nn.py 232.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
G
fix  
gongweibao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
    'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze',
    'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool',
    'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear',
    'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu',
    'log', 'crop', 'rank_loss', 'prelu', 'flatten', 'sequence_mask', 'stack',
    'pad2d', 'unstack', 'sequence_enumerate', 'expand', 'sequence_concat',
G
fix  
gongweibao 已提交
50 51
    'uniform_random_batch_size_like', 'gaussian_random', 'sampling_id',
    'gaussian_random_batch_size_like', 'sum', 'slice', 'shape'
Y
Yu Yang 已提交
52 53 54 55 56 57 58 59
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
60
       use_mkldnn=False,
Y
Yu Yang 已提交
61
       act=None,
J
Jacek Czaja 已提交
62
       is_test=False,
63
       name=None):
Y
Yu Yang 已提交
64
    """
65
    **Fully Connected Layer**
Y
Yu Yang 已提交
66

67 68 69 70 71 72 73 74
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
75
    to the output as well.
C
caoying03 已提交
76

C
caoying03 已提交
77
    This process can be formulated as follows:
78 79 80

    .. math::

81
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
82 83 84

    In the above equation:

C
caoying03 已提交
85 86 87 88
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
89
    * :math:`Act`: The activation function.
C
caoying03 已提交
90
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
91 92

    Args:
R
ranqiu 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
108 109
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
110
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
111
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
112 113
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
114
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
115

116
    Returns:
F
fengjiayi 已提交
117
        Variable: The transformation result.
118 119

    Raises:
C
caoying03 已提交
120
        ValueError: If rank of the input tensor is less than 2.
121 122 123 124

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
125
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
126
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
127
    """
C
caoying03 已提交
128

C
caoying03 已提交
129
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
130 131 132 133

    dtype = helper.input_dtype()

    mul_results = []
134 135
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
136 137 138
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
139

Y
Yu Yang 已提交
140
        w = helper.create_parameter(
141 142
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
143
        helper.append_op(
144 145 146
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
147
            outputs={"Out": tmp},
M
mozga-intel 已提交
148 149
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
150 151 152 153
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
154
    else:
155 156
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
157 158 159 160
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
161 162 163 164
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
165 166


167 168 169
def embedding(input,
              size,
              is_sparse=False,
170
              is_distributed=False,
171 172 173
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
174
    """
175 176
    **Embedding Layer**

177
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
178 179
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
180 181 182

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
183 184

    Args:
185 186 187 188 189
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
190
        is_distributed(bool): Whether to run lookup table from remote parameter server.
191 192
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
193
            with zeros whenever lookup encounters it in :attr:`input`. If
194
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
195 196
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
197
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
198

199 200 201
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
202

203 204
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
205

C
chengduoZH 已提交
206
          dict_size = len(dataset.ids)
207
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
208
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
209 210 211 212 213 214
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
215 216
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
217 218 219 220 221
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
222 223 224 225 226
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
227 228 229
    return tmp


Y
yi.wu 已提交
230
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
231 232
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
233 234
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
235 236 237 238 239 240 241
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
242 243
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
244
    """
Y
yi.wu 已提交
245
    ${comment}
Y
Yibing Liu 已提交
246 247

    Args:
Y
yi.wu 已提交
248 249
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
250 251 252 253 254 255 256
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

257
        param_attr(ParamAttr|None): The parameter attribute for the learnable
258
                               hidden-hidden weights.
Y
Yibing Liu 已提交
259 260 261

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
262 263
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
264
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
265 266 267
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
268

269
                              1. `use_peepholes = False`
Y
yi.wu 已提交
270 271
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
272
                              2. `use_peepholes = True`
Y
yi.wu 已提交
273
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
274
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
275
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
276 277 278 279 280 281 282 283
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
284 285

    Returns:
Y
Yibing Liu 已提交
286 287
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
288

Y
Yibing Liu 已提交
289
    Examples:
Y
Yibing Liu 已提交
290 291
        .. code-block:: python

Y
Yibing Liu 已提交
292 293
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
294
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
295 296
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
297
    """
298

Y
Yu Yang 已提交
299
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
300
    size = size // 4
Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310 311 312
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
313 314 315 316 317 318 319 320 321 322
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
323 324 325

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
326
        inputs=inputs,
Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
343 344 345 346 347 348 349 350 351 352 353
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
354 355
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
356 357 358
    """
    **Dynamic LSTMP Layer**

359 360 361 362 363 364
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
365 366 367 368 369

    The formula is as follows:

    .. math::

370
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
371

372
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
373

374
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
375

376
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
377

378
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
379

380
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
381

382
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
383

Y
Yibing Liu 已提交
384 385 386 387 388 389
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
390
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
391
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
392
          bias vector).
Y
Yibing Liu 已提交
393 394 395
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
396
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
397
    * :math:`h`: The hidden state.
398
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
399 400
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
401
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
402
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
403
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
404 405
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
406 407 408 409

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
410

Y
Yibing Liu 已提交
411 412 413 414 415 416 417 418 419 420 421 422
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
423
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
424 425
                               hidden-hidden weight and projection weight.

426 427
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
428 429
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
430 431
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
432 433
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
434 435 436 437 438 439
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
440
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
441 442 443
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
444
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
445 446 447 448 449 450 451 452 453
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
454
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
455 456
                              default "tanh".
        proj_activation(str): The activation for projection output.
457
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
458 459
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
460 461
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
462 463

    Returns:
464 465 466 467
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
468 469

    Examples:
470

Y
Yibing Liu 已提交
471 472
        .. code-block:: python

473 474 475 476
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
477
            hidden_dim, proj_dim = 512, 256
478
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
479
                                     act=None, bias_attr=None)
480 481 482
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
483 484 485 486
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
487
    """
488

Y
Yibing Liu 已提交
489
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
490
    size = size // 4
Y
Yibing Liu 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
535 536 537 538 539 540 541 542 543
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
544
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
545

546
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
547
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
548

G
guosheng 已提交
549 550 551 552 553 554 555 556 557
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
558

G
guosheng 已提交
559
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
560

G
guosheng 已提交
561
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
562 563
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
564 565 566 567
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
568
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
569 570

    Args:
571 572
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
573
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
574
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
575 576
            is the hidden size.
        size(int): The dimension of the gru cell.
577
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
578 579
            hidden-hidden weight matrix. Note:

580
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
581
              :math:`D` is the hidden size.
582
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
583
              The first part are weights of the update gate and reset gate with
584
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
585
              candidate hidden state with shape :math:`(D \\times D)`.
586
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
587
            hidden-hidden bias.
588
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
589 590 591
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
592
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
593
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
594 595 596 597
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
598 599

    Returns:
G
guosheng 已提交
600
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
601
            and sequence length is the same with the input.
602

G
guosheng 已提交
603
    Examples:
604

G
guosheng 已提交
605 606
        .. code-block:: python

607 608 609 610
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
611
            hidden_dim = 512
612
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
613 614 615 616 617 618 619 620 621 622
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
623
    batch_size = input.shape[0]
G
guosheng 已提交
624 625 626
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
627 628 629
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
653 654 655
def gru_unit(input,
             hidden,
             size,
656 657
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
658
             activation='tanh',
659
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
660
    """
661
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
662

663 664
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
665

666
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
667

668
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
669

670
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
671 672

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
673 674 675
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
676 677
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

678 679
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
680 681 682
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
683 684 685 686 687

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
688 689
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
690 691 692 693
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
694

695 696 697 698 699 700
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
701

702
             # assuming we have x_t_data and prev_hidden of size=10
703
             x_t = fluid.layers.fc(input=x_t_data, size=30)
704 705
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
706 707 708 709 710 711 712 713 714 715 716 717

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
718
    size = size // 3
Y
Yu Yang 已提交
719 720

    # create weight
721 722
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
723

724 725 726 727
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
728
    # create bias
729
    if helper.bias_attr:
Y
Yu Yang 已提交
730 731 732
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
733
        inputs['Bias'] = bias
Y
Yu Yang 已提交
734 735 736

    helper.append_op(
        type='gru_unit',
737
        inputs=inputs,
Y
Yu Yang 已提交
738 739 740 741 742 743
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
744 745
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
746 747 748 749 750
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
751
@templatedoc()
752
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
753 754 755 756 757 758 759
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
760
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
761 762 763 764
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
765 766 767
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
768 769

    """
Y
Yu Yang 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
795
@templatedoc()
796
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
797 798 799 800 801
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
802

Y
yuyang18 已提交
803
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
804

Y
yuyang18 已提交
805 806 807
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
808
        Variable: ${viterbi_path_comment}
809

Y
yi.wu 已提交
810 811 812 813 814
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
815
    """
Y
Yu Yang 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
829
@templatedoc()
F
fengjiayi 已提交
830
def cos_sim(X, Y):
Y
Yu Yang 已提交
831
    """
Y
yi.wu 已提交
832 833 834
    ${comment}

    Args:
835 836
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
837

Y
yi.wu 已提交
838
    Returns:
839
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
840
    """
F
fengjiayi 已提交
841
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


855
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
856 857 858 859 860
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
861
    training. The dropout operator randomly sets (according to the given dropout
862 863 864 865
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
866 867
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
868 869 870 871 872 873 874
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
875 876

    Returns:
877
        Variable: A tensor variable is the shape with `x`.
878 879

    Examples:
880

881 882
        .. code-block:: python

883 884
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
885 886
    """

F
fengjiayi 已提交
887
    helper = LayerHelper('dropout', **locals())
888 889
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
890 891 892 893

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

894 895 896 897 898
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
899 900 901 902 903 904
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
905 906 907
    return out


908
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
909
    """
Y
Yibing Liu 已提交
910 911
    **Cross Entropy Layer**

912 913 914
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
915 916

    1) One-hot cross-entropy:
F
fengjiayi 已提交
917
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
918

Y
Yibing Liu 已提交
919
        .. math::
Y
yangyaming 已提交
920

Y
Yibing Liu 已提交
921 922 923
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
924 925
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
926 927 928 929 930

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
931
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
932 933 934
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
935 936
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
937
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
938

Y
Yibing Liu 已提交
939
    Args:
Y
yangyaming 已提交
940
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
941 942 943 944
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
945
        label (Variable|list): the ground truth which is a 2-D tensor. When
946 947 948 949
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
950
        soft_label (bool): a flag indicating whether to
951
                                           interpretate the given labels as soft
952 953 954 955
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
956 957 958 959 960

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
961 962 963 964 965
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
966 967 968 969 970 971

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
972
    """
F
fengjiayi 已提交
973
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
974 975 976 977 978 979
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
980 981
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
982 983 984
    return out


F
fengjiayi 已提交
985
def square_error_cost(input, label):
Y
Yu Yang 已提交
986
    """
987 988
    **Square error cost layer**

989 990
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1005 1006
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1007 1008

    Returns:
G
guosheng 已提交
1009
        Variable: The tensor variable storing the element-wise squared error \
1010
                  difference of input and label.
1011 1012 1013 1014 1015 1016 1017 1018

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1019
    """
F
fengjiayi 已提交
1020
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1030 1031
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1032 1033 1034
    return square_out


Y
yi.wu 已提交
1035
@templatedoc()
Y
Yu Yang 已提交
1036 1037 1038 1039
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1040
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1041
    """
Y
yi.wu 已提交
1042
    **Chunk Evaluator**
Y
yi.wu 已提交
1043

Y
yangyaming 已提交
1044
    This function computes and outputs the precision, recall and
1045
    F1-score of chunk detection.
Y
yi.wu 已提交
1046

Y
yi.wu 已提交
1047 1048 1049 1050 1051 1052 1053 1054
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1055

Y
yi.wu 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1081

Y
yi.wu 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1106
    Args:
1107 1108 1109 1110 1111
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1112

Y
yi.wu 已提交
1113
    Returns:
Y
update  
yi.wu 已提交
1114 1115 1116
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1117

Y
yi.wu 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1130
    """
F
fengjiayi 已提交
1131
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1132 1133 1134 1135 1136

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1137 1138 1139
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1148 1149 1150 1151
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1152 1153 1154
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1155 1156
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1157
        })
1158 1159
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1160 1161


1162
@templatedoc()
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168 1169
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1170
                  act=None):
Y
Yu Yang 已提交
1171 1172 1173 1174
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1185

1186 1187
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1206
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1213
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1214 1215 1216
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1217
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1236
        library is installed. Default: False
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1260
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1261
    """
1262
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1263
    has the same shape as the input.
Q
qiaolongfei 已提交
1264

1265 1266 1267 1268 1269 1270
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1271
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1272 1273 1274 1275 1276 1277 1278

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1279
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1314 1315 1316
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1317 1318
           stride=1,
           padding=0,
1319
           dilation=1,
Y
Yu Yang 已提交
1320 1321 1322
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1323
           use_cudnn=True,
1324
           use_mkldnn=False,
1325 1326
           act=None,
           name=None):
Y
Yu Yang 已提交
1327
    """
C
chengduoZH 已提交
1328
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1329 1330
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1331
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1332 1333 1334 1335 1336 1337 1338
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1339 1340 1341
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1342

1343
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1344

C
chengduoZH 已提交
1345 1346
    .. math::

C
refine  
chengduoZH 已提交
1347
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1348

T
tensor-tang 已提交
1349
    Where:
C
chengduoZH 已提交
1350

1351 1352 1353 1354 1355
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1356
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1357 1358 1359

    Example:

1360 1361
        - Input:

W
weixing02 已提交
1362
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1363

W
weixing02 已提交
1364
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1365

1366
        - Output:
T
tensor-tang 已提交
1367

W
weixing02 已提交
1368
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1369

C
chengduoZH 已提交
1370
        Where
1371 1372

        .. math::
C
chengduoZH 已提交
1373

W
weixing02 已提交
1374 1375
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1376 1377

    Args:
1378
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1379
        num_filters(int): The number of filter. It is as same as the output
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1402 1403
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1404 1405 1406
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1407 1408

    Returns:
G
guosheng 已提交
1409
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1410 1411
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1412
    Raises:
1413 1414
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1415

C
chengduoZH 已提交
1416 1417 1418
    Examples:
        .. code-block:: python

1419 1420
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1421 1422 1423
    """

    num_channels = input.shape[1]
1424 1425

    l_type = 'conv2d'
X
xzl 已提交
1426 1427
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1428
        l_type = 'depthwise_conv2d'
1429 1430 1431 1432

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1433 1434 1435 1436 1437
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1438
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1439

C
chengduoZH 已提交
1440 1441 1442
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1443
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1444

C
chengduoZH 已提交
1445 1446
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1447 1448

    input_shape = input.shape
M
minqiyang 已提交
1449
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1464
        type=l_type,
Y
Yu Yang 已提交
1465 1466 1467 1468 1469
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1470 1471 1472
        attrs={
            'strides': stride,
            'paddings': padding,
1473
            'dilations': dilation,
C
chengduoZH 已提交
1474
            'groups': groups,
1475 1476
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1477
        })
Y
Yu Yang 已提交
1478 1479 1480 1481 1482 1483

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1502 1503 1504 1505 1506 1507
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1517 1518
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1519 1520 1521
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1522
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1548
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1549 1550
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1551
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1552 1553
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1554
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1555 1556
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1557
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1584 1585
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1600
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1641
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1642 1643 1644 1645

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1646
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1647
    """
Y
yangyaming 已提交
1648 1649 1650
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1662
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1663 1664 1665 1666 1667
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1668
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1669 1670 1671 1672 1673 1674 1675

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1676 1677
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1678

L
Luo Tao 已提交
1679 1680
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1681
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1682 1683 1684 1685 1686 1687 1688 1689
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1690

Y
yangyaming 已提交
1691
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1692 1693 1694 1695 1696
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1697 1698
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1699
    """
F
fengjiayi 已提交
1700
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1712 1713 1714 1715 1716
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1717 1718 1719
    return pool_out


C
add doc  
chengduoZH 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1745
def sequence_first_step(input):
L
Luo Tao 已提交
1746
    """
L
Luo Tao 已提交
1747
    This function gets the first step of sequence.
L
Luo Tao 已提交
1748 1749 1750 1751

    .. code-block:: text

       x is a 1-level LoDTensor:
1752
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1753 1754 1755 1756 1757
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1758
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1759
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1760

L
Luo Tao 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1770

Y
yangyaming 已提交
1771
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1772 1773 1774
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1775 1776 1777
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1778
def sequence_last_step(input):
L
Luo Tao 已提交
1779
    """
L
Luo Tao 已提交
1780
    This function gets the last step of sequence.
L
Luo Tao 已提交
1781 1782 1783 1784

    .. code-block:: text

       x is a 1-level LoDTensor:
1785
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1786 1787 1788 1789 1790
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1791
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1792
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1793

L
Luo Tao 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1803

Y
yangyaming 已提交
1804
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1805 1806 1807
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1808 1809 1810
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1811
@templatedoc()
Y
Yu Yang 已提交
1812
def pool2d(input,
C
chengduoZH 已提交
1813 1814
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1815 1816
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1817
           global_pooling=False,
C
chengduoZH 已提交
1818
           use_cudnn=True,
1819
           ceil_mode=False,
1820
           use_mkldnn=False,
C
caoying03 已提交
1821
           name=None):
Y
Yu Yang 已提交
1822
    """
F
fengjiayi 已提交
1823
    ${comment}
1824 1825

    Args:
1826 1827 1828
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1829
                          feature, and W is the width of the feature.
1830
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1831
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1832
        pool_type: ${pooling_type_comment}
1833 1834
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1835 1836 1837 1838
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1839
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1840 1841
                        layer will be named automatically.

1842
    Returns:
F
fengjiayi 已提交
1843
        Variable: The pooling result.
F
fengjiayi 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1857 1858 1859 1860
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1861
                            global_pooling=False)
Y
Yu Yang 已提交
1862 1863 1864 1865 1866
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1867

C
chengduoZH 已提交
1868 1869 1870 1871 1872
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1873 1874 1875 1876
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1877 1878
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1879

C
Add doc  
chengduoZH 已提交
1880
    l_type = 'pool2d'
1881 1882

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1883 1884 1885 1886
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1916
    pooling configurations mentioned in input parameters.
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1930

1931
    Returns:
1932
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1933 1934 1935 1936 1937
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1938

C
chengduoZH 已提交
1939 1940 1941 1942 1943
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1944 1945 1946
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1947

C
chengduoZH 已提交
1948 1949
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1950

1951 1952
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1953 1954 1955 1956
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1957
        type=l_type,
Y
Yu Yang 已提交
1958 1959 1960 1961 1962 1963 1964
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1965
            "paddings": pool_padding,
1966
            "use_cudnn": use_cudnn,
1967 1968
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1981
               data_layout='NCHW',
Y
Yang Yang 已提交
1982
               in_place=False,
1983
               use_mkldnn=False,
1984 1985
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1986
               moving_variance_name=None,
1987 1988
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1989
    """
Q
qiaolongfei 已提交
1990 1991 1992 1993
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1994

Q
qiaolongfei 已提交
1995
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1996

Q
qiaolongfei 已提交
1997 1998
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1999 2000 2001
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2014 2015

    Args:
Q
qiaolongfei 已提交
2016
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2017 2018 2019 2020
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2021 2022 2023
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2024
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2025 2026 2027 2028 2029
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2030
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2031
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2032 2033

    Returns:
Q
qiaolongfei 已提交
2034
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2035 2036 2037 2038 2039 2040 2041

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2065
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2066

2067 2068
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2069 2070 2071
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2072
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2073
        shape=param_shape,
2074 2075 2076 2077 2078 2079 2080
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2081
            trainable=False,
W
wanghaoshuang 已提交
2082
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2083
        shape=param_shape,
2084 2085
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2086 2087 2088 2089 2090 2091

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2092 2093
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2094

2095
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2113 2114 2115 2116
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2117 2118
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2119
        })
Y
Yu Yang 已提交
2120 2121 2122 2123

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2124
@templatedoc()
G
guosheng 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2135
    ${comment}
G
guosheng 已提交
2136 2137 2138

    The formula is as follows:

Y
yuyang18 已提交
2139
    ..  math::
G
guosheng 已提交
2140 2141 2142 2143 2144 2145 2146

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2147 2148 2149 2150 2151 2152 2153 2154
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2155

G
guosheng 已提交
2156 2157
    Args:
        input(Variable): The input tensor variable.
2158
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2159
            normalization.
2160
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2161
            normalization.
2162
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2163
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2164
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2165 2166 2167 2168 2169 2170
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2171
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2172 2173

    Returns:
Y
yuyang18 已提交
2174
        ${y_comment}
G
guosheng 已提交
2175 2176 2177

    Examples:

Y
yuyang18 已提交
2178 2179 2180
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2196
    if shift:
G
guosheng 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2221 2222 2223 2224
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2225 2226 2227
                     padding=0,
                     stride=1,
                     dilation=1,
2228
                     groups=None,
C
caoying03 已提交
2229
                     param_attr=None,
2230
                     bias_attr=None,
C
chengduoZH 已提交
2231
                     use_cudnn=True,
2232
                     act=None,
C
caoying03 已提交
2233
                     name=None):
Y
Yu Yang 已提交
2234
    """
2235 2236 2237 2238 2239 2240 2241 2242
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2243 2244
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2245 2246 2247
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2248 2249 2250 2251 2252

    For each input :math:`X`, the equation is:

    .. math::

2253
        Out = \sigma (W \\ast X + b)
2254

2255
    Where:
2256 2257 2258

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2259 2260 2261 2262
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2263

2264 2265 2266 2267
    Example:

        - Input:

2268
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2269

2270
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2271 2272 2273

        - Output:

2274
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2275 2276

        Where
Y
Yu Yang 已提交
2277

2278 2279
        .. math::

2280 2281 2282 2283
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2284 2285

    Args:
2286 2287 2288 2289
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2290 2291 2292 2293
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2321 2322

    Returns:
2323
        Variable: The tensor variable storing the convolution transpose result.
2324 2325

    Raises:
2326 2327
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2328 2329 2330 2331

    Examples:
       .. code-block:: python

2332 2333
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2334
    """
2335 2336 2337 2338 2339 2340 2341 2342 2343

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2344 2345 2346
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2347 2348 2349
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2350

C
chengduoZH 已提交
2351 2352
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2353

Y
Yu Yang 已提交
2354 2355 2356 2357 2358
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2359

Y
Yu Yang 已提交
2360 2361
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2362

C
chengduoZH 已提交
2363
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2364
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2365
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2366
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2367
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2368 2369 2370
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2371 2372 2373 2374 2375 2376 2377
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2378
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2379
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2380 2381 2382
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2383
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2384
    helper.append_op(
2385
        type=op_type,
Y
Yu Yang 已提交
2386 2387
        inputs={'Input': [input],
                'Filter': [img_filter]},
2388
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2389
        attrs={
2390
            'output_size': output_size,
2391 2392 2393 2394 2395
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2396 2397
        })

2398 2399 2400
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2401 2402


2403
def conv3d_transpose(input,
Y
Yu Yang 已提交
2404 2405 2406
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2407 2408 2409
                     padding=0,
                     stride=1,
                     dilation=1,
2410
                     groups=None,
C
caoying03 已提交
2411
                     param_attr=None,
2412
                     bias_attr=None,
C
chengduoZH 已提交
2413
                     use_cudnn=True,
2414
                     act=None,
C
caoying03 已提交
2415
                     name=None):
Y
Yu Yang 已提交
2416
    """
2417
    **Convlution3D transpose layer**
2418

2419
    The convolution3D transpose layer calculates the output based on the input,
2420
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2421 2422 2423 2424 2425 2426
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2427 2428 2429
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2430 2431 2432 2433 2434

    For each input :math:`X`, the equation is:

    .. math::

2435
        Out = \sigma (W \\ast X + b)
2436 2437 2438

    In the above equation:

2439 2440
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2441 2442 2443 2444
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2445

2446 2447 2448 2449
    Example:

        - Input:

2450
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2451

2452
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2453 2454 2455

        - Output:

2456
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2457 2458

        Where
Y
Yu Yang 已提交
2459

2460 2461
        .. math::

2462 2463 2464
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2465 2466

    Args:
2467
        input(Variable): The input image with [N, C, D, H, W] format.
2468 2469 2470
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2471
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2472 2473
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2474
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2475 2476 2477
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2478 2479
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2480
        stride(int|tuple): The stride size. If stride is a tuple, it must
2481 2482
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2483
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2484 2485 2486
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2487 2488 2489 2490 2491
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2492 2493 2494
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2495 2496 2497 2498 2499
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2500 2501

    Returns:
2502
        Variable: The tensor variable storing the convolution transpose result.
2503 2504

    Raises:
2505 2506
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2507 2508 2509 2510

    Examples:
       .. code-block:: python

2511 2512
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2513
    """
2514 2515
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2516
    if not isinstance(input, Variable):
2517
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2518 2519
    input_channel = input.shape[1]

2520 2521 2522
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2523

C
chengduoZH 已提交
2524 2525 2526
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2527 2528 2529 2530 2531 2532
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2533 2534 2535
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2536

2537
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2538
                         padding[0] - 1) // dilation[0] + 1
2539
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2540
                         padding[1] - 1) // dilation[1] + 1
2541
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2542
                         padding[2] - 1) // dilation[2] + 1
2543
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2544
    else:
2545 2546
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2547

2548
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2549
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2550 2551 2552
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2553
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2554
    helper.append_op(
2555
        type=l_type,
Y
Yu Yang 已提交
2556 2557
        inputs={'Input': [input],
                'Filter': [img_filter]},
2558
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2559 2560 2561 2562
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2563
            'groups': groups,
C
chengduoZH 已提交
2564 2565
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2566

2567 2568
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2569
    return out
Y
yangyaming 已提交
2570 2571


Y
yangyaming 已提交
2572
def sequence_expand(x, y, ref_level=-1, name=None):
2573
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2574 2575 2576 2577
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2578 2579 2580 2581 2582

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2583
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2584
                x.data = [[a], [b], [c], [d]]
2585 2586 2587
                x.dims = [4, 1]

            y is a LoDTensor:
2588 2589
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2590

Y
yangyaming 已提交
2591
            ref_level: 0
2592

Y
yangyaming 已提交
2593
            then output is a 1-level LoDTensor:
2594
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2595
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2596 2597 2598 2599
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2600
                x.data = [[a], [b], [c]]
2601 2602 2603
                x.dims = [3, 1]

            y is a LoDTensor:
2604
                y.lod = [[2, 0, 3]]
2605

Y
yangyaming 已提交
2606
            ref_level: -1
2607

Y
yangyaming 已提交
2608 2609 2610
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2611 2612 2613
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2614 2615
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2616
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2617
                        will be named automatically.
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2628
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2629
    """
Y
yangyaming 已提交
2630
    helper = LayerHelper('sequence_expand', input=x, **locals())
2631 2632 2633
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2634 2635 2636 2637 2638
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2639
    return tmp
2640 2641


C
chengduo 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2725 2726
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2742 2743 2744 2745 2746
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2747 2748 2749 2750 2751 2752
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2753 2754
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2755
        attrs={'padded_length': maxlen})
2756
    return out, length
F
fengjiayi 已提交
2757 2758


2759 2760 2761 2762 2763 2764 2765 2766 2767
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2768 2769
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2770 2771 2772

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2773 2774

    This layer does the search in beams for one time step. Specifically, it
2775 2776 2777 2778 2779 2780
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2781

2782 2783 2784 2785 2786 2787 2788 2789
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2790

2791
    Args:
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2817

2818
    Returns:
2819 2820
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2821 2822 2823 2824

    Examples:
        .. code-block:: python

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2853
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2871 2872 2873 2874 2875 2876 2877
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2888

2889 2890 2891 2892 2893 2894
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2921 2922 2923 2924
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2925
              param_attr=None,
C
caoying03 已提交
2926 2927
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2928 2929 2930 2931
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2932
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2933

2934
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2935

2936
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2937

2938
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2939 2940 2941

            h_t & = o_t tanh(c_t)

2942 2943 2944 2945 2946 2947
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2948 2949 2950

        .. math::

2951
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2952 2953 2954 2955 2956 2957 2958 2959

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2960
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2961 2962

    Args:
Y
yangyaming 已提交
2963 2964 2965 2966 2967 2968
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2969
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2970 2971
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2972 2973
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2974 2975
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2976 2977

    Returns:
Y
yangyaming 已提交
2978
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2979 2980

    Raises:
2981 2982 2983 2984
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2985 2986 2987 2988 2989 2990

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2991
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2992
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2993
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3010
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3011 3012 3013 3014
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3015 3016
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3017 3018 3019
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3020
    size = cell_t_prev.shape[1]
3021
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3022 3023
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3024
                param_attr=param_attr,
3025
                bias_attr=bias_attr)
Y
yangyaming 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3038
    return h, c
G
guosheng 已提交
3039 3040


C
caoying03 已提交
3041
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3042
    """
Y
yangyaming 已提交
3043
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3044 3045 3046

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3047
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3048 3049
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3050 3051
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3052
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3053
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3054
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3055 3056
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3057 3058 3059

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3060

G
guosheng 已提交
3061 3062 3063 3064 3065 3066
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3067
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3068 3069 3070 3071
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3072 3073 3074 3075

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3076
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3077 3078 3079
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3080 3081 3082
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3083 3084
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3085 3086 3087 3088 3089
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3090
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3091 3092 3093 3094
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3095 3096


C
caoying03 已提交
3097
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3098
    """
Y
Yibing Liu 已提交
3099
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3100 3101 3102

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3103 3104 3105
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3106
            must be in the range :math:`[-rank(input), rank(input))`. If
3107
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3108
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3109 3110
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3111
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3112
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3113
                       will be named automatically.
G
guosheng 已提交
3114 3115

    Returns:
Y
Yibing Liu 已提交
3116
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3117

G
guosheng 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3128 3129
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3130 3131 3132 3133 3134 3135 3136

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3137 3138 3139
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3140 3141
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3142 3143 3144 3145 3146
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3147
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3148 3149 3150 3151
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3152 3153


C
caoying03 已提交
3154
def reduce_max(input, dim=None, keep_dim=False, name=None):
3155
    """
Y
yangyaming 已提交
3156
    Computes the maximum of tensor elements over the given dimension.
3157 3158 3159

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3160
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3161 3162 3163
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3164
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3165 3166
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3167
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3168 3169
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3170 3171 3172

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3173

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3185 3186 3187 3188 3189 3190 3191

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3192 3193 3194
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3195 3196
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3197 3198 3199 3200 3201
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3202
            'dim': dim if dim != None else [0],
3203 3204 3205 3206 3207 3208
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3209
def reduce_min(input, dim=None, keep_dim=False, name=None):
3210
    """
Y
yangyaming 已提交
3211
    Computes the minimum of tensor elements over the given dimension.
3212 3213 3214

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3215
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3216 3217 3218
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3219
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3220 3221
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3222
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3223 3224
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3225 3226 3227

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3240 3241 3242 3243 3244 3245 3246

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3247 3248 3249
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3250 3251
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3252 3253 3254 3255 3256
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3257
            'dim': dim if dim != None else [0],
3258 3259 3260 3261
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3262 3263


3264 3265 3266 3267 3268 3269
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3270
        dim (list|int|None): The dimensions along which the product is performed. If
3271 3272
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3273 3274
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3275 3276 3277
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3278
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3279
            layer will be named automatically.
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3294
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3295
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3296 3297 3298 3299 3300 3301 3302

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3303 3304 3305
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3306 3307
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3308 3309 3310 3311 3312
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3313
            'dim': dim if dim != None else [0],
3314 3315 3316 3317 3318 3319
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3320
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3321
    """
C
caoying03 已提交
3322
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3323 3324 3325

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3326 3327 3328 3329 3330
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3331
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3332
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3333
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3334 3335
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3336 3337

    Returns:
D
dzhwinter 已提交
3338
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3348 3349
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3388
    .. math::
3389 3390

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3391 3392 3393 3394 3395

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3396
        x(Variable|list): The input tensor to l2_normalize layer.
3397
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3398 3399
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3400
        epsilon(float): The epsilon value is used to avoid division by zero, \
3401
            the defalut value is 1e-10.
3402
        name(str|None): A name for this layer(optional). If set None, the layer \
3403
            will be named automatically.
C
caoying03 已提交
3404 3405

    Returns:
3406
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3407 3408

    Examples:
3409

C
caoying03 已提交
3410 3411
        .. code-block:: python

3412 3413 3414 3415
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3416 3417
    """

F
fengjiayi 已提交
3418 3419
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3420 3421
    helper = LayerHelper("l2_normalize", **locals())

3422 3423
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3424
    helper.append_op(
3425 3426 3427 3428
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3429
        attrs={
3430 3431
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3432 3433
        })
    return out
3434 3435


S
sneaxiy 已提交
3436
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3437
    """
Y
ying 已提交
3438 3439 3440 3441
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3442

C
chengduoZH 已提交
3443
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3444
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3445

3446 3447 3448 3449 3450
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3451
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3452

C
chengduoZH 已提交
3453
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3454
      performs in the following way.
G
guosheng 已提交
3455

3456
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3457
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3458
        last two dimensions and a batched matrix multiply supporting broadcast
3459
        applies on the two tensors.
G
guosheng 已提交
3460

Y
ying 已提交
3461 3462
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3463
    removed after matrix multiplication.
G
guosheng 已提交
3464 3465 3466

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3467 3468 3469
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3470
        alpha (float): The scale of output. Default 1.0.
3471
        name(str|None): A name for this layer(optional). If set None, the layer
3472
            will be named automatically.
G
guosheng 已提交
3473 3474

    Returns:
3475
        Variable: The product Tensor variable.
G
guosheng 已提交
3476

G
guosheng 已提交
3477 3478 3479
    Examples:
        .. code-block:: python

3480
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3481 3482
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3483

3484 3485
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3486

3487 3488
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3489

3490 3491
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3492 3493 3494 3495

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3496 3497
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3498

Y
ying 已提交
3499
            # x: [M], y: [N]
3500
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3501
    """
Y
ying 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3514
            y_shape = y_shape + [1]
Y
ying 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3531
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3532
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3533
    helper.append_op(
3534 3535 3536 3537
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3538 3539 3540
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3541
            'alpha': alpha,
S
sneaxiy 已提交
3542
        })
3543
    return out
3544 3545


3546
def topk(input, k, name=None):
Q
qingqing01 已提交
3547 3548 3549 3550
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3551
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3552 3553 3554 3555 3556 3557
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3579 3580 3581
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3582
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3583
                 of input.
3584
        name(str|None): A name for this layer(optional). If set None, the layer
3585
                       will be named automatically.
F
fengjiayi 已提交
3586
                       Default: None
Q
qingqing01 已提交
3587 3588

    Returns:
3589 3590 3591
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3592
        within the last dimension of input.
Q
qingqing01 已提交
3593

F
fengjiayi 已提交
3594 3595
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3616
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3617
    """
Y
ying 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3627

Y
ying 已提交
3628
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3629

3630
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3631 3632
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3633
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3634

3635
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3636 3637
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3638

3639 3640 3641
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3642
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3643
                          the length of reference string.
3644
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3645
                                     calculating edit distance.
3646
        name (str): The name of this layer. It is optional.
3647

W
wanghaoshuang 已提交
3648
    Returns:
W
wanghaoshuang 已提交
3649
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3650 3651 3652 3653 3654

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3655
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3656
            cost = fluid.layers.edit_distance(input=x,label=y)
3657
    """
3658
    helper = LayerHelper("edit_distance", **locals())
3659

3660
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3661
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3662 3663 3664 3665 3666 3667 3668
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3669
            attrs={"tokens": ignored_tokens})
3670 3671 3672 3673 3674
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3675
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3676
            attrs={"tokens": ignored_tokens})
3677 3678
        label = erased_label

3679 3680
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3681
    sequence_num = helper.create_tmp_variable(dtype="int64")
3682 3683 3684 3685
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3686 3687
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3688 3689
        attrs={"normalized": normalized})

3690
    return edit_distance_out, sequence_num
3691 3692 3693 3694 3695


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3696

Y
ying 已提交
3697 3698 3699 3700
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3718
        input.lod = [[4, 4]]
3719 3720 3721 3722 3723 3724 3725

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3726
        output.lod = [[2, 1]]
3727 3728 3729

    Args:

Y
ying 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3739
        name (str): The name of this layer. It is optional.
3740 3741

    Returns:
3742
        Variable: CTC greedy decode result. If all the sequences in result were
3743
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3744 3745 3746 3747 3748

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3749

3750
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3751
    """
3752
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3753
    _, topk_indices = topk(input, k=1)
3754 3755 3756 3757 3758 3759

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3760
        outputs={"Output": [ctc_out]},
3761 3762
        attrs={"merge_repeated": True,
               "blank": blank})
3763
    return ctc_out
3764 3765


F
fengjiayi 已提交
3766
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3767
    """
3768 3769
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3770
    to compute Connectionist Temporal Classification (CTC) loss.
3771 3772
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3773 3774 3775
    input tensor.

    Args:
3776
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3777 3778 3779 3780
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3781
       label (Variable): The ground truth of variable-length sequence,
3782 3783 3784
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3785 3786
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3787 3788 3789
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3790
         follewed by a mean_op.
W
wanghaoshuang 已提交
3791 3792

    Returns:
3793 3794
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3795 3796

    Examples:
3797

W
wanghaoshuang 已提交
3798
        .. code-block:: python
3799

3800 3801 3802
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3803 3804

    """
F
fengjiayi 已提交
3805
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3832 3833 3834
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3835 3836 3837 3838 3839
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3840

3841
            out.lod  = [[0, 1, 3]]
3842 3843 3844 3845

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3846 3847 3848 3849 3850 3851 3852
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3853 3854 3855

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3856 3857

    Returns:
3858

3859 3860 3861 3862 3863
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3864
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3865
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3866 3867 3868 3869 3870 3871 3872 3873 3874
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3875 3876


3877 3878 3879 3880
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3881 3882 3883 3884 3885 3886 3887
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3888 3889 3890 3891 3892 3893 3894
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3895 3896
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3897
            sample is 1.0.
3898 3899 3900
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3901

3902
    Returns:
Y
Yibing Liu 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3930
    """
Y
Yang Yu 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3975
    return cost / (num_neg_samples + 1)
3976 3977


G
guosheng 已提交
3978
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3979 3980
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3981
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3991

W
weixing02 已提交
3992
    Args:
M
minqiyang 已提交
3993
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3994 3995 3996 3997 3998
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3999 4000
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4001
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4002 4003
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4004 4005 4006 4007 4008 4009 4010 4011

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4012 4013 4014
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4015 4016 4017 4018 4019 4020 4021 4022
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4023
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4024 4025 4026 4027 4028
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4029 4030 4031 4032 4033 4034 4035 4036
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4037 4038
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4039
        inputs=inputs,
W
weixing02 已提交
4040 4041 4042 4043 4044 4045
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4046
def transpose(x, perm, name=None):
Y
ying 已提交
4047 4048 4049 4050 4051 4052 4053
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4054 4055 4056
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4057 4058 4059 4060 4061 4062 4063 4064

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4065
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4066 4067
    """

Y
fix ci.  
ying 已提交
4068
    if len(perm) != len(x.shape):
Y
ying 已提交
4069 4070 4071
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4072 4073 4074 4075 4076 4077
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4078 4079

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4080
    out = helper.create_tmp_variable(x.dtype)
4081
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4082
    helper.append_op(
4083
        type='transpose2',
Y
fix ci.  
ying 已提交
4084
        inputs={'X': [x]},
4085 4086
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4087 4088
        attrs={'axis': perm})
    return out
4089 4090


4091 4092 4093 4094 4095 4096 4097
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4098
    """
4099 4100 4101 4102 4103 4104 4105
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4134 4135 4136 4137 4138 4139 4140 4141 4142
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4143 4144 4145
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4146 4147 4148 4149 4150
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4178 4179 4180
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4193
            output.dims = {8, 8}
4194

4195
            output.lod = [[4, 4]]
4196

D
dzhwinter 已提交
4197
     Examples:
4198 4199 4200

        .. code-block:: python

4201 4202
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4203 4204

    """
W
wanghaoshuang 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4215 4216 4217 4218 4219 4220 4221
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4222
    helper = LayerHelper('im2sequence', **locals())
4223 4224
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4225
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4226
    return out
4227 4228


Y
yuyang18 已提交
4229
@templatedoc()
4230
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4231 4232
    """
    ${comment}
4233 4234

    Args:
Y
yuyang18 已提交
4235
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4236 4237
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4238 4239 4240 4241 4242
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4243
        ${out_comment}.
4244 4245

    Examples:
Y
yuyang18 已提交
4246 4247 4248 4249
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4262
    return helper.append_activation(out)
4263 4264


Y
yuyang18 已提交
4265
@templatedoc()
4266 4267
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4268 4269 4270 4271 4272 4273 4274
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4275 4276

    Args:
Y
yuyang18 已提交
4277 4278
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4279 4280

    Returns:
Y
yuyang18 已提交
4281
        ${out_comment}.
4282 4283
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4284 4285 4286 4287 4288 4289

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4290 4291 4292 4293 4294 4295
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4296 4297


4298 4299 4300 4301
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4302 4303
    """
    **Softmax With Cross Entropy Operator.**
4304

4305 4306 4307 4308
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4309

4310 4311 4312
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4313

4314 4315 4316
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4317

4318
    The equation is as follows:
4319

4320
    1) Hard label (one-hot label, so every sample has exactly one class)
4321

4322 4323 4324 4325
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4326

4327 4328 4329
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4343 4344 4345 4346
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4347 4348 4349 4350 4351 4352 4353 4354 4355
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4356 4357
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4368 4369
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4370 4371 4372 4373 4374
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4375 4376
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4377
    For each instance, it computes the smooth L1 loss element by element first
4378
    and then sums all the losses. So the shape of ouput Variable is
4379
    [batch_size, 1].
4380

4381 4382
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4383
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4384
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4385
            L1 loss op with same shape as :attr:`x`.
4386
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4387 4388
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4389
            by this tensor element by element.
4390
        outside_weight (Variable|None): A tensor with rank at least 2. This
4391 4392
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4393
            element by element.
4394
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4395 4396
           scalar with default value 1.0.

4397
    Returns:
4398
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4399 4400 4401 4402 4403

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4404 4405
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4406
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4407
            out = fluid.layers.smooth_l1(x=fc, y=label)
4408
    """
4409

4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4425 4426 4427 4428


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4429
    This layer creates the one-hot representations for input indices.
4430 4431

    Args:
Y
Yibing Liu 已提交
4432 4433
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4434 4435

    Returns:
Y
Yibing Liu 已提交
4436
        Variable: The one-hot representations of input.
4437 4438

    Examples:
C
caoying03 已提交
4439
        .. code-block:: python
4440

Y
Yibing Liu 已提交
4441 4442
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4443 4444 4445 4446 4447 4448 4449 4450 4451
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4452 4453


Y
Yu Yang 已提交
4454
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4455
    """
Y
yi.wu 已提交
4456 4457 4458
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4459 4460 4461 4462 4463 4464

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4465 4466
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4467 4468 4469 4470 4471 4472

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4473 4474
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4475 4476
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4477 4478 4479 4480 4481
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4482
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4483
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4484 4485
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4486 4487
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4488 4489 4490
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4491 4492


4493
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4494
    """
C
caoying03 已提交
4495 4496
    Gives a new shape to the input Tensor without changing its data.

4497 4498 4499 4500 4501
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4502

4503
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4504

4505 4506 4507 4508
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4509
    2. 0 means the actual dimension value is going to be copied from the
4510 4511 4512 4513
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4514 4515

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4516
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4517
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4518

4519
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4520 4521
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4522 4523
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4524
    dimensions.
C
caoying03 已提交
4525

4526
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4527 4528 4529 4530
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4531 4532

    Args:
4533
        x(variable): The input tensor.
C
caoying03 已提交
4534 4535
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4536 4537 4538 4539 4540
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4541
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4542 4543 4544 4545
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4546
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4547

4548 4549
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4550

X
Xin Pan 已提交
4551 4552 4553
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4554 4555
    Examples:
        .. code-block:: python
G
guosheng 已提交
4556

4557
            data = fluid.layers.data(
4558
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4559
            reshaped = fluid.layers.reshape(
4560
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4561 4562 4563
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4564
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4565 4566 4567 4568 4569
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4570

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4586
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4587
    out = helper.create_tmp_variable(dtype=x.dtype)
4588
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4589
    helper.append_op(
4590
        type="reshape2",
X
Xin Pan 已提交
4591
        inputs=inputs,
D
dzhwinter 已提交
4592
        attrs={"shape": shape},
4593 4594
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4595

D
dzhwinter 已提交
4596
    return helper.append_activation(out)
4597

4598

4599
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4623
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4624
        axes (list): List of integers, indicating the dimensions to be squeezed.
4625
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4626 4627 4628 4629 4630 4631 4632 4633

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4634
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4635 4636
    """
    helper = LayerHelper("squeeze", **locals())
4637
    out = helper.create_tmp_variable(dtype=input.dtype)
4638
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4639
    helper.append_op(
4640
        type="squeeze2",
4641
        inputs={"X": input},
Y
Yibing Liu 已提交
4642
        attrs={"axes": axes},
4643 4644
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4645

4646 4647 4648
    return out


4649
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4660
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4661
        axes (list): List of integers, indicating the dimensions to be inserted.
4662
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4663 4664 4665 4666 4667 4668 4669 4670

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4671
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4672 4673
    """
    helper = LayerHelper("unsqueeze", **locals())
4674
    out = helper.create_tmp_variable(dtype=input.dtype)
4675
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4676
    helper.append_op(
4677
        type="unsqueeze2",
4678
        inputs={"X": input},
Y
Yibing Liu 已提交
4679
        attrs={"axes": axes},
4680 4681
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4682

4683 4684
    return out

4685

Y
yangyaming 已提交
4686
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4687
    """
Y
Yibing Liu 已提交
4688
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4689 4690 4691 4692
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4693
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4694 4695 4696 4697 4698 4699

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4700
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4701 4702 4703
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4704
            target_lod: [4, 2]
Y
yangyaming 已提交
4705 4706

            then we get a 1-level LoDTensor:
4707
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4708 4709 4710 4711 4712 4713
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4714
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4715 4716 4717 4718
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4719
                y.data = [[2, 4]]
Y
yangyaming 已提交
4720 4721 4722
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4723
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4724 4725 4726 4727 4728 4729
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4730
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4731 4732 4733 4734
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4735
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4736 4737 4738 4739
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4740
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4741 4742 4743 4744 4745
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4746
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4747
                           from :attr:`y`.
Y
yangyaming 已提交
4748
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4749
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4750 4751

    Returns:
Y
Yibing Liu 已提交
4752
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4753 4754

    Raises:
Y
Yibing Liu 已提交
4755
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4791
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4820 4821
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4849 4850 4851 4852


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4853
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4854
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4855

G
guosheng 已提交
4856 4857 4858 4859
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4882
                         The length of :attr:paddings must be
G
guosheng 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4893

G
guosheng 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4908 4909


C
chengduo 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4990 4991 4992 4993 4994 4995 4996
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4997 4998
    called label-smoothing regularization (LSR).

4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5022
                              be :math:`(1, class\_num)`.
5023 5024
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5025
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5053 5054


Y
yi.wu 已提交
5055
@templatedoc()
5056 5057
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5058
    ${comment}
5059 5060

    Args:
Y
yi.wu 已提交
5061 5062
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5063 5064 5065
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5066 5067

    Returns:
Y
update  
yi.wu 已提交
5068
        Variable: ${out_comment}.
5069 5070

    Examples:
5071 5072
        .. code-block:: python

5073
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5119 5120
        .. code-block:: python

W
whs 已提交
5121 5122 5123 5124
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5125
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5126 5127 5128 5129 5130 5131
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5132 5133


5134 5135 5136 5137 5138
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5139
    """
Q
qiaolongfei 已提交
5140
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5141

5142
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5143 5144 5145
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5146

5147
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5148

5149
    Args:
5150
        input (Variable): The input tensor of image resize layer,
5151 5152
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5153
        out_shape(list|tuple|Variable|None): Output shape of image resize
5154 5155
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5156
        scale(float|None): The multiplier for the input height or width.
5157 5158 5159
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5160 5161
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5162 5163
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5164 5165

    Returns:
Q
update  
qiaolongfei 已提交
5166 5167
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5168

5169 5170 5171
    Examples:
        .. code-block:: python

5172
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5173
    """
5174 5175 5176 5177
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5178 5179
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5180 5181
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5182 5183 5184 5185

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5186 5187 5188
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5189
    if out_shape is not None:
B
baiyf 已提交
5190 5191 5192
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5193 5194 5195 5196 5197 5198
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5199 5200 5201 5202
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5203 5204
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5205
        type=resample_methods[resample],
5206
        inputs=inputs,
5207 5208 5209 5210
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5211 5212


Y
yuyang18 已提交
5213
@templatedoc(op_type="bilinear_interp")
5214 5215
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5216 5217 5218 5219 5220 5221
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5222

Y
yuyang18 已提交
5223 5224 5225 5226 5227 5228 5229 5230
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5231 5232 5233 5234 5235 5236 5237
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5238 5239 5240
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5241 5242 5243 5244 5245 5246 5247
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5248
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5249

5250
    Returns:
Q
update  
qiaolongfei 已提交
5251
        Variable: The output is a 4-D tensor of the shape
5252
        (num_batches, channls, out_h, out_w).
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5263 5264 5265
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5266 5267 5268
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5269 5270
def gather(input, index):
    """
Q
qiaolongfei 已提交
5271 5272
    **Gather Layer**

5273
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5274 5275 5276 5277
    of X indexed by `index` and concatenate them together.

    .. math::

5278
        Out = X[Index]
W
whs 已提交
5279 5280 5281 5282 5283 5284 5285


    .. code-block:: text


                Given:

5286 5287
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5298
        input (Variable): The source input with rank>=1.
W
whs 已提交
5299 5300 5301 5302 5303 5304
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5305

W
whs 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5435

5436 5437 5438
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5439
    """
F
stash  
fengjiayi 已提交
5440
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5441
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5442
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5443
    if seed is None:
5444
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5445
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5446
    if isinstance(seed, int):
F
fengjiayi 已提交
5447 5448 5449 5450 5451
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5452 5453 5454 5455
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5456
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5457 5458
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5459 5460
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5461
    return out
W
whs 已提交
5462 5463


5464
def log(x, name=None):
W
wanghaoshuang 已提交
5465 5466 5467 5468 5469
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5470
        Out = \\ln(x)
W
wanghaoshuang 已提交
5471 5472

    Args:
5473
        x (Variable): Input tensor.
5474 5475
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5476 5477 5478 5479 5480 5481 5482 5483

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5484
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5485 5486
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5487
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5488
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5489
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5490 5491 5492
    return out


5493
def relu(x, name=None):
W
wanghaoshuang 已提交
5494 5495
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5496
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5497 5498 5499 5500
    the tensor elementwise.

    .. math::

5501
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5502 5503

    Args:
5504
        x (Variable): The input tensor.
5505 5506
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5507 5508 5509 5510 5511 5512 5513 5514

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5515
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5516 5517
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5518
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5519
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5520
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5521
    return out
5522 5523


W
whs 已提交
5524 5525 5526
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5527 5528 5529 5530
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5531
    .. math::
5532 5533

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5534

5535
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5536 5537 5538 5539 5540
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5541
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5542
                           Its shape should be the same as input.
5543
        num_classes (int): The possible number of labels.
W
whs 已提交
5544 5545 5546 5547

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5548
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5549 5550 5551 5552

    Examples:

        .. code-block:: python
5553

W
whs 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5563 5564
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5565
        outputs={
W
whs 已提交
5566 5567 5568
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5569 5570 5571
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5646
                    isinstance(shape, Variable)):
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5680

5681 5682
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5683

5684 5685 5686 5687
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5688

5689 5690 5691 5692 5693
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5694 5695 5696

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5741 5742


W
whs 已提交
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5845 5846
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5897

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5908 5909
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5925
        ValueError: If axis is not in range [0, rank(x)].
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
5943
    x_shape = helper.create_tmp_variable(x.dtype)
5944
    helper.append_op(
5945
        type='flatten2',
5946
        inputs={"X": x},
5947 5948
        outputs={'Out': out,
                 'XShape': x_shape},
5949 5950
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5951 5952


C
chenweihang 已提交
5953
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
5954
    """
C
chenweihang 已提交
5955
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
5956 5957 5958
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
5959 5960 5961 5962 5963
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5964
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5965 5966 5967 5968 5969 5970
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5971
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5972 5973 5974
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
5975 5976 5977
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5989
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5990 5991 5992 5993 5994 5995
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
5996

5997

S
sneaxiy 已提交
5998 5999 6000 6001 6002 6003 6004 6005 6006
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6007

S
sneaxiy 已提交
6008
    .. math::
6009

S
sneaxiy 已提交
6010 6011 6012
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6013
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6014 6015 6016 6017
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6018 6019 6020
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6021 6022
    Returns:
        Variable: The output sequence mask.
6023

S
sneaxiy 已提交
6024 6025
    """

Q
qingqing01 已提交
6026
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6027 6028 6029 6030 6031
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6032 6033 6034
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6035 6036
        outputs={'Y': out},
        attrs={
6037
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6038 6039 6040
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6041 6042


X
Xin Pan 已提交
6043
def stack(x, axis=0):
S
sneaxiy 已提交
6044 6045 6046 6047
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6048 6049 6050 6051 6052 6053 6054

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6055
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6056
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6057 6058

    Args:
6059
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6060
        axis (int|None): The axis along which all inputs are stacked.
6061

S
sneaxiy 已提交
6062 6063
    Returns:
        Variable: The stacked variable.
6064

S
sneaxiy 已提交
6065 6066
    """

X
Xin Pan 已提交
6067 6068 6069 6070 6071 6072 6073 6074
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6075 6076
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6077

X
Xin Pan 已提交
6078
    return out
D
dzhwinter 已提交
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198


from paddle.fluid.framework import convert_np_dtype_to_dtype_


def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
    UniformRandomBatchSizeLike operator.
    This operator initializes a tensor with the same batch_size as the Input tensor with random values sampled from a uniform distribution.


    Args:
        input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
        shape (tuple|list): the shape of the output.
        input_dim_idx (Int): The index of input's batch size dimension.
        output_dim_idx (Int): The index of output's batch size dimension.
        min (Float): Minimum value of uniform random.
        max (Float): Maximum value of uniform random.
        seed (Int): Random seed used for generating samples. 0 means use a seed generated by the system.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
fix  
gongweibao 已提交
6199
        out (Variable): Output of this operator.
G
fix  
gongweibao 已提交
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447


def gaussian_random(shape,
                    mean=0.0,
                    std=1.0,
                    seed=0,
                    dtype='float32',
                    use_mkldnn=False):
    """
    GaussianRandom Operator.

    Used to initialize tensors with gaussian random generator.

    Args:
        shape (tuple|list): The dimension of random tensor.
        mean (Float): Mean of random tensor.
        std (Float): Std of random tensor.
        seed (Int): Random seed of generator.0 means use system wide seed.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
        use_mkldnn (Bool): Only used in mkldnn kernel.

    Returns:
        out (Variable): Output of this operator.

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
            'use_mkldnn': use_mkldnn
        })

    return out


def sampling_id(x, min=0.0, max=1.0, seed=0):
    """
    SamplingId Operator.

    A layer for sampling id from multinomial distribution from the input.
    Sampling one id for one sample.

    Args:
        x (Variable): The input tensor of softmax. 2-D with shape [batch_size, input_feature_dimensions].
        min (Float): Minimum value of random.
        max (Float): Maximun value of random.
        seed (Float): random seed used for the random number engine.0 means use a seed generated by the system.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.

    Returns:
        out (Variable): Output of this operator.

    """

    helper = LayerHelper('sampling_id', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
    Used to initialize tensors with gaussian random generator. The defalut mean of the distribution is 0. and defalut standard deviation (std) of the distribution is 1.. Uers can set mean and std by input arguments.

    Args:
        input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
        shape (tuple|list): the shape of the output.
        input_dim_idx (Int): The index of input's batch size dimension
        output_dim_idx (Int): The index of output's batch size dimension
        mean (Float): The mean (or center) of the gaussian distribution.
        std (Float): The standard deviation (std, or spread) of the gaussian distribution.
        seed (Int): Random seed of generator.0 means use system wide seed._note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
        out (Variable): Output of this operator
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


def sum(x, use_mkldnn=False):
    """
    Sum operator.
    This operators sums the input tensors. All the inputs can carry
    the LoD (Level of Details) information. However, the output only
    shares the LoD information with the first input.

    Args:
        x (Variable): The input tensors of sum operator.
        use_mkldnn (Bool): Only used in mkldnn kernel

    Returns:
        out (Variable): Output of this operator

    """

    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype('X'))
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'use_mkldnn': use_mkldnn})

    return out


def slice(input, axes, starts, ends):
    """
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1].
    Following examples will explain how slice works:

    .. code-block:: text

        Cast1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Cast2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]

    Args:
        input (Variable): Tensor of data to extract slices from.
        axes (List): Axes that `starts` and `ends` apply to. It's optional._if not present, will be treated as [0, 1, ..., len(`starts`) - 1].
        starts (List): Starting indices of corresponding axis in `axes`.
        ends (List): Starting indices of corresponding axis in `axes`.

    Returns:
        out (Variable): The output of this operator.

    """

    helper = LayerHelper('slice', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype('Input'))
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
    Shape Operator
    Get the shape of input tensor. Only support CPU input Tensor now.

    Args:
        input (Variable): The input tensor.

    Returns:
        out (Variable): The output of this operator.

    """

    helper = LayerHelper('shape', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype('Input'))
    helper.append_op(
        type='shape', inputs={'Input': input}, outputs={'Out': out}, attrs={})

    return out