nn.py 118.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
Yu Yang 已提交
25 26

__all__ = [
Y
ying 已提交
27 28 29
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
30
    'dynamic_lstmp',
G
guosheng 已提交
31
    'dynamic_gru',
Y
ying 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
56 57
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
58 59 60 61
    'l2_normalize',
    'matmul',
    'warpctc',
    'sequence_reshape',
62
    'transpose',
63
    'im2sequence',
64
    'nce',
Q
Qiao Longfei 已提交
65
    'beam_search',
66
    'row_conv',
67
    'multiplex',
G
guosheng 已提交
68
    'layer_norm',
69 70
    'softmax_with_cross_entropy',
    'smooth_l1',
71
    'one_hot',
Y
Yu Yang 已提交
72
    'autoincreased_step_counter',
Y
Yu Yang 已提交
73 74 75 76 77 78 79 80 81
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
82
       name=None):
Y
Yu Yang 已提交
83
    """
84
    **Fully Connected Layer**
Y
Yu Yang 已提交
85

C
caoying03 已提交
86
    The fully connected layer can take multiple tensors as its inputs. It
Y
ying 已提交
87 88 89 90 91 92 93 94
    creates a variable (one for each input tensor) called weights for each
    input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer
    multiplies each input tensor with its coresponding weight to produce
    an output Tensor. If multiple input tensors are given, the results of
    multiple multiplications will be sumed up. If bias_attr is not None,
    a biases variable will be created and added to the output. Finally,
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
95

C
caoying03 已提交
96
    This process can be formulated as follows:
97 98 99

    .. math::

100
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
101 102 103

    In the above equation:

C
caoying03 已提交
104 105 106 107
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
108
    * :math:`Act`: The activation function.
C
caoying03 已提交
109
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
110 111

    Args:
C
caoying03 已提交
112 113 114 115 116 117 118 119
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
Y
ying 已提交
120 121 122 123 124 125 126 127 128 129 130
                              (inclusive, index starts from 1) dimensions will
                              be flatten to form the first dimension of the
                              final matrix (height of the matrix), and the rest
                              `rank(X) - num_flatten_dims` dimensions are
                              flattened to form the second dimension of the
                              final matrix (width of the matrix). For example,
                              suppose `X` is a 6-dimensional tensor with a shape
                              [2, 3, 4, 5, 6], and `num_flatten_dims` = 3. Then,
                              the flattened matrix will have a shape
                              [2 x 3 x 4, 5 x 6] = [24, 30]. By default,
                              `num_flatten_dims` is set to 1.
C
caoying03 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
146 147


148
    Returns:
C
caoying03 已提交
149
        Variable: The output tensor variable.
150 151

    Raises:
C
caoying03 已提交
152
        ValueError: If rank of the input tensor is less than 2.
153 154 155 156

    Examples:
        .. code-block:: python

C
caoying03 已提交
157
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
158
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
159
    """
C
caoying03 已提交
160

C
caoying03 已提交
161
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
171

Y
Yu Yang 已提交
172 173 174 175 176
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
Q
Qiao Longfei 已提交
177 178
            inputs={"X": input_var,
                    "Y": w},
Y
Yu Yang 已提交
179
            outputs={"Out": tmp},
C
caoying03 已提交
180 181
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
192
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
Y
Yu Yang 已提交
193 194 195 196
    # add activation
    return helper.append_activation(pre_activation)


197 198 199 200 201 202
def embedding(input,
              size,
              is_sparse=False,
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
203
    """
204 205
    **Embedding Layer**

206
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
207 208
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
209 210 211

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
212 213

    Args:
214 215 216 217 218 219 220
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
221 222
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
223 224
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
225
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
226

227 228 229
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
230

231 232
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
233

C
chengduoZH 已提交
234
          dict_size = len(dataset.ids)
235
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
236
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
237 238 239 240 241 242
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
243 244
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
245 246 247 248 249
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
250 251
        attrs={'is_sparse': is_sparse,
               'padding_idx': padding_idx})
Y
Yu Yang 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
265 266
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
267 268 269 270 271 272
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
273
    .. math::
Y
Yibing Liu 已提交
274

275
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
276

277
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
278

279
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
280

281 282 283
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
284

Y
Yibing Liu 已提交
285
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
286

287
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
288
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
289 290 291
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
292
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
293 294
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
295 296
    all of which have the same size as the cell output activation vector :math:`h`.

297 298 299 300
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
301 302 303
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
304 305 306
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
307 308 309
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
310 311

    Args:
312 313 314 315
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
316 317
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
318
        param_attr(ParamAttr|None): The parameter attribute for the learnable
319
                               hidden-hidden weights.
Y
Yibing Liu 已提交
320 321 322

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
323 324 325
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
326 327 328
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
329

330
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
331
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
332
                                - The shape is (1 x 4D).
333
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
334 335
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
336
                                - The shape is (1 x 7D).
337
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
338 339
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
340 341
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
342
                              "identity"], default "sigmoid".
343
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
344 345 346 347 348
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
349 350
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
351 352

    Returns:
Y
Yibing Liu 已提交
353 354
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
355

Y
Yibing Liu 已提交
356
    Examples:
Y
Yibing Liu 已提交
357 358
        .. code-block:: python

Y
Yibing Liu 已提交
359 360
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
361
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
362 363
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
364
    """
365

Y
Yu Yang 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
402 403 404 405 406 407 408 409 410 411 412
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
413 414
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
415 416 417
    """
    **Dynamic LSTMP Layer**

418 419 420 421 422 423
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
424 425 426 427 428

    The formula is as follows:

    .. math::

429
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
430

431
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
432

433
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
434

435
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
436

437
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
438

439
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
440

441
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
442

Y
Yibing Liu 已提交
443 444 445 446 447 448
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
449
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
450
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
451
          bias vector).
Y
Yibing Liu 已提交
452 453 454
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
455
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
456
    * :math:`h`: The hidden state.
457
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
458 459
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
460
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
461
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
462
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
463 464
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
465 466 467 468

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
469

Y
Yibing Liu 已提交
470 471 472 473 474 475 476 477 478 479 480 481
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
482
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
483 484
                               hidden-hidden weight and projection weight.

485 486
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
487 488
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
489 490
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
491 492
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
493 494 495 496 497 498
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
499
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
500 501 502
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
503
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        proj_activation(str): The activation for projection output.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
519 520
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
521 522

    Returns:
523 524
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
525 526 527 528 529
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
530
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
531 532
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
533 534 535
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
536 537 538 539
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
540
    """
541

Y
Yibing Liu 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
588 589 590 591 592 593 594 595 596 597 598
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

599
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
600
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
601

G
guosheng 已提交
602 603 604 605 606 607 608 609 610
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
611

G
guosheng 已提交
612
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
613

G
guosheng 已提交
614
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
615 616
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
617 618 619 620
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
621
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
622 623

    Args:
624 625
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
626
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
627
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
628 629
            is the hidden size.
        size(int): The dimension of the gru cell.
630
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
631 632
            hidden-hidden weight matrix. Note:

633
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
634
              :math:`D` is the hidden size.
635
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
636
              The first part are weights of the update gate and reset gate with
637
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
638
              candidate hidden state with shape :math:`(D \\times D)`.
639
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
640
            hidden-hidden bias.
641
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
642 643 644
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
645
        activation(str): The activation for candidate hidden state.
G
guosheng 已提交
646 647 648
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".

    Returns:
G
guosheng 已提交
649 650
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
651

G
guosheng 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
            size, size), 'The shape of h0 should be(%d, %d)' % (size, size)
        inputs['h0'] = h_0

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
695 696 697 698 699 700
def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
701
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
702
    """
703
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
704

705 706
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
707

708
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
709

710
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
711

712
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
713 714

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
715 716 717
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
718 719
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

720 721
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
722 723 724
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
725 726 727 728 729 730 731

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
732 733 734 735
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
736

737 738 739 740 741 742
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
743

744
             # assuming we have x_t_data and prev_hidden of size=10
745
             x_t = fluid.layers.fc(input=x_t_data, size=30)
746 747
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
768

Y
Yu Yang 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


796
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


822
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
836
def cos_sim(X, Y):
Y
Yu Yang 已提交
837 838 839 840
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
F
fengjiayi 已提交
841
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


F
fengjiayi 已提交
855
def dropout(x, dropout_prob, is_test=False, seed=None):
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
       x(variable): The input tensor.
       dropout_prob(float): Probability of setting units to zero.
       is_test(bool): A flag indicating whether it is in test phrase or not.
       seed(int): A Python integer used to create random seeds. If this
                  parameter is set to None, a random seed is used.
                  NOTE: If an integer seed is given, always the same output
                  units will be dropped. DO NOT use a fixed seed in training.

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
884
    helper = LayerHelper('dropout', **locals())
885 886 887 888 889 890 891
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
892 893 894 895 896 897
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
898 899 900
    return out


F
fengjiayi 已提交
901
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
902
    """
Y
Yibing Liu 已提交
903 904
    **Cross Entropy Layer**

905 906 907
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
908 909

    1) One-hot cross-entropy:
F
fengjiayi 已提交
910
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
911

Y
Yibing Liu 已提交
912
        .. math::
Y
yangyaming 已提交
913

Y
Yibing Liu 已提交
914 915 916
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
917 918
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
919 920 921 922 923

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
924
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
925 926 927
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
928 929
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
930
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
931

Y
Yibing Liu 已提交
932
    Args:
Y
yangyaming 已提交
933
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
934 935 936 937
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
938
        label (Variable|list): the ground truth which is a 2-D tensor. When
939 940 941 942
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
943
        soft_label (bool): a flag indicating whether to
944 945
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
946 947 948 949 950

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
951 952 953 954 955
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
956 957 958 959 960 961

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
962
    """
F
fengjiayi 已提交
963
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
964 965 966 967 968 969
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
970
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
971 972 973
    return out


F
fengjiayi 已提交
974
def square_error_cost(input, label):
Y
Yu Yang 已提交
975
    """
976 977
    **Square error cost layer**

978 979
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
G
guosheng 已提交
998
        Variable: The tensor variable storing the element-wise squared error \
999
                  difference of input and label.
1000 1001 1002 1003 1004 1005 1006 1007

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1008
    """
F
fengjiayi 已提交
1009
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1019 1020
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1021 1022 1023 1024 1025 1026 1027
    return square_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1028
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1029
    """
Y
yangyaming 已提交
1030
    This function computes and outputs the precision, recall and
1031
    F1-score of chunk detection.
Y
Yu Yang 已提交
1032
    """
F
fengjiayi 已提交
1033
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1034 1035 1036 1037 1038

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1039 1040 1041
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1042 1043 1044 1045 1046 1047 1048 1049

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1050 1051 1052 1053
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1054 1055 1056
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1057 1058
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1059
        })
1060 1061
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1071
                  act=None):
Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1108 1109
           stride=1,
           padding=0,
Y
Yu Yang 已提交
1110 1111 1112
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1113
           use_cudnn=True,
C
chengduoZH 已提交
1114
           act=None):
Y
Yu Yang 已提交
1115
    """
C
chengduoZH 已提交
1116 1117 1118
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1119 1120 1121
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1122 1123
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1124 1125 1126
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1127

1128
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1129

C
chengduoZH 已提交
1130 1131
    .. math::

C
refine  
chengduoZH 已提交
1132
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1133

C
chengduoZH 已提交
1134
    In the above equation:
C
chengduoZH 已提交
1135

1136 1137 1138 1139 1140
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1141 1142
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1143 1144 1145

    Example:

1146 1147 1148
        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
1149

1150
          Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
1151

1152 1153
        - Output:
          Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
refine  
chengduoZH 已提交
1154

C
chengduoZH 已提交
1155
        Where
1156 1157

        .. math::
C
chengduoZH 已提交
1158

C
chengduoZH 已提交
1159 1160
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1161 1162

    Args:
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of filter. It is as same as the output
           image channel.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       groups(int): The groups number of the Conv2d Layer. According to grouped
           convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
           the first half of the filters is only connected to the first half
           of the input channels, while the second half of the filters is only
           connected to the second half of the input channels. Default: groups=1
       param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       act(str): Activation type. Default: None
C
chengduoZH 已提交
1185 1186

    Returns:
G
guosheng 已提交
1187
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1188 1189
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1190
    Raises:
1191 1192
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1193

C
chengduoZH 已提交
1194 1195 1196
    Examples:
        .. code-block:: python

1197 1198 1199 1200
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1201 1202 1203 1204 1205
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1206 1207

    l_type = 'conv2d'
X
xzl 已提交
1208 1209
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1210
        l_type = 'depthwise_conv2d'
1211 1212 1213 1214

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1215 1216 1217 1218 1219 1220 1221
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1222 1223 1224
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
C
chengduoZH 已提交
1225

C
chengduoZH 已提交
1226 1227
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1245
        type=l_type,
Y
Yu Yang 已提交
1246 1247 1248 1249 1250
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1251 1252 1253 1254 1255 1256
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1257 1258 1259 1260 1261 1262

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1263
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1264
    """
Y
yangyaming 已提交
1265 1266 1267
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
1293

L
Luo Tao 已提交
1294 1295
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1296
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1297 1298 1299 1300 1301 1302 1303 1304
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1305

Y
yangyaming 已提交
1306
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1307 1308 1309 1310 1311
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
1312
    """
F
fengjiayi 已提交
1313
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1325 1326 1327 1328 1329
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1330 1331 1332
    return pool_out


F
fengjiayi 已提交
1333
def sequence_first_step(input):
L
Luo Tao 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1348

L
Luo Tao 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1358

Y
yangyaming 已提交
1359
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1360 1361 1362
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1363 1364 1365
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1366
def sequence_last_step(input):
L
Luo Tao 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1381

L
Luo Tao 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1391

Y
yangyaming 已提交
1392
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1393 1394 1395
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1396 1397 1398
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1399
def pool2d(input,
C
chengduoZH 已提交
1400 1401
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1402 1403
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1404
           global_pooling=False,
C
chengduoZH 已提交
1405
           use_cudnn=True,
1406
           ceil_mode=False,
C
caoying03 已提交
1407
           name=None):
Y
Yu Yang 已提交
1408 1409 1410 1411 1412 1413 1414 1415
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1416

C
chengduoZH 已提交
1417 1418 1419 1420 1421
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1422 1423 1424 1425
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1426 1427
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1442
            "paddings": pool_padding,
1443 1444
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode
Y
Yu Yang 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1457
               data_layout='NCHW',
1458 1459 1460
               name=None,
               moving_mean_name=None,
               moving_variance_name=None):
Y
Yu Yang 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1487
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1488

1489 1490 1491
    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name, initializer=Constant(0.0), trainable=False),
Q
QI JUN 已提交
1492
        shape=param_shape,
1493 1494 1495 1496 1497 1498 1499 1500
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False),
Q
QI JUN 已提交
1501
        shape=param_shape,
1502 1503
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1504 1505 1506 1507 1508 1509

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1510 1511
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1550
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1571
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1572
            normalization.
1573
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1574
            normalization.
1575
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1576
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1577
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1609
    if shift:
G
guosheng 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1634
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1655 1656 1657
                     padding=0,
                     stride=1,
                     dilation=1,
C
caoying03 已提交
1658
                     param_attr=None,
C
chengduoZH 已提交
1659
                     use_cudnn=True,
C
caoying03 已提交
1660
                     name=None):
Y
Yu Yang 已提交
1661
    """
1662 1663 1664 1665 1666 1667 1668 1669
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1670 1671
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1684 1685
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1700

1701 1702 1703 1704
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1705 1706

    Args:
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of the filter. It is as same as the output
           image channel.
       output_size(int|tuple|None): The output image size. If output size is a
           tuple, it must contain two integers, (image_H, image_W). This
           parameter only works when filter_size is None.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square. None if use output size to
           calculate filter_size.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1726 1727
       param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                              Default: None
1728 1729 1730 1731
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
Y
Yu Yang 已提交
1732 1733

    Returns:
1734 1735 1736
       Variable: The tensor variable storing the convolution transpose result.

    Raises:
1737 1738
       ValueError: If the shapes of input, filter_size, stride, padding and
                   groups mismatch.
1739 1740 1741 1742

    Examples:
       .. code-block:: python

1743 1744 1745 1746
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1747 1748 1749 1750 1751 1752
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1753 1754 1755
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1756

C
chengduoZH 已提交
1757 1758 1759
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1760 1761 1762 1763 1764 1765 1766 1767
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1768 1769 1770 1771 1772

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1773
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1774 1775 1776
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
C
chengduoZH 已提交
1788 1789 1790 1791 1792 1793
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1794 1795

    return out
Y
yangyaming 已提交
1796 1797


C
caoying03 已提交
1798
def sequence_expand(x, y, name=None):
1799 1800
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1801
    explain how sequence_expand works:
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1830
                y.lod = [[0, 2, 3, 6]]
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1842 1843
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1854
            out = layers.sequence_expand(x=x, y=y)
1855
    """
Y
yangyaming 已提交
1856
    helper = LayerHelper('sequence_expand', input=x, **locals())
1857 1858 1859
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1860 1861
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1862
    return tmp
1863 1864


Q
Qiao Longfei 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
1897 1898 1899 1900
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1901
              param_attr=None,
C
caoying03 已提交
1902 1903
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1904 1905 1906 1907
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1908
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1909

1910
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1911

1912
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1913

1914
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1915 1916 1917

            h_t & = o_t tanh(c_t)

1918 1919 1920 1921 1922 1923
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1924 1925 1926

        .. math::

1927
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1928 1929 1930 1931 1932 1933 1934 1935

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1936
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1937 1938

    Args:
Y
yangyaming 已提交
1939 1940 1941 1942 1943 1944
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1945
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1946 1947
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1948 1949
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1950 1951
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1952 1953

    Returns:
Y
yangyaming 已提交
1954
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1955 1956

    Raises:
1957 1958 1959 1960
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1961 1962 1963 1964 1965 1966

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1967
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1968
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1969
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1986
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1987 1988 1989 1990
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
1991 1992
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
1993 1994 1995
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
1996
    size = cell_t_prev.shape[1]
1997
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
1998 1999
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2000
                param_attr=param_attr,
2001
                bias_attr=bias_attr)
Y
yangyaming 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2014
    return h, c
G
guosheng 已提交
2015 2016


C
caoying03 已提交
2017
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2018
    """
Y
yangyaming 已提交
2019
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2020 2021 2022

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2023 2024 2025 2026
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
2027
            the dimension to reduce is :math:`rank + dim`.
2028
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2029
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2030
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2031 2032
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2033 2034 2035

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2036

G
guosheng 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2061 2062


C
caoying03 已提交
2063
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2064
    """
Y
yangyaming 已提交
2065
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2066 2067 2068

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2069 2070 2071 2072
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
2073
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2074 2075
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2076
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2077 2078
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2079 2080 2081

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2082

G
guosheng 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2107 2108


C
caoying03 已提交
2109
def reduce_max(input, dim=None, keep_dim=False, name=None):
2110
    """
Y
yangyaming 已提交
2111
    Computes the maximum of tensor elements over the given dimension.
2112 2113 2114

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2115 2116 2117 2118
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2119
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2120 2121
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2122
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2123 2124
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2125 2126 2127

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2155
def reduce_min(input, dim=None, keep_dim=False, name=None):
2156
    """
Y
yangyaming 已提交
2157
    Computes the minimum of tensor elements over the given dimension.
2158 2159 2160

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
2161 2162 2163 2164
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2165
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
2166 2167
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2168
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2169 2170
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2171 2172 2173

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2199 2200


C
caoying03 已提交
2201
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2202
    """
C
caoying03 已提交
2203
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2204 2205 2206

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2207 2208 2209 2210 2211
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2212
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2213
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2214
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2215 2216
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2292
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2293 2294
    """

F
fengjiayi 已提交
2295 2296
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
2323
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
2341 2342


2343
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2344
    """
Y
ying 已提交
2345 2346 2347 2348
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2349

C
chengduoZH 已提交
2350
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2351
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2352

2353 2354 2355 2356 2357
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2358
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2359

C
chengduoZH 已提交
2360
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2361
      performs in the following way.
G
guosheng 已提交
2362

2363
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2364
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2365
        last two dimensions and a batched matrix multiply supporting broadcast
2366
        applies on the two tensors.
G
guosheng 已提交
2367

Y
ying 已提交
2368 2369
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2370
    removed after matrix multiplication.
G
guosheng 已提交
2371 2372 2373

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2374 2375 2376
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2377
        name(str|None): A name for this layer(optional). If set None, the layer
2378
            will be named automatically.
G
guosheng 已提交
2379 2380

    Returns:
2381
        Variable: The product Tensor variable.
G
guosheng 已提交
2382

G
guosheng 已提交
2383 2384 2385
    Examples:
        .. code-block:: python

2386
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2387 2388
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2389

2390 2391
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2392

2393 2394
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2395

2396 2397
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2398 2399 2400 2401

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2402 2403
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2404

Y
ying 已提交
2405
            # x: [M], y: [N]
2406
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2407
    """
Y
ying 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2420
            y_shape = y_shape + [1]
Y
ying 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2437
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2438
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2439
    helper.append_op(
2440 2441 2442 2443 2444 2445 2446
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2447 2448


W
wanghaoshuang 已提交
2449
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2450
                  name=None):
2451
    """
Y
ying 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2461

Y
ying 已提交
2462
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2463

Y
ying 已提交
2464 2465 2466 2467
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2468

Y
ying 已提交
2469 2470 2471
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2472

2473 2474 2475 2476 2477
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
2478

Y
ying 已提交
2479 2480
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
2481

Y
ying 已提交
2482 2483
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2484

W
wanghaoshuang 已提交
2485
    Returns:
W
wanghaoshuang 已提交
2486
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2487 2488 2489 2490 2491

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2492 2493
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2494
            cost = fluid.layers.edit_distance(input=x,label=y)
2495
    """
2496
    helper = LayerHelper("edit_distance", **locals())
2497

2498
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2499
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2500 2501 2502 2503 2504 2505 2506
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2507
            attrs={"tokens": ignored_tokens})
2508 2509 2510 2511 2512 2513
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erase_label]},
W
wanghaoshuang 已提交
2514
            attrs={"tokens": ignored_tokens})
2515 2516
        label = erased_label

2517 2518
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2519
    sequence_num = helper.create_tmp_variable(dtype="int64")
2520 2521 2522 2523
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2524 2525
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2526 2527
        attrs={"normalized": normalized})

2528
    return edit_distance_out, sequence_num
2529 2530 2531 2532 2533


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2534 2535 2536 2537
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2567 2568 2569 2570 2571 2572
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
2573

Y
ying 已提交
2574 2575 2576
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2577 2578

    Returns:
2579
        Variable: CTC greedy decode result. If all the sequences in result were
2580
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2581 2582 2583 2584 2585

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2586

2587
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2588
    """
2589
    helper = LayerHelper("ctc_greedy_decoder", **locals())
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
    # top 1 op
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": 1})

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2605
        outputs={"Output": [ctc_out]},
2606 2607
        attrs={"merge_repeated": True,
               "blank": blank})
2608
    return ctc_out
2609 2610


F
fengjiayi 已提交
2611
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2612
    """
2613 2614
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2615
    to compute Connectionist Temporal Classification (CTC) loss.
2616 2617
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
2631
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
2632 2633
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2634
       norm_by_times: (bool, default: false), whether to normalize
W
wanghaoshuang 已提交
2635
       the gradients by the number of time-step, which is also the
2636 2637
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2638 2639

    Returns:
2640 2641
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2642 2643 2644

    Examples:
        .. code-block:: python
2645 2646 2647 2648
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2649 2650 2651
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2652
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2718 2719


2720
@autodoc()
Y
Yang Yu 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
2772
    return cost / (num_neg_samples + 1)
2773 2774


Y
fix ci.  
ying 已提交
2775
def transpose(x, perm, name=None):
Y
ying 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
2795
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
2796 2797
    """

Y
fix ci.  
ying 已提交
2798
    if len(perm) != len(x.shape):
Y
ying 已提交
2799 2800 2801
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
2802 2803 2804 2805 2806 2807
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
2808 2809

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
2810
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
2811 2812
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
2813
        inputs={'X': [x]},
Y
ying 已提交
2814 2815 2816
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
2817 2818


2819
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
2820
    """
2821 2822 2823 2824 2825 2826 2827
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

2856 2857 2858
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
2859 2860 2861 2862 2863
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
2893 2894 2895
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

2916 2917
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
2918 2919

    """
W
wanghaoshuang 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

2931
    helper = LayerHelper('im2sequence', **locals())
2932 2933
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
2934
        type='im2sequence',
2935 2936 2937
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
2938 2939 2940
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
2941 2942
        })
    return out
2943 2944


2945 2946 2947 2948
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
2949
    equation of row convolution is as follows:
2950 2951 2952 2953 2954 2955 2956

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
2957
    * :math:`\\tau`: Future context size.
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
2968 2969
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
2995
    return helper.append_activation(out)
2996 2997


2998 2999 3000 3001
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3017 3018

    Args:
Y
yangyaming 已提交
3019 3020
       inputs (list): A list of variables to gather from. All variables have the
                same shape and the rank is at least 2.
3021
       index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3022
                with shape [M, 1] where M is the batch size.
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3036 3037 3038 3039 3040 3041

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3042 3043 3044 3045 3046 3047
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3048 3049 3050 3051 3052


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3053

3054 3055 3056 3057
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3058

3059 3060 3061
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3062

3063 3064 3065
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3066

3067
    The equation is as follows:
3068

3069
    1) Hard label (one-hot label, so every sample has exactly one class)
3070

3071 3072 3073 3074
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3075

3076 3077 3078
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3079

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

    This operator computes the smooth l1 loss for X and Y.
    The operator takes the first dimension of X and Y as batch size.
    For each instance, it computes the smooth l1 loss element by element first
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3124

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
            l1 loss op with shape [batch_size, dim1, ..., dimN].
        y (Variable): A tensor with rank at least 2. The target value of smooth
            l1 loss op with same shape as x.
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the out smooth l1 loss will be multiplied by this tensor element
            by element.
        sigma (float|None): Hyper parameter of smooth l1 loss op. A float scalar
            with default value 1.0.
    Returns:
        Variable: A tensor with rank be 2. The output smooth l1 loss with
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[100], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3150
            out = fluid.layers.smooth_l1(x=fc, y=label)
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3167 3168 3169 3170 3171 3172 3173 3174 3175


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3176
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3204 3205


Y
Yu Yang 已提交
3206
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3207
    """
Y
Yu Yang 已提交
3208
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3209
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3210 3211 3212 3213 3214 3215

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

Y
Yu Yang 已提交
3216 3217 3218
    Returns(Variable): The global run counter.
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3219 3220
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3221 3222 3223 3224 3225
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3226
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3227 3228 3229
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3230 3231
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3232 3233 3234
        counter.stop_gradient = True

    return counter