxiy 已提交
7895 7896
    Returns:
        Variable: The stacked variable.
7897

S
sneaxiy 已提交
7898 7899
    """

X
Xin Pan 已提交
7900 7901 7902 7903 7904 7905
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7906
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7907
    helper.append_op(
S
sneaxiy 已提交
7908 7909
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7910

X
Xin Pan 已提交
7911
    return out
D
dzhwinter 已提交
7912 7913 7914 7915 7916 7917 7918


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7919

D
dzhwinter 已提交
7920 7921 7922
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7923
    raised.
D
dzhwinter 已提交
7924 7925

    Args:
M
minqiyang 已提交
7926
        x (Variable): Input variable.
D
dzhwinter 已提交
7927 7928
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7929

D
dzhwinter 已提交
7930 7931
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7932

D
dzhwinter 已提交
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7944
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7945 7946 7947 7948 7949 7950 7951 7952

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7965

W
whs 已提交
7966 7967 7968 7969
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7970

W
whs 已提交
7971
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7972

W
whs 已提交
7973
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7974

W
whs 已提交
7975 7976 7977 7978
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7979

W
whs 已提交
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7996
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7997 7998 7999 8000 8001 8002
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8003 8004


G
fix  
gongweibao 已提交
8005 8006 8007
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8008
@templatedoc()
G
fix  
gongweibao 已提交
8009 8010 8011 8012 8013 8014 8015 8016 8017
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8018
    ${comment}
G
fix  
gongweibao 已提交
8019 8020

    Args:
G
gongweibao 已提交
8021 8022 8023
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8024
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8025 8026 8027
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8028 8029
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8030
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8031

8032 8033 8034 8035 8036
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8037 8038 8039
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8040
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8057 8058


G
gongweibao 已提交
8059
@templatedoc()
X
Xin Pan 已提交
8060
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8061
    """
G
gongweibao 已提交
8062
    ${comment}
G
fix  
gongweibao 已提交
8063 8064

    Args:
G
gongweibao 已提交
8065 8066 8067 8068
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8069 8070 8071
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8072
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8073

8074 8075 8076 8077
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8078 8079 8080
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8081
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8092
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8093 8094 8095 8096 8097
        })

    return out


G
gongweibao 已提交
8098
@templatedoc()
G
fix  
gongweibao 已提交
8099
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8100
    """
G
gongweibao 已提交
8101
    ${comment}
G
fix  
gongweibao 已提交
8102 8103

    Args:
G
gongweibao 已提交
8104 8105 8106 8107
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8108
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8109 8110

    Returns:
G
gongweibao 已提交
8111
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8112

8113 8114 8115 8116 8117 8118 8119 8120 8121 8122
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8123 8124 8125
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8126
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8138
@templatedoc()
G
fix  
gongweibao 已提交
8139 8140 8141 8142 8143 8144 8145 8146 8147
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8148
    ${comment}
G
fix  
gongweibao 已提交
8149 8150

    Args:
G
gongweibao 已提交
8151 8152
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8153
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8154 8155 8156 8157
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8158
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8159 8160

    Returns:
G
gongweibao 已提交
8161
        out (Variable): ${out_comment}
8162 8163 8164 8165 8166 8167 8168 8169

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8170 8171 8172
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8173
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8192
@templatedoc()
X
Xin Pan 已提交
8193
def sum(x):
G
fix  
gongweibao 已提交
8194
    """
G
gongweibao 已提交
8195
    ${comment}
G
fix  
gongweibao 已提交
8196 8197

    Args:
G
gongweibao 已提交
8198
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8199 8200

    Returns:
G
gongweibao 已提交
8201
        out (Variable): ${out_comment}
8202 8203 8204 8205 8206 8207

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8208 8209 8210
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8211 8212
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8213 8214 8215 8216
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8217
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8218 8219 8220 8221

    return out


G
gongweibao 已提交
8222
@templatedoc()
G
fix  
gongweibao 已提交
8223 8224
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8225
    ${comment}
G
fix  
gongweibao 已提交
8226 8227

    Args:
G
gongweibao 已提交
8228 8229 8230 8231
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8232 8233

    Returns:
G
gongweibao 已提交
8234
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8235

8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8247 8248 8249
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8250 8251
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8263
@templatedoc()
G
fix  
gongweibao 已提交
8264 8265
def shape(input):
    """
G
gongweibao 已提交
8266
    ${comment}
G
fix  
gongweibao 已提交
8267 8268

    Args:
G
gongweibao 已提交
8269
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8270 8271

    Returns:
G
gongweibao 已提交
8272
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8273

8274 8275 8276 8277 8278 8279
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8280 8281 8282
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8283 8284
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8285
    helper.append_op(
G
fix  
gongweibao 已提交
8286
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8287 8288

    return out
G
merge  
gongweibao 已提交
8289 8290


S
sneaxiy 已提交
8291 8292 8293 8294 8295 8296 8297 8298
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8299 8300
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8301
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8302 8303 8304
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8305

S
sneaxiy 已提交
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8317
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8318 8319 8320 8321 8322 8323 8324 8325
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8326
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8327
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8328 8329 8330 8331 8332 8333

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8334
    if name is None:
X
Xin Pan 已提交
8335
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8336 8337 8338
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8339 8340 8341 8342 8343 8344 8345 8346 8347 8348

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8349
    return helper.append_activation(out)
S
sneaxiy 已提交
8350 8351


X
Xin Pan 已提交
8352
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8353 8354 8355
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8356
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8357 8358 8359
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8360
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8361 8362 8363
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8364
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8365 8366 8367
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8368
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8369 8370 8371
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8372
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8373 8374 8375
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8376
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8388 8389
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8390
        ])
M
minqiyang 已提交
8391 8392


8393
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8394 8395
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8396 8397
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8398 8399 8400

    if out is None:
        if name is None:
X
Xin Pan 已提交
8401
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8417
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8429 8430 8431 8432 8433 8434 8435 8436 8437

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8438 8439 8440 8441 8442 8443 8444
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8445
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8457 8458 8459 8460 8461 8462 8463 8464 8465

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8466 8467 8468 8469 8470 8471 8472
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8473
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8485 8486 8487 8488 8489 8490 8491 8492 8493

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8494 8495 8496 8497 8498 8499 8500
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8501
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8502 8503 8504 8505 8506 8507 8508 8509 8510 8511
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8512 8513 8514 8515 8516 8517 8518

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8519 8520 8521 8522
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8538 8539 8540 8541 8542 8543 8544

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8545 8546 8547 8548 8549
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8550 8551 8552 8553
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8577 8578 8579 8580 8581 8582 8583

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8584 8585 8586 8587 8588
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8589 8590 8591 8592
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8593 8594 8595 8596 8597 8598 8599 8600

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8619
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8620 8621 8622 8623 8624 8625 8626 8627 8628 8629
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8672
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8673 8674 8675 8676 8677 8678 8679 8680 8681
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8682 8683
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8684 8685 8686 8687 8688 8689
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8690 8691 8692 8693
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8694 8695 8696 8697 8698 8699
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8700
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8701 8702 8703 8704 8705 8706 8707 8708 8709
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8710
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8711 8712 8713 8714 8715 8716 8717 8718
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8719
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8740
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8751 8752


J
JiabinYang 已提交
8753
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8754
    """
J
JiabinYang 已提交
8755
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8756 8757 8758

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8759
    The attr blocksize indicates the input block size.
8760 8761

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8762
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8763 8764

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8765
    (but keeping all data)
J
JiabinYang 已提交
8766

J
JiabinYang 已提交
8767
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8768
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8769 8770 8771 8772 8773
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8774
    Args:
J
JiabinYang 已提交
8775
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8776
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8777 8778

    Returns:
J
JiabinYang 已提交
8779
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8780 8781

    Raises:
J
JiabinYang 已提交
8782
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8783 8784 8785 8786 8787 8788

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8789
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8790
                x=data, blocksize=2)
J
JiabinYang 已提交
8791 8792
    """

J
JiabinYang 已提交
8793
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8794

J
JiabinYang 已提交
8795 8796
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8797 8798

    if name is None:
J
JiabinYang 已提交
8799 8800
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8801 8802 8803 8804 8805
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8806
        type="space_to_depth",
J
JiabinYang 已提交
8807
        inputs={"X": x},
J
JiabinYang 已提交
8808
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8809
        outputs={"Out": out})
J
JiabinYang 已提交
8810 8811
    return out

J
JiabinYang 已提交
8812

S
sneaxiy 已提交
8813 8814
@templatedoc()
def sequence_reverse(x, name=None):
8815
    """
S
sneaxiy 已提交
8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8827
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8828 8829 8830 8831 8832 8833 8834 8835 8836 8837
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8838 8839


8840 8841 8842 8843 8844 8845
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8846

8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8866
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8879 8880


B
barrierye 已提交
8881
def similarity_focus(input, axis, indexes, name=None):
8882
    """
B
barrierye 已提交
8883
    SimilarityFocus Operator
B
barrierye 已提交
8884 8885

    Generate a similarity focus mask with the same shape of input using the following method:
8886 8887 8888
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8889
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8890 8891 8892 8893 8894 8895 8896
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8897
       each index.
B
barrierye 已提交
8898 8899 8900 8901
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8951
    Args:
8952
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8953
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8954
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8955
            1, 2 or 3.
B
barrierye 已提交
8956
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8957 8958

    Returns:
8959
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8960
            as the input.
8961

B
barrierye 已提交
8962 8963 8964
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8965 8966
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8979 8980 8981 8982 8983
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8984 8985 8986 8987 8988 8989 8990
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8991 8992


M
minqiyang 已提交
8993 8994
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8995 8996
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8997 8998
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9037
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9038
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9039 9040 9041 9042 9043 9044 9045 9046 9047

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9048 9049
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9050 9051
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9052 9053 9054 9055 9056 9057 9058
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9059 9060


D
dengkaipeng 已提交
9061
@templatedoc()
9062 9063
def grid_sampler(x, grid, name=None):
    """
9064
    This operation samples input X by using bilinear interpolation based on
9065
    flow field grid, which is usually gennerated by affine_grid. The grid of
9066 9067 9068 9069
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9070
    interpolation value of 4 nearest corner points.
9071 9072 9073 9074 9075 9076 9077 9078

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9079
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9109 9110

    Args:
9111 9112 9113
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9114 9115

    Returns:
9116
        out(Variable): Output of shape [N, C, H, W] data samples input X
9117 9118 9119 9120 9121 9122 9123 9124 9125
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9126 9127 9128 9129 9130 9131 9132 9133 9134
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9135
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9136 9137
    ipts = {'X': x, 'Grid': grid}

9138
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9139 9140 9141
    return out


G
gmcather 已提交
9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9236 9237 9238 9239 9240 9241 9242 9243 9244 9245


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9246
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9247

Q
Qiao Longfei 已提交
9248
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9249 9250 9251
    For example:

    .. math::
9252
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9253

Q
Qiao Longfei 已提交
9254
    In this formula:
9255 9256
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9257
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9258
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9259 9260 9261
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9262 9263
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9264 9265 9266
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9267
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9268
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9269
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9270 9271 9272 9273
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9274
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9275 9276 9277 9278

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9279
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9280 9281
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9282
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9283 9284 9285 9286

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9287
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381


@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9382

M
minqiyang 已提交
9383

M
minqiyang 已提交
9384
def huber_loss(input, label, delta):
9385
    """
M
minqiyang 已提交
9386 9387 9388
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9389 9390 9391 9392

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9393
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9394 9395 9396 9397

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9398
        huber\_loss = 0.5 * (label - input) * (label - input)
9399 9400 9401 9402 9403 9404 9405


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9406
        delta (float): The parameter of huber loss, which controls
9407 9408 9409
                       the range of outliers

    Returns:
M
minqiyang 已提交
9410
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9411 9412 9413 9414 9415

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9416
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9417
    """
M
minqiyang 已提交
9418
    helper = LayerHelper('huber_loss', **locals())
9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
M
minqiyang 已提交
9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473


class FC(layers.PyLayer):
    def __init__(self,
                 size,
                 param_attr=None,
                 num_flatten_dims=1,
                 dtype=core.VarDesc.VarType.FP32):
        super(FC, self).__init__()
        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._helper = LayerHelper('FC', param_attr=param_attr)

    def _build_once(self, inputs):
        input_shape = inputs[0].shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, inputs):
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": inputs[0],
                    "Y": self._w},
            outputs={"Out": tmp},
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="sum",
            inputs={"X": [tmp]},
            outputs={"Out": out},
            attrs={"use_mkldnn": False})
        return out