nn.py 348.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
S
shippingwang 已提交
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60 61 62 63 64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
67
    'sequence_unpad',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
76
    'sequence_slice',
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
94
    'group_norm',
X
Xin Pan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
108
    'roi_align',
X
Xin Pan 已提交
109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
113
    'resize_nearest',
X
Xin Pan 已提交
114 115 116 117 118 119
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
120
    'selu',
X
Xin Pan 已提交
121 122 123
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
124
    'margin_rank_loss',
X
Xin Pan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
168
    'space_to_depth',
W
whs 已提交
169
    'affine_grid',
S
sneaxiy 已提交
170
    'sequence_reverse',
171
    'affine_channel',
B
barrierye 已提交
172
    'similarity_focus',
M
minqiyang 已提交
173
    'hash',
D
dengkaipeng 已提交
174
    'grid_sampler',
G
gmcather 已提交
175 176
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
177
    'bilinear_tensor_product',
C
chengduo 已提交
178 179
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
180
    'lstm',
S
shippingwang 已提交
181
    'shuffle_channel',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
M
minqiyang 已提交
184
    'huber_loss',
Y
Yu Yang 已提交
185 186
]

J
jerrywgz 已提交
187 188
kIgnoreIndex = -100

Y
Yu Yang 已提交
189 190 191 192 193 194 195

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
196
       is_test=False,
197
       name=None):
Y
Yu Yang 已提交
198
    """
199
    **Fully Connected Layer**
Y
Yu Yang 已提交
200

201 202 203 204 205 206 207 208
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
209
    to the output as well.
C
caoying03 已提交
210

C
caoying03 已提交
211
    This process can be formulated as follows:
212 213 214

    .. math::

215
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
216 217 218

    In the above equation:

C
caoying03 已提交
219 220 221 222
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
223
    * :math:`Act`: The activation function.
C
caoying03 已提交
224
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
225 226

    Args:
R
ranqiu 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
242 243
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
244
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
245
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
246
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
247

248
    Returns:
F
fengjiayi 已提交
249
        Variable: The transformation result.
250 251

    Raises:
C
caoying03 已提交
252
        ValueError: If rank of the input tensor is less than 2.
253 254 255 256

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
257
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
258
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
259
    """
C
caoying03 已提交
260

C
caoying03 已提交
261
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
262 263 264 265

    dtype = helper.input_dtype()

    mul_results = []
266 267
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
268 269 270
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
271

Y
Yu Yang 已提交
272
        w = helper.create_parameter(
273
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
274
        tmp = helper.create_variable_for_type_inference(dtype)
275
        helper.append_op(
276 277 278
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
279
            outputs={"Out": tmp},
M
mozga-intel 已提交
280 281
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
282 283 284 285
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
286
    else:
X
Xin Pan 已提交
287
        pre_bias = helper.create_variable_for_type_inference(dtype)
288
        helper.append_op(
289 290 291
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
292
            attrs={"use_mkldnn": False})
293 294 295 296
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
297 298


299 300 301
def embedding(input,
              size,
              is_sparse=False,
302
              is_distributed=False,
303 304 305
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
306
    """
307 308
    **Embedding Layer**

309
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
310 311
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
312 313 314

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
315 316

    Args:
317 318 319 320 321
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
322
        is_distributed(bool): Whether to run lookup table from remote parameter server.
323 324
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
325
            with zeros whenever lookup encounters it in :attr:`input`. If
326
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
327 328
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
329
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
330

331 332 333
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
334

335 336
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
337

C
chengduoZH 已提交
338
          dict_size = len(dataset.ids)
339
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
340
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
341 342 343
    """

    helper = LayerHelper('embedding', **locals())
344 345 346
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
347 348
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
349 350
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
351
    tmp = helper.create_variable_for_type_inference(dtype)
352 353
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
354 355 356 357 358
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
359 360 361
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
362
            'remote_prefetch': remote_prefetch,
363 364
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
365 366 367
    return tmp


W
wopeizl 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
384

W
wopeizl 已提交
385 386 387 388 389 390 391 392 393 394 395
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
396

W
wopeizl 已提交
397 398 399 400
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
401

W
wopeizl 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
488 489


P
phlrain 已提交
490 491 492 493 494 495
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
496
         dropout_prob=0.0,
P
phlrain 已提交
497 498 499 500 501
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
502
    """
P
phlrain 已提交
503
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
504 505

    A four-gate Long Short-Term Memory network with no peephole connections.
506
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
507 508
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
532

533
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
L
liuhongyu 已提交
534 535 536 537 538
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
539
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
540 541 542 543 544
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
545
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
546 547
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
548 549
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
550 551 552 553 554 555
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
556
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
557

L
liuhongyu 已提交
558 559 560 561 562 563

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
564
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
565 566
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
567
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
583
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
584 585 586 587 588 589
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
590 591 592
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
652 653 654 655 656 657 658 659 660 661 662
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
663 664
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
665 666 667
    """
    **Dynamic LSTMP Layer**

668 669 670 671 672 673
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
674 675 676 677 678

    The formula is as follows:

    .. math::

679
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
680

681
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
682

683
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
684

685
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
686

687
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
688

689
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
690

691
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
692

Y
Yibing Liu 已提交
693 694 695 696 697 698
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
699
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
700
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
701
          bias vector).
Y
Yibing Liu 已提交
702 703 704
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
705
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
706
    * :math:`h`: The hidden state.
707
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
708 709
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
710
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
711
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
712
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
713 714
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
715 716 717 718

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
719

Y
Yibing Liu 已提交
720 721 722 723 724 725 726 727 728 729 730 731
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
732
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
733 734
                               hidden-hidden weight and projection weight.

735 736
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
737 738
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
739 740
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
741
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
742 743 744 745 746

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
747
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
748 749 750 751 752 753
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
754
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
755 756 757
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
758
                                - The shape is (1 x 7D).
C
chengduo 已提交
759 760 761 762 763

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
764 765 766 767 768 769 770 771 772
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
773
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
774 775
                              default "tanh".
        proj_activation(str): The activation for projection output.
776
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
777 778
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
779 780
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
781 782

    Returns:
783 784 785 786
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
787 788

    Examples:
789

Y
Yibing Liu 已提交
790 791
        .. code-block:: python

792 793 794 795
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
796
            hidden_dim, proj_dim = 512, 256
797
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
798
                                     act=None, bias_attr=None)
799 800 801
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
802 803 804 805
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
806
    """
807

C
chengduo 已提交
808
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
809
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
810
    size = size // 4
Y
Yibing Liu 已提交
811 812 813 814 815 816 817 818 819 820
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
821 822 823 824 825 826
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
855 856 857 858 859 860 861 862 863
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
864
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
865

866
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
867
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
868

G
guosheng 已提交
869 870 871 872 873 874 875 876 877
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
878

G
guosheng 已提交
879
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
880

G
guosheng 已提交
881
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
882 883
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
884 885 886 887
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
888
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
889 890

    Args:
891 892
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
893
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
894
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
895 896
            is the hidden size.
        size(int): The dimension of the gru cell.
897
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
898 899
            hidden-hidden weight matrix. Note:

900
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
901
              :math:`D` is the hidden size.
902
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
903
              The first part are weights of the update gate and reset gate with
904
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
905
              candidate hidden state with shape :math:`(D \\times D)`.
906 907 908 909 910

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
911
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
912
            the bias in the update gate, reset gate and candidate calculations.
913 914 915
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
916 917
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
918
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
919 920 921
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
922
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
923
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
924 925 926 927
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
928 929

    Returns:
G
guosheng 已提交
930
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
931
            and sequence length is the same with the input.
932

G
guosheng 已提交
933
    Examples:
934

G
guosheng 已提交
935 936
        .. code-block:: python

937 938 939 940
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
941
            hidden_dim = 512
942
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
943
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
944 945 946 947 948 949 950 951 952
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
953
    batch_size = input.shape[0]
G
guosheng 已提交
954
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
955
    if h_0:
G
guosheng 已提交
956
        assert h_0.shape == (
Y
Yancey 已提交
957 958 959
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
960

X
Xin Pan 已提交
961 962 963 964
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
983 984 985
def gru_unit(input,
             hidden,
             size,
986 987
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
988
             activation='tanh',
989
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
990
    """
991
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
992

993 994
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
995

996
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
997

998
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
999

1000
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
1001 1002

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1003 1004 1005
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1006 1007
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1008 1009
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1010 1011 1012
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1013 1014 1015

    Args:
        input (Variable): The fc transformed input value of current step.
1016
        hidden (Variable): The hidden value of gru unit from previous step.
1017
        size (integer): The input dimension value.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1032
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1033
            the bias in the update gate, reset gate and candidate calculations.
1034 1035 1036
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1037 1038
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1039 1040 1041 1042
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1043

1044 1045 1046 1047 1048 1049
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1050

1051
             # assuming we have x_t_data and prev_hidden of size=10
1052
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1053 1054
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1067
    size = size // 3
Y
Yu Yang 已提交
1068 1069

    # create weight
1070 1071
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1072

X
Xin Pan 已提交
1073 1074 1075
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1076
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1077
    # create bias
1078
    if helper.bias_attr:
Y
Yu Yang 已提交
1079 1080 1081
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1082
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1083 1084 1085

    helper.append_op(
        type='gru_unit',
1086
        inputs=inputs,
Y
Yu Yang 已提交
1087 1088 1089 1090 1091 1092
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1093 1094
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1095 1096 1097 1098 1099
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1100
@templatedoc()
1101
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1102 1103 1104 1105 1106 1107 1108
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1109
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1110 1111 1112 1113
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1114 1115 1116
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1117 1118

    """
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1125 1126 1127 1128 1129 1130 1131 1132
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1148 1149 1150 1151
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1152

W
wopeizl 已提交
1153 1154
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1157

W
wopeizl 已提交
1158
        label(${label_type}): ${label_comment}
1159

W
wopeizl 已提交
1160 1161
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1162

W
wopeizl 已提交
1163 1164
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1165

W
wopeizl 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1176
                "Transition": transition,
W
wopeizl 已提交
1177 1178
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1179

W
wopeizl 已提交
1180
    return viterbi_path
Y
Yu Yang 已提交
1181 1182


Y
yi.wu 已提交
1183
@templatedoc()
F
fengjiayi 已提交
1184
def cos_sim(X, Y):
Y
Yu Yang 已提交
1185
    """
Y
yi.wu 已提交
1186 1187 1188
    ${comment}

    Args:
1189 1190
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1191

Y
yi.wu 已提交
1192
    Returns:
1193
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1194
    """
F
fengjiayi 已提交
1195
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1196 1197 1198
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1209 1210 1211 1212 1213
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1214
            dropout_implementation="downgrade_in_infer"):
1215 1216 1217 1218 1219
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1220
    training. The dropout operator randomly sets (according to the given dropout
1221 1222 1223 1224
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1225 1226
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1227 1228 1229 1230 1231 1232 1233
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1245
                                           dropout op can be removed from the program.
P
phlrain 已提交
1246
                                           the program will be efficient
1247

P
phlrain 已提交
1248

1249 1250

    Returns:
1251
        Variable: A tensor variable is the shape with `x`.
1252 1253

    Examples:
1254

1255 1256
        .. code-block:: python

1257 1258
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1259 1260
    """

F
fengjiayi 已提交
1261
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1262 1263 1264
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1265 1266 1267 1268

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1269 1270 1271 1272 1273
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1274 1275 1276 1277
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1278 1279
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1280
        })
1281 1282 1283
    return out


J
jerrywgz 已提交
1284
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1285
    """
Y
Yibing Liu 已提交
1286 1287
    **Cross Entropy Layer**

1288 1289 1290
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1291 1292

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1293
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1294

Y
Yibing Liu 已提交
1295
        .. math::
Y
yangyaming 已提交
1296

Y
Yibing Liu 已提交
1297 1298 1299
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1300 1301
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1302 1303 1304 1305 1306

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1307
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1308 1309 1310
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1311 1312
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1313
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1314

Y
Yibing Liu 已提交
1315
    Args:
Y
yangyaming 已提交
1316
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1317 1318 1319 1320
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1321
        label (Variable|list): the ground truth which is a 2-D tensor. When
1322 1323 1324 1325
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1326
        soft_label (bool): a flag indicating whether to
1327
                                           interpretate the given labels as soft
1328
                                           labels. Default: `False`.
M
minqiyang 已提交
1329 1330
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1331
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1332 1333 1334 1335 1336

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1337 1338 1339 1340 1341
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1342 1343 1344 1345 1346 1347

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1348
    """
F
fengjiayi 已提交
1349
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1350
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1351 1352 1353 1354 1355
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1356 1357
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1358 1359 1360
    return out


F
frankwhzhang 已提交
1361
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1362 1363 1364
    """
    Bayesian Personalized Ranking Loss Operator.

1365
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1366 1367 1368 1369 1370 1371
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1372 1373 1374 1375 1376 1377
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1378 1379
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1380 1381 1382
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1383 1384 1385
    Examples:
        .. code-block:: python

1386
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1387
    """
1388 1389 1390 1391 1392 1393

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1394
                'Label': [label]},
1395 1396 1397 1398
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1399
def square_error_cost(input, label):
Y
Yu Yang 已提交
1400
    """
1401 1402
    **Square error cost layer**

1403 1404
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1419 1420
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1421 1422

    Returns:
G
guosheng 已提交
1423
        Variable: The tensor variable storing the element-wise squared error \
1424
                  difference of input and label.
1425 1426 1427 1428 1429 1430 1431 1432

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1433
    """
F
fengjiayi 已提交
1434
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1435
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1436 1437 1438 1439 1440 1441
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1442
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1443
    helper.append_op(
F
fengjiayi 已提交
1444 1445
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1446 1447 1448
    return square_out


Y
yi.wu 已提交
1449
@templatedoc()
Y
Yu Yang 已提交
1450 1451 1452 1453
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1454
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1455
    """
Y
yi.wu 已提交
1456
    **Chunk Evaluator**
Y
yi.wu 已提交
1457

Y
yangyaming 已提交
1458
    This function computes and outputs the precision, recall and
1459
    F1-score of chunk detection.
Y
yi.wu 已提交
1460

Y
yi.wu 已提交
1461 1462 1463 1464 1465 1466 1467 1468
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1469

Y
yi.wu 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1495

Y
yi.wu 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1520
    Args:
1521 1522 1523 1524 1525
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1526

Y
yi.wu 已提交
1527
    Returns:
Y
update  
yi.wu 已提交
1528 1529 1530
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1531

Y
yi.wu 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1544
    """
F
fengjiayi 已提交
1545
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1546 1547

    # prepare output
X
Xin Pan 已提交
1548 1549 1550 1551 1552 1553 1554
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1555 1556 1557 1558 1559 1560 1561 1562

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1563 1564 1565 1566
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1567 1568 1569
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1570 1571
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1572
        })
1573 1574
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1575 1576


1577
@templatedoc()
Y
Yu Yang 已提交
1578 1579 1580 1581 1582 1583 1584
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1585 1586
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1587 1588 1589 1590
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1591 1592 1593 1594 1595 1596 1597

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1611

1612 1613
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1614 1615 1616 1617 1618 1619 1620
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1621
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1632
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1633 1634 1635 1636 1637 1638
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1639
def sequence_softmax(input, use_cudnn=False, name=None):
1640 1641 1642
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1643
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1660 1661 1662
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1675 1676
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1677
    softmax_out = helper.create_variable_for_type_inference(dtype)
1678 1679 1680 1681 1682 1683 1684 1685
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1686
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1687
    """
1688
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1689
    has the same shape as the input.
Q
qiaolongfei 已提交
1690

1691 1692 1693 1694 1695 1696
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1697
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1698 1699 1700 1701 1702 1703 1704

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1705
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1706 1707 1708 1709 1710 1711 1712 1713

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1714 1715 1716
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1729 1730
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1731
    softmax_out = helper.create_variable_for_type_inference(dtype)
1732 1733 1734 1735 1736 1737 1738 1739
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1740 1741 1742
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1743 1744
           stride=1,
           padding=0,
1745
           dilation=1,
Y
Yu Yang 已提交
1746 1747 1748
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1749
           use_cudnn=True,
1750 1751
           act=None,
           name=None):
Y
Yu Yang 已提交
1752
    """
C
chengduoZH 已提交
1753
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1754 1755
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1756
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1757 1758 1759 1760 1761 1762 1763
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1764 1765 1766
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1767

1768
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1769

C
chengduoZH 已提交
1770 1771
    .. math::

C
refine  
chengduoZH 已提交
1772
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1773

T
tensor-tang 已提交
1774
    Where:
C
chengduoZH 已提交
1775

1776 1777 1778 1779 1780
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1781
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1782 1783 1784

    Example:

1785 1786
        - Input:

W
weixing02 已提交
1787
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1788

W
weixing02 已提交
1789
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1790

1791
        - Output:
T
tensor-tang 已提交
1792

W
weixing02 已提交
1793
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1794

C
chengduoZH 已提交
1795
        Where
1796 1797

        .. math::
C
chengduoZH 已提交
1798

W
weixing02 已提交
1799 1800
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1801 1802

    Args:
1803
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1804
        num_filters(int): The number of filter. It is as same as the output
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1833 1834
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1835 1836
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1837
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1838
            will be named automatically. Default: None
C
chengduoZH 已提交
1839 1840

    Returns:
G
guosheng 已提交
1841
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1842 1843
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1844
    Raises:
1845 1846
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1847

C
chengduoZH 已提交
1848 1849 1850
    Examples:
        .. code-block:: python

1851 1852
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1853 1854 1855
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1856
    assert param_attr is not False, "param_attr should not be False here."
1857
    l_type = 'conv2d'
X
xzl 已提交
1858 1859
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1860
        l_type = 'depthwise_conv2d'
1861 1862 1863 1864

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1865 1866 1867 1868 1869
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1870
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1871

C
chengduoZH 已提交
1872 1873 1874
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1875
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1876

C
chengduoZH 已提交
1877 1878
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1879 1880

    input_shape = input.shape
M
minqiyang 已提交
1881
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1882 1883

    def _get_default_param_initializer():
C
chengduo 已提交
1884 1885
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1886 1887 1888 1889 1890 1891 1892 1893
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1894
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1910
    helper.append_op(
1911
        type=l_type,
Y
Yu Yang 已提交
1912 1913 1914 1915 1916
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1917 1918 1919
        attrs={
            'strides': stride,
            'paddings': padding,
1920
            'dilations': dilation,
C
chengduoZH 已提交
1921
            'groups': groups,
1922
            'use_cudnn': use_cudnn,
1923
            'use_mkldnn': False,
C
chengduoZH 已提交
1924
        })
Y
Yu Yang 已提交
1925 1926 1927 1928 1929 1930

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1948 1949 1950 1951 1952 1953
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1963 1964
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1965 1966 1967
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1968
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1994
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1995 1996
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1997
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1998 1999
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2000
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2001 2002
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2003
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2004 2005 2006 2007 2008 2009
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2020 2021
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2022 2023
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2024
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2025
            will be named automatically. Default: None.
C
chengduoZH 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2038 2039
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2040 2041 2042
    """

    l_type = 'conv3d'
C
chengduo 已提交
2043
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2054
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2068 2069 2070
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2071 2072 2073 2074 2075 2076 2077 2078
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2079
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2094
            'use_mkldnn': False
C
chengduoZH 已提交
2095 2096
        })

2097
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2098 2099 2100 2101

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2102
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2103
    """
Y
yangyaming 已提交
2104 2105 2106
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2118
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2119 2120 2121 2122 2123
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2124
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2125 2126 2127 2128 2129 2130 2131

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2132 2133
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2134

L
Luo Tao 已提交
2135 2136
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2137
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2138
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2139
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2140 2141 2142 2143 2144 2145 2146

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2147

Y
yangyaming 已提交
2148
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2149 2150 2151 2152 2153
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2154 2155
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2156
    """
F
fengjiayi 已提交
2157
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2158
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2159 2160
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2161 2162 2163 2164 2165 2166

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2167 2168
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2169

Y
yangyaming 已提交
2170 2171 2172 2173 2174
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2175 2176 2177
    return pool_out


C
add doc  
chengduoZH 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2197
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2198 2199 2200 2201 2202
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2203
def sequence_first_step(input):
L
Luo Tao 已提交
2204
    """
L
Luo Tao 已提交
2205
    This function gets the first step of sequence.
L
Luo Tao 已提交
2206 2207 2208 2209

    .. code-block:: text

       x is a 1-level LoDTensor:
2210
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2211 2212 2213 2214 2215
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2216
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2217
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2218

L
Luo Tao 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2228

Y
yangyaming 已提交
2229
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2230 2231 2232
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2233 2234 2235
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2236
def sequence_last_step(input):
L
Luo Tao 已提交
2237
    """
L
Luo Tao 已提交
2238
    This function gets the last step of sequence.
L
Luo Tao 已提交
2239 2240 2241 2242

    .. code-block:: text

       x is a 1-level LoDTensor:
2243
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2244 2245 2246 2247 2248
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2249
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2250
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2251

L
Luo Tao 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2261

Y
yangyaming 已提交
2262
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2263 2264 2265
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2266 2267 2268
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2269 2270 2271 2272
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2273
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2274 2275 2276 2277 2278
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2279

Y
Yibing Liu 已提交
2280 2281
	- Case:

2282
            Given the input Variable **input**:
2283

2284 2285 2286
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2287

2288
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2289

2290
            the output Variable will be
2291

2292 2293 2294
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2295 2296

    NOTE: The first dimension size of **input**, **offset** and **length**
2297
          should be equal. The **offset** should start from 0.
2298

Y
Yibing Liu 已提交
2299
    Args:
2300
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2301
                         sequences.
Y
Yibing Liu 已提交
2302 2303 2304 2305 2306 2307
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2308
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2319
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2320 2321 2322 2323
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2324
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2339
@templatedoc()
Y
Yu Yang 已提交
2340
def pool2d(input,
C
chengduoZH 已提交
2341 2342
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2343 2344
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2345
           global_pooling=False,
C
chengduoZH 已提交
2346
           use_cudnn=True,
2347
           ceil_mode=False,
2348 2349
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2350
    """
F
fengjiayi 已提交
2351
    ${comment}
2352 2353

    Args:
2354 2355 2356
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2357
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2358
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2359 2360
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2361
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2362 2363 2364 2365 2366 2367
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2368 2369 2370
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2371
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2372
                        layer will be named automatically.
2373
        exclusive (bool): Whether to exclude padding points in average pooling
2374
                          mode, default is true
F
fengjiayi 已提交
2375

2376
    Returns:
F
fengjiayi 已提交
2377
        Variable: The pooling result.
F
fengjiayi 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2391 2392 2393 2394
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2395
                            global_pooling=False)
Y
Yu Yang 已提交
2396 2397 2398 2399 2400
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2401

C
chengduoZH 已提交
2402 2403 2404 2405 2406
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2407 2408 2409 2410
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2411 2412
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2413

C
Add doc  
chengduoZH 已提交
2414
    l_type = 'pool2d'
2415 2416

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2417
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2418
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2419 2420

    helper.append_op(
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2432 2433
            "use_mkldnn": False,
            "exclusive": exclusive,
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2447 2448
           name=None,
           exclusive=True):
2449 2450
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2451
    pooling configurations mentioned in input parameters.
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2464
        exclusive (bool): Whether to exclude padding points in average pooling
2465
                          mode, default is true
2466

2467
    Returns:
2468
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2469 2470 2471 2472 2473
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2474

C
chengduoZH 已提交
2475 2476 2477 2478 2479
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2480 2481 2482
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2483

C
chengduoZH 已提交
2484 2485
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2486

2487 2488
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2489
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2490
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2491 2492

    helper.append_op(
2493
        type=l_type,
Y
Yu Yang 已提交
2494 2495 2496 2497 2498 2499 2500
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2501
            "paddings": pool_padding,
2502
            "use_cudnn": use_cudnn,
2503
            "ceil_mode": ceil_mode,
2504 2505
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2506 2507 2508 2509 2510
        })

    return pool_out


2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2558 2559
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2560
          pool_out = fluid.layers.adaptive_pool2d(
2561 2562
                            input=data,
                            pool_size=[3, 3],
2563
                            pool_type='avg')
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2605
    return (pool_out, mask) if require_index else pool_out
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2659 2660
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2661
          pool_out, mask = fluid.layers.adaptive_pool3d(
2662 2663
                            input=data,
                            pool_size=[3, 3],
2664
                            pool_type='avg')
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2706
    return (pool_out, mask) if require_index else pool_out
2707 2708


Y
Yu Yang 已提交
2709 2710 2711 2712 2713 2714 2715
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2716
               data_layout='NCHW',
Y
Yang Yang 已提交
2717
               in_place=False,
2718 2719
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2720
               moving_variance_name=None,
2721
               do_model_average_for_mean_and_var=False,
2722 2723
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2724
    """
Q
qiaolongfei 已提交
2725 2726 2727 2728
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2729

Q
qiaolongfei 已提交
2730
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2731

Q
qiaolongfei 已提交
2732 2733
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2734 2735 2736
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2763
    Args:
Q
qiaolongfei 已提交
2764
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2765 2766 2767 2768
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2769 2770 2771 2772 2773 2774 2775 2776
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2777
        data_layout(string, default NCHW): NCHW|NHWC
2778
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2779 2780 2781 2782
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2783
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2784
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2785 2786 2787 2788 2789
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2790 2791

    Returns:
Q
qiaolongfei 已提交
2792
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2793 2794 2795 2796 2797 2798 2799

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2800
    """
C
chengduo 已提交
2801
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2802 2803 2804
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2805 2806 2807 2808
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2826 2827 2828
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2829 2830

    bias = helper.create_parameter(
2831
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2832 2833 2834
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2835

2836 2837
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2838 2839 2840
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2841
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2842
        shape=param_shape,
W
Wu Yi 已提交
2843
        dtype=dtype)
2844 2845 2846 2847 2848 2849
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2850
            trainable=False,
W
wanghaoshuang 已提交
2851
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2852
        shape=param_shape,
W
Wu Yi 已提交
2853
        dtype=dtype)
2854
    variance.stop_gradient = True
Y
Yu Yang 已提交
2855 2856 2857 2858 2859 2860

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2861 2862 2863 2864
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2865

X
Xin Pan 已提交
2866 2867
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2885 2886 2887 2888
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2889
            "use_mkldnn": False,
2890 2891
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2892
        })
Y
Yu Yang 已提交
2893 2894 2895 2896

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2897
@templatedoc()
G
guosheng 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2908
    ${comment}
G
guosheng 已提交
2909 2910 2911

    The formula is as follows:

Y
yuyang18 已提交
2912
    ..  math::
G
guosheng 已提交
2913 2914 2915 2916 2917 2918 2919

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2920 2921 2922 2923 2924 2925 2926 2927
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2928

G
guosheng 已提交
2929 2930
    Args:
        input(Variable): The input tensor variable.
2931
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2932
            normalization. Default True.
2933
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2934 2935
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2936
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2937
            Default 1.
2938
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2939
            division by zero. Default 1e-05.
G
guosheng 已提交
2940
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2941 2942
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2943 2944
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2945
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2946 2947
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2948
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2949
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2950
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2951 2952 2953
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2954 2955

    Returns:
Y
yuyang18 已提交
2956
        ${y_comment}
G
guosheng 已提交
2957 2958 2959

    Examples:

Y
yuyang18 已提交
2960 2961 2962
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2978
    if shift:
G
guosheng 已提交
2979 2980 2981 2982 2983 2984
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2985 2986 2987 2988 2989
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3083 3084 3085 3086
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3087 3088 3089
                     padding=0,
                     stride=1,
                     dilation=1,
3090
                     groups=None,
C
caoying03 已提交
3091
                     param_attr=None,
3092
                     bias_attr=None,
C
chengduoZH 已提交
3093
                     use_cudnn=True,
3094
                     act=None,
C
caoying03 已提交
3095
                     name=None):
Y
Yu Yang 已提交
3096
    """
3097 3098 3099 3100 3101 3102 3103 3104
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3105 3106
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3107 3108 3109
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3110 3111 3112 3113 3114

    For each input :math:`X`, the equation is:

    .. math::

3115
        Out = \sigma (W \\ast X + b)
3116

3117
    Where:
3118 3119 3120

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3121 3122 3123 3124
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3125

3126 3127 3128 3129
    Example:

        - Input:

3130
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3131

3132
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3133 3134 3135

        - Output:

3136
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3137 3138

        Where
Y
Yu Yang 已提交
3139

3140 3141
        .. math::

3142 3143 3144 3145
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3146 3147

    Args:
3148 3149 3150 3151
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3152 3153 3154 3155
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3184
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3185 3186 3187
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3188
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3189
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3190 3191

    Returns:
3192
        Variable: The tensor variable storing the convolution transpose result.
3193 3194

    Raises:
3195 3196
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3197 3198 3199 3200

    Examples:
       .. code-block:: python

3201 3202
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3203
    """
C
chengduo 已提交
3204
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3205 3206 3207 3208 3209 3210 3211 3212
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3213 3214 3215
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3216 3217 3218
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3219

C
chengduoZH 已提交
3220 3221
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3222

Y
Yu Yang 已提交
3223 3224 3225 3226 3227
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3228

Y
Yu Yang 已提交
3229 3230
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3231

C
chengduoZH 已提交
3232
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3233
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3234
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3235
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3236
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3237 3238 3239
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3240

3241 3242 3243 3244 3245 3246 3247
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3248
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3249
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3250

Y
Yu Yang 已提交
3251 3252 3253
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3254
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3255
    helper.append_op(
3256
        type=op_type,
Y
Yu Yang 已提交
3257 3258
        inputs={'Input': [input],
                'Filter': [img_filter]},
3259
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3260
        attrs={
3261
            'output_size': output_size,
3262 3263 3264 3265 3266
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3267 3268
        })

3269 3270 3271
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3272 3273


3274
def conv3d_transpose(input,
Y
Yu Yang 已提交
3275 3276 3277
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3278 3279 3280
                     padding=0,
                     stride=1,
                     dilation=1,
3281
                     groups=None,
C
caoying03 已提交
3282
                     param_attr=None,
3283
                     bias_attr=None,
C
chengduoZH 已提交
3284
                     use_cudnn=True,
3285
                     act=None,
C
caoying03 已提交
3286
                     name=None):
Y
Yu Yang 已提交
3287
    """
3288
    **Convlution3D transpose layer**
3289

3290
    The convolution3D transpose layer calculates the output based on the input,
3291
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3292 3293 3294 3295 3296 3297
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3298 3299 3300
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3301 3302 3303 3304 3305

    For each input :math:`X`, the equation is:

    .. math::

3306
        Out = \sigma (W \\ast X + b)
3307 3308 3309

    In the above equation:

3310 3311
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3312 3313 3314 3315
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3316

3317 3318 3319 3320
    Example:

        - Input:

3321
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3322

3323
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3324 3325 3326

        - Output:

3327
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3328 3329

        Where
Y
Yu Yang 已提交
3330

3331 3332
        .. math::

3333 3334 3335
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3336 3337

    Args:
3338
        input(Variable): The input image with [N, C, D, H, W] format.
3339 3340 3341
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3342
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3343 3344
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3345
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3346 3347 3348
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3349 3350
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3351
        stride(int|tuple): The stride size. If stride is a tuple, it must
3352 3353
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3354
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3355 3356 3357
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3358 3359 3360 3361 3362
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3372 3373
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3374 3375
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3376 3377
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3378 3379

    Returns:
3380
        Variable: The tensor variable storing the convolution transpose result.
3381 3382

    Raises:
3383 3384
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3385 3386 3387 3388

    Examples:
       .. code-block:: python

3389 3390
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3391
    """
C
chengduo 已提交
3392
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3393 3394
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3395
    if not isinstance(input, Variable):
3396
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3397 3398
    input_channel = input.shape[1]

3399 3400 3401
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3402

C
chengduoZH 已提交
3403 3404 3405
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3406 3407 3408 3409 3410 3411
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3412 3413 3414
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3415

3416
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3417
                         padding[0] - 1) // dilation[0] + 1
3418
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3419
                         padding[1] - 1) // dilation[1] + 1
3420
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3421
                         padding[2] - 1) // dilation[2] + 1
3422
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3423
    else:
3424 3425
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3426

3427
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3428
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3429 3430 3431
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3432
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3433
    helper.append_op(
3434
        type=l_type,
Y
Yu Yang 已提交
3435 3436
        inputs={'Input': [input],
                'Filter': [img_filter]},
3437
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3438 3439 3440 3441
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3442
            'groups': groups,
C
chengduoZH 已提交
3443 3444
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3445

3446 3447
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3448
    return out
Y
yangyaming 已提交
3449 3450


Y
yangyaming 已提交
3451
def sequence_expand(x, y, ref_level=-1, name=None):
3452
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3453 3454 3455 3456
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3457 3458 3459 3460 3461

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3462
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3463
                x.data = [[a], [b], [c], [d]]
3464 3465 3466
                x.dims = [4, 1]

            y is a LoDTensor:
3467 3468
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3469

Y
yangyaming 已提交
3470
            ref_level: 0
3471

Y
yangyaming 已提交
3472
            then output is a 1-level LoDTensor:
3473
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3474
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3475 3476 3477 3478
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3479
                x.data = [[a], [b], [c]]
3480 3481 3482
                x.dims = [3, 1]

            y is a LoDTensor:
3483
                y.lod = [[2, 0, 3]]
3484

Y
yangyaming 已提交
3485
            ref_level: -1
3486

Y
yangyaming 已提交
3487 3488 3489
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3490 3491 3492
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3493 3494
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3495
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3496
                        will be named automatically.
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3507
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3508
    """
Y
yangyaming 已提交
3509
    helper = LayerHelper('sequence_expand', input=x, **locals())
3510
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3511
    tmp = helper.create_variable_for_type_inference(dtype)
3512
    helper.append_op(
Y
yangyaming 已提交
3513 3514 3515 3516 3517
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3518
    return tmp
3519 3520


C
chengduo 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3577
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3578 3579 3580 3581 3582 3583 3584 3585
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3586
@templatedoc()
3587
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3588 3589 3590 3591 3592
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3593 3594 3595
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3596
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3597 3598 3599 3600
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3601 3602 3603
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3604

F
fengjiayi 已提交
3605
    Returns:
M
minqiyang 已提交
3606
        Variable: The padded sequence batch and the original lengths before
3607
                  padding. All sequences has the same length.
M
minqiyang 已提交
3608

F
fengjiayi 已提交
3609 3610 3611 3612 3613 3614 3615
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3616
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3617
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3618 3619 3620 3621 3622
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3623 3624
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3625 3626 3627 3628

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3629 3630 3631 3632 3633 3634
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3635 3636
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3637
        attrs={'padded_length': maxlen})
3638
    return out, length
F
fengjiayi 已提交
3639 3640


3641
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3642
    """
3643
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3644

3645 3646
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3656 3657 3658
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3659
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3660 3661 3662 3663 3664 3665

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3666
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3667 3668 3669 3670 3671 3672

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3673 3674
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3689
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3701 3702 3703 3704 3705 3706 3707 3708 3709
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3710 3711
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3712 3713 3714

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3715 3716

    This layer does the search in beams for one time step. Specifically, it
3717 3718 3719 3720 3721 3722
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3723

3724 3725 3726 3727 3728 3729 3730 3731
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3732

3733
    Args:
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3759

3760
    Returns:
3761 3762
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3763 3764 3765 3766

    Examples:
        .. code-block:: python

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3784 3785 3786 3787
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3788 3789 3790
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3791 3792 3793 3794 3795

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3796
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3814 3815 3816 3817 3818 3819 3820
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3821

3822 3823 3824 3825 3826 3827 3828 3829 3830
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3831

3832 3833 3834 3835 3836 3837
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3838

3839 3840
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3841

3842 3843 3844 3845 3846 3847
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3848 3849
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3865 3866 3867 3868
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3869
              param_attr=None,
C
caoying03 已提交
3870 3871
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3872 3873 3874 3875
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3876
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3877

3878
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3879

3880
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3881

3882
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3883 3884 3885

            h_t & = o_t tanh(c_t)

3886 3887 3888 3889 3890 3891
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3892 3893 3894

        .. math::

3895
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3896 3897 3898 3899 3900 3901 3902 3903

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3904
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3905 3906

    Args:
Y
yangyaming 已提交
3907 3908 3909 3910 3911 3912
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3913
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3926 3927
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3928 3929

    Returns:
Y
yangyaming 已提交
3930
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3931 3932

    Raises:
3933 3934 3935 3936
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3937 3938 3939 3940 3941 3942

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3943
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3944
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3945
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3962
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3963 3964 3965 3966
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3967 3968
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3969 3970 3971
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3972
    size = cell_t_prev.shape[1]
3973
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3974 3975
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3976
                param_attr=param_attr,
3977
                bias_attr=bias_attr)
Y
yangyaming 已提交
3978
    dtype = x_t.dtype
X
Xin Pan 已提交
3979 3980
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3981 3982 3983 3984 3985 3986 3987 3988 3989

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3990
    return h, c
G
guosheng 已提交
3991 3992


C
caoying03 已提交
3993
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3994
    """
Y
yangyaming 已提交
3995
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3996 3997 3998

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3999
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4000 4001
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4002 4003
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4004
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4005
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4006
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4007 4008
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4009 4010 4011

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4012

G
guosheng 已提交
4013 4014 4015 4016 4017 4018
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4019
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4020 4021 4022 4023
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4024 4025 4026 4027

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4028
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4029 4030 4031
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4032 4033
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4034
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4035 4036
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4037 4038 4039 4040 4041
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4042
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4043 4044 4045 4046
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4047 4048


C
caoying03 已提交
4049
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4050
    """
Y
Yibing Liu 已提交
4051
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4052 4053 4054

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4055 4056 4057
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4058
            must be in the range :math:`[-rank(input), rank(input))`. If
4059
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4060
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4061 4062
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4063
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4064
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4065
                       will be named automatically.
G
guosheng 已提交
4066 4067

    Returns:
Y
Yibing Liu 已提交
4068
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4069

G
guosheng 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4080 4081
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4082 4083 4084 4085 4086 4087 4088

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4089 4090
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4091
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4092 4093
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4094 4095 4096 4097 4098
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4099
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4100 4101 4102 4103
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4104 4105


C
caoying03 已提交
4106
def reduce_max(input, dim=None, keep_dim=False, name=None):
4107
    """
Y
yangyaming 已提交
4108
    Computes the maximum of tensor elements over the given dimension.
4109 4110 4111

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4112
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4113 4114 4115
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4116
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4117 4118
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4119
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4120 4121
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4122 4123 4124

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4137 4138 4139 4140 4141 4142 4143

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4144 4145
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4146
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4147 4148
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4149 4150 4151 4152 4153
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4154
            'dim': dim if dim != None else [0],
4155 4156 4157 4158 4159 4160
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4161
def reduce_min(input, dim=None, keep_dim=False, name=None):
4162
    """
Y
yangyaming 已提交
4163
    Computes the minimum of tensor elements over the given dimension.
4164 4165 4166

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4167
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4168 4169 4170
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4171
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4172 4173
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4174
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4175 4176
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4177 4178 4179

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4192 4193 4194 4195 4196 4197 4198

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4199 4200
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4201
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4202 4203
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4204 4205 4206 4207 4208
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4209
            'dim': dim if dim != None else [0],
4210 4211 4212 4213
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4214 4215


4216 4217 4218 4219 4220 4221
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4222
        dim (list|int|None): The dimensions along which the product is performed. If
4223 4224
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4225 4226
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4227 4228 4229
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4230
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4231
            layer will be named automatically.
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4246
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4247
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4248 4249 4250 4251 4252 4253 4254

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4255 4256
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4257
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4258 4259
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4260 4261 4262 4263 4264
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4265
            'dim': dim if dim != None else [0],
4266 4267 4268 4269 4270 4271
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4272
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4273
    """
C
caoying03 已提交
4274
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4275 4276 4277

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4278 4279 4280 4281 4282
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4283
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4284
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4285
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4286 4287
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4288 4289

    Returns:
D
dzhwinter 已提交
4290
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4300 4301
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4317
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4340
    .. math::
4341 4342

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4343 4344 4345 4346 4347

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4348
        x(Variable|list): The input tensor to l2_normalize layer.
4349
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4350 4351
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4352
        epsilon(float): The epsilon value is used to avoid division by zero, \
4353
            the defalut value is 1e-10.
4354
        name(str|None): A name for this layer(optional). If set None, the layer \
4355
            will be named automatically.
C
caoying03 已提交
4356 4357

    Returns:
4358
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4359 4360

    Examples:
4361

C
caoying03 已提交
4362 4363
        .. code-block:: python

4364 4365 4366 4367
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4368 4369
    """

F
fengjiayi 已提交
4370 4371
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4372 4373
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4374 4375
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4376
    helper.append_op(
4377 4378 4379 4380
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4381
        attrs={
4382 4383
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4384 4385
        })
    return out
4386 4387


S
sneaxiy 已提交
4388
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4389
    """
Y
ying 已提交
4390 4391 4392 4393
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4394

C
chengduoZH 已提交
4395
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4396
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4397

4398 4399 4400 4401 4402
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4403
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4404

C
chengduoZH 已提交
4405
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4406
      performs in the following way.
G
guosheng 已提交
4407

4408
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4409
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4410
        last two dimensions and a batched matrix multiply supporting broadcast
4411
        applies on the two tensors.
G
guosheng 已提交
4412

Y
ying 已提交
4413 4414
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4415
    removed after matrix multiplication.
G
guosheng 已提交
4416 4417 4418

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4419 4420 4421
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4422
        alpha (float): The scale of output. Default 1.0.
4423
        name(str|None): A name for this layer(optional). If set None, the layer
4424
            will be named automatically.
G
guosheng 已提交
4425 4426

    Returns:
4427
        Variable: The product Tensor variable.
G
guosheng 已提交
4428

G
guosheng 已提交
4429 4430 4431
    Examples:
        .. code-block:: python

4432
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4433 4434
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4435

4436 4437
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4438

4439 4440
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4441

4442 4443
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4444 4445 4446 4447

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4448 4449
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4450

Y
ying 已提交
4451
            # x: [M], y: [N]
4452
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4453
    """
Y
ying 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4466
            y_shape = y_shape + [1]
Y
ying 已提交
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4483
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4484
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4485
    helper.append_op(
4486 4487 4488 4489
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4490 4491 4492
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4493
            'alpha': float(alpha),
S
sneaxiy 已提交
4494
        })
4495
    return out
4496 4497


4498
def topk(input, k, name=None):
Q
qingqing01 已提交
4499 4500 4501 4502
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4503
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4504 4505 4506 4507 4508 4509
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4531 4532 4533
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4534
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4535
                 of input.
4536
        name(str|None): A name for this layer(optional). If set None, the layer
4537
                       will be named automatically.
F
fengjiayi 已提交
4538
                       Default: None
Q
qingqing01 已提交
4539 4540

    Returns:
4541 4542 4543
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4544
        within the last dimension of input.
Q
qingqing01 已提交
4545

F
fengjiayi 已提交
4546 4547
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4548 4549 4550 4551 4552 4553 4554

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4555 4556
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4568
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4569
    """
Y
ying 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4579

Y
ying 已提交
4580
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4581

4582
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4583 4584
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4585
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4586

4587
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4588 4589
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4590

4591 4592 4593
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4594
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4595
                          the length of reference string.
4596
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4597
                                     calculating edit distance.
4598
        name (str): The name of this layer. It is optional.
4599

W
wanghaoshuang 已提交
4600
    Returns:
W
wanghaoshuang 已提交
4601
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4602 4603 4604 4605

    Examples:
        .. code-block:: python

T
tink2123 已提交
4606 4607
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4608
            cost = fluid.layers.edit_distance(input=x,label=y)
4609
    """
4610
    helper = LayerHelper("edit_distance", **locals())
4611

4612
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4613
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4614 4615
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4616 4617 4618 4619 4620

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4621
            attrs={"tokens": ignored_tokens})
4622 4623 4624 4625 4626
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4627
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4628
            attrs={"tokens": ignored_tokens})
4629 4630
        label = erased_label

4631
    # edit distance op
X
Xin Pan 已提交
4632 4633
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4634 4635 4636 4637
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4638 4639
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4640 4641
        attrs={"normalized": normalized})

4642
    return edit_distance_out, sequence_num
4643 4644 4645 4646 4647


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4648

Y
ying 已提交
4649 4650 4651 4652
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4670
        input.lod = [[4, 4]]
4671

W
whs 已提交
4672
        Computation:
4673

W
whs 已提交
4674 4675 4676 4677 4678 4679
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4680 4681 4682 4683 4684

        output.data = [[2],
                       [1],
                       [3]]

4685
        output.lod = [[2, 1]]
4686

W
whs 已提交
4687

4688 4689
    Args:

Y
ying 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4699
        name (str): The name of this layer. It is optional.
4700 4701

    Returns:
W
whs 已提交
4702 4703
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
4704
                  in result were empty, the result LoDTensor will be [-1] with
W
whs 已提交
4705
                  LoD [[]] and dims [1, 1].
4706 4707 4708 4709 4710

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4711

4712
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4713
    """
4714
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4715
    _, topk_indices = topk(input, k=1)
4716 4717

    # ctc align op
X
Xin Pan 已提交
4718
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4719 4720 4721
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4722
        outputs={"Output": [ctc_out]},
4723 4724
        attrs={"merge_repeated": True,
               "blank": blank})
4725
    return ctc_out
4726 4727


W
Wu Yi 已提交
4728
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4729
    """
4730 4731
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4732
    to compute Connectionist Temporal Classification (CTC) loss.
4733 4734
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4735 4736 4737
    input tensor.

    Args:
4738
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4739 4740 4741 4742
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4743
       label (Variable): The ground truth of variable-length sequence,
4744 4745 4746
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4747 4748
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4749 4750 4751
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4752
         follewed by a mean_op.
W
Wu Yi 已提交
4753
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4754 4755

    Returns:
4756 4757
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4758 4759

    Examples:
4760

W
wanghaoshuang 已提交
4761
        .. code-block:: python
4762

4763 4764 4765
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4766 4767

    """
F
fengjiayi 已提交
4768
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4769 4770
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4771 4772 4773 4774 4775 4776
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4777 4778 4779 4780 4781
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4782
    return loss_out
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4798 4799 4800
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4801 4802 4803 4804 4805
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4806

4807
            out.lod  = [[0, 1, 3]]
4808 4809 4810 4811

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4812 4813 4814 4815 4816 4817 4818
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4819 4820 4821

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4822 4823

    Returns:
4824

4825 4826 4827 4828 4829
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4830
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4831
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4832 4833
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4834
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4835 4836 4837 4838 4839 4840
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4841 4842


4843 4844 4845 4846
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4847 4848 4849 4850 4851 4852
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4853
        num_neg_samples=None,
4854 4855 4856
        name=None,
        sampler="uniform",
        custom_dist=None,
4857 4858
        seed=0,
        is_sparse=False):
4859 4860 4861 4862 4863 4864 4865
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4866 4867
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4868
            sample is 1.0.
C
chengduo 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4878
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4879 4880
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4881 4882 4883
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4884
        custom_dist (float[]): A float[] with size=num_total_classes.
4885 4886 4887 4888
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4889
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4890

4891
    Returns:
Y
Yibing Liu 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4919 4920 4921 4922 4923 4924 4925 4926 4927

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4928

4929
    """
Y
Yang Yu 已提交
4930 4931 4932
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4933 4934

    dim = input.shape[1]
Y
Yang Yu 已提交
4935 4936 4937 4938 4939 4940
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4941
    inputs = {}
C
chengduo 已提交
4942 4943 4944 4945 4946 4947 4948
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4949 4950 4951
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4952

4953 4954 4955 4956
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4957 4958 4959 4960 4961 4962 4963

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5016 5017 5018 5019
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5020 5021 5022 5023 5024
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5025 5026
    attrs = {
        'num_total_classes': int(num_total_classes),
5027 5028
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5029 5030
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5031
    }
Y
Yang Yu 已提交
5032 5033 5034

    helper.append_op(
        type='nce',
C
chengduo 已提交
5035
        inputs=inputs,
Y
Yang Yu 已提交
5036 5037 5038 5039 5040 5041
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5042
    return cost / (num_neg_samples + 1)
5043 5044


C
chengduo 已提交
5045 5046
def hsigmoid(input,
             label,
5047
             num_classes,
C
chengduo 已提交
5048 5049
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5050
             name=None,
5051 5052 5053
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5054
             is_sparse=False):
W
weixing02 已提交
5055 5056
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5057
    process of language model. This operator organizes the classes into a
5058
    complete binary tree, or you can use is_custom to pass your own tree to
5059
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5060 5061 5062 5063 5064 5065
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5066
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5067
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5068

5069 5070 5071 5072 5073
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
5074
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
5075 5076 5077
        related to the same batch of inputs.


W
weixing02 已提交
5078
    Args:
M
minqiyang 已提交
5079
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5080 5081 5082 5083
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5084 5085
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5086
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5098
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5099
            it should be in leaf -> root order
5100 5101 5102
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5103
            each code consist with every code of parent nodes. it should be in leaf -> root order
5104
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5105
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5106
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5107
             of W and input will be sparse.
W
weixing02 已提交
5108 5109

    Returns:
J
JiabinYang 已提交
5110
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5111 5112 5113 5114 5115

    Examples:

        .. code-block:: python

G
guosheng 已提交
5116 5117 5118
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5119 5120 5121 5122
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5123 5124
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5125
    dim = input.shape[1]
5126
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5127 5128 5129
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5130 5131 5132 5133
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5134 5135
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5136 5137 5138
    else:
        pass

J
JiabinYang 已提交
5139 5140
    weights = None

5141
    if not is_custom:
J
JiabinYang 已提交
5142 5143 5144 5145 5146 5147 5148 5149
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5150
            shape=[num_classes, dim],
J
JiabinYang 已提交
5151 5152
            is_bias=False,
            dtype=input.dtype)
5153 5154 5155
    inputs = {
        "X": input,
        "W": weights,
5156 5157
        "PTable": path_table,
        "PathCode": path_code,
5158 5159
        "Label": label
    }
W
weixing02 已提交
5160
    if helper.bias_attr:
5161
        if not is_custom:
J
JiabinYang 已提交
5162 5163
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5164
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5165 5166 5167 5168 5169 5170
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5171
                shape=[num_classes, 1],
J
JiabinYang 已提交
5172 5173 5174
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5175 5176
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5177
        inputs=inputs,
W
weixing02 已提交
5178 5179
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5180 5181
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5182 5183 5184
    return out


Y
fix ci.  
ying 已提交
5185
def transpose(x, perm, name=None):
Y
ying 已提交
5186 5187 5188 5189 5190 5191 5192
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5193 5194 5195
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5196 5197 5198 5199 5200 5201 5202

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5203
            # use append_batch_size=False to avoid prepending extra
5204
            # batch size in shape
5205
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5206
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5207
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5208 5209
    """

Y
fix ci.  
ying 已提交
5210
    if len(perm) != len(x.shape):
Y
ying 已提交
5211 5212 5213
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5214 5215 5216 5217 5218 5219
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5220 5221

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5222 5223
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5224
    helper.append_op(
5225
        type='transpose2',
Y
fix ci.  
ying 已提交
5226
        inputs={'X': [x]},
5227 5228
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5229 5230
        attrs={'axis': perm})
    return out
5231 5232


5233 5234 5235 5236 5237 5238 5239
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5240
    """
5241 5242 5243 5244 5245 5246 5247
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5276 5277 5278 5279 5280 5281 5282 5283 5284
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5285 5286 5287
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5288 5289 5290 5291 5292
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5320 5321 5322
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5335
            output.dims = {8, 8}
5336

5337
            output.lod = [[4, 4]]
5338

T
Tink_Y 已提交
5339
    Examples:
5340 5341 5342

        .. code-block:: python

5343 5344
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5345 5346

    """
W
wanghaoshuang 已提交
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5357 5358 5359 5360 5361 5362 5363
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5364
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5365
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5366
    helper.append_op(
5367
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5368
    return out
5369 5370


Y
yuyang18 已提交
5371
@templatedoc()
5372
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5373 5374
    """
    ${comment}
5375 5376

    Args:
Y
yuyang18 已提交
5377
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5378 5379
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5380 5381 5382 5383 5384
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5385
        ${out_comment}.
5386 5387

    Examples:
Y
yuyang18 已提交
5388 5389 5390 5391
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5392 5393 5394 5395 5396 5397
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5398
    out = helper.create_variable_for_type_inference(dtype)
5399 5400 5401 5402 5403
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5404
    return helper.append_activation(out)
5405 5406


Y
yuyang18 已提交
5407
@templatedoc()
5408 5409
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5410 5411 5412 5413 5414 5415 5416
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5417 5418

    Args:
Y
yuyang18 已提交
5419 5420
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5421 5422

    Returns:
Y
yuyang18 已提交
5423
        ${out_comment}.
5424 5425
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5426 5427 5428 5429 5430

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5431
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5432 5433 5434 5435 5436 5437
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5438 5439


5440 5441 5442
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5443
                               ignore_index=kIgnoreIndex,
5444 5445
                               numeric_stable_mode=False,
                               return_softmax=False):
5446 5447
    """
    **Softmax With Cross Entropy Operator.**
5448

5449 5450 5451 5452
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5453

5454 5455 5456
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5457

5458 5459 5460
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5461

5462
    The equation is as follows:
5463

5464
    1) Hard label (one-hot label, so every sample has exactly one class)
5465

5466 5467 5468 5469
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5470

5471 5472 5473
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5474

5475 5476 5477 5478
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5479 5480 5481
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5482

S
sneaxiy 已提交
5483 5484 5485 5486 5487 5488 5489 5490
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5491 5492 5493 5494 5495 5496 5497 5498
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5499 5500
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5501
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5502 5503 5504
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5505 5506 5507
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5508
                                    stable algorithm. Default: False
5509
        return_softmax (bool): A flag indicating whether to return the softmax
5510
                               along with the cross entropy loss. Default: False
5511

5512
    Returns:
5513 5514 5515 5516
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5517
                              2-D tensor with shape [N x K].
5518 5519 5520 5521 5522 5523 5524

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5525 5526
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5527 5528
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5529 5530
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5531 5532 5533 5534 5535 5536
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5537 5538 5539 5540 5541
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5542 5543 5544 5545

    if return_softmax:
        return loss, softmax

5546 5547 5548 5549 5550
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5551 5552
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5553
    For each instance, it computes the smooth L1 loss element by element first
5554
    and then sums all the losses. So the shape of ouput Variable is
5555
    [batch_size, 1].
5556

5557 5558
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5559
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5560
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5561
            L1 loss op with same shape as :attr:`x`.
5562
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5563 5564
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5565
            by this tensor element by element.
5566
        outside_weight (Variable|None): A tensor with rank at least 2. This
5567 5568
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5569
            element by element.
5570
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5571 5572
           scalar with default value 1.0.

5573
    Returns:
5574
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5575 5576 5577 5578 5579

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5580 5581
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5582
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5583
            out = fluid.layers.smooth_l1(x=fc, y=label)
5584
    """
5585

5586
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5587 5588
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5601 5602 5603 5604


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5605
    This layer creates the one-hot representations for input indices.
5606 5607

    Args:
Y
Yibing Liu 已提交
5608 5609
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5610 5611

    Returns:
Y
Yibing Liu 已提交
5612
        Variable: The one-hot representations of input.
5613 5614

    Examples:
C
caoying03 已提交
5615
        .. code-block:: python
5616

Y
Yibing Liu 已提交
5617 5618
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5619 5620
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5621
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5622 5623 5624 5625 5626 5627
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5628 5629


Y
Yu Yang 已提交
5630
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5631
    """
Y
yi.wu 已提交
5632 5633 5634
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5635 5636 5637 5638 5639 5640

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5641 5642
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5643 5644 5645 5646 5647 5648

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5649 5650
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5651 5652
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5653 5654 5655 5656 5657
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5658
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5659
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5660 5661
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5662 5663
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5664 5665 5666
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5667 5668


5669
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5670
    """
C
caoying03 已提交
5671 5672
    Gives a new shape to the input Tensor without changing its data.

5673 5674 5675 5676 5677
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5678

5679
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5680

5681 5682 5683 5684
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5685
    2. 0 means the actual dimension value is going to be copied from the
5686 5687 5688 5689
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5690 5691

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5692
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5693
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5694

5695
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5696 5697
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5698 5699
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5700
    dimensions.
C
caoying03 已提交
5701

5702
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5703 5704 5705 5706
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5707 5708

    Args:
5709
        x(variable): The input tensor.
C
caoying03 已提交
5710 5711
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5712 5713 5714 5715 5716
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5717 5718
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5719 5720 5721 5722 5723 5724 5725
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5726
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5727

5728
    Returns:
G
guosheng 已提交
5729 5730 5731 5732
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5733

X
Xin Pan 已提交
5734 5735 5736
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5737 5738
    Examples:
        .. code-block:: python
G
guosheng 已提交
5739

5740
            data = fluid.layers.data(
5741
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5742
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5743
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5744 5745 5746
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5747
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5748 5749 5750 5751 5752
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5753

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5769
    helper = LayerHelper("reshape2", **locals())
5770 5771
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5772
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5773
    helper.append_op(
5774
        type="reshape2",
X
Xin Pan 已提交
5775
        inputs=inputs,
D
dzhwinter 已提交
5776
        attrs={"shape": shape},
5777 5778
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5779

D
dzhwinter 已提交
5780
    return helper.append_activation(out)
5781

5782

5783
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5784
    """
M
minqiyang 已提交
5785 5786 5787
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5788
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5789

Y
Yibing Liu 已提交
5790 5791
    Examples:
    Case 1:
M
minqiyang 已提交
5792
      Given
Y
Yibing Liu 已提交
5793 5794 5795 5796 5797 5798 5799 5800
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5801
        and
Y
Yibing Liu 已提交
5802 5803 5804
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5805

Y
Yibing Liu 已提交
5806
    Args:
5807
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5808
        axes (list): List of integers, indicating the dimensions to be squeezed.
5809
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5810 5811 5812 5813 5814 5815 5816 5817

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5818
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5819 5820
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5821 5822
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5823
    helper.append_op(
5824
        type="squeeze2",
5825
        inputs={"X": input},
Y
Yibing Liu 已提交
5826
        attrs={"axes": axes},
5827 5828
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5829

5830 5831 5832
    return out


5833
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5834
    """
M
minqiyang 已提交
5835 5836 5837
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5838

M
minqiyang 已提交
5839 5840
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5841
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5842

Y
Yibing Liu 已提交
5843
    Args:
5844
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5845
        axes (list): List of integers, indicating the dimensions to be inserted.
5846
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5847 5848 5849 5850 5851 5852 5853 5854

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5855
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5856 5857
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5858 5859
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5860
    helper.append_op(
5861
        type="unsqueeze2",
5862
        inputs={"X": input},
Y
Yibing Liu 已提交
5863
        attrs={"axes": axes},
5864 5865
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5866

5867 5868
    return out

5869

Y
yangyaming 已提交
5870
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5871
    """
Y
Yibing Liu 已提交
5872
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5873 5874 5875 5876
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5877
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5878 5879 5880 5881 5882 5883

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5884
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5885 5886 5887
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5888
            target_lod: [4, 2]
Y
yangyaming 已提交
5889 5890

            then we get a 1-level LoDTensor:
5891
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5892 5893 5894 5895 5896 5897
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5898
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5899 5900 5901 5902
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5903
                y.data = [[2, 4]]
Y
yangyaming 已提交
5904 5905 5906
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5907
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5908 5909 5910 5911 5912 5913
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5914
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5915 5916 5917 5918
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5919
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5920 5921 5922 5923
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5924
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5925 5926 5927 5928 5929
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5930
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5931
                           from :attr:`y`.
Y
yangyaming 已提交
5932
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5933
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5934 5935

    Returns:
Y
Yibing Liu 已提交
5936
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5937 5938

    Raises:
Y
Yibing Liu 已提交
5939
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5949
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5975
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6004 6005
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6018 6019 6020
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6034 6035 6036 6037


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6038
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6039
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6040

G
guosheng 已提交
6041 6042 6043 6044
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6067
                         The length of :attr:paddings must be
G
guosheng 已提交
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6078

G
guosheng 已提交
6079 6080 6081 6082 6083 6084
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6085
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6086 6087 6088 6089 6090 6091 6092
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6093 6094


C
chengduo 已提交
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6126 6127
		And
            pad_value = -1,
C
chengduo 已提交
6128

T
Tink_Y 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6164
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6165 6166 6167 6168 6169 6170 6171 6172 6173
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6174 6175 6176 6177 6178 6179 6180
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6181 6182
    called label-smoothing regularization (LSR).

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6206
                              be :math:`(1, class\_num)`.
6207 6208
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6209
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6229
    smooth_label = helper.create_variable_for_type_inference(dtype)
6230 6231 6232 6233 6234 6235 6236
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6237 6238


W
wopeizl 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6275 6276


J
jerrywgz 已提交
6277 6278 6279 6280 6281 6282
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6283 6284
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6301 6302 6303
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6304 6305 6306 6307 6308 6309
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6310
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6351 6352
        .. code-block:: python

W
whs 已提交
6353 6354 6355 6356
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6357
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6358 6359 6360 6361 6362 6363
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6364 6365


6366 6367 6368 6369
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6370 6371
                 resample='BILINEAR',
                 actual_shape=None):
6372
    """
Q
qiaolongfei 已提交
6373
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6374

6375
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6376 6377 6378
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6379

6380
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6381

6382
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6383

6384
    Args:
6385
        input (Variable): The input tensor of image resize layer,
6386 6387
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6388
        out_shape(list|tuple|Variable|None): Output shape of image resize
6389 6390
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6391
        scale(float|None): The multiplier for the input height or width.
6392 6393 6394
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6395 6396
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6397
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6398
                       currently.
6399
                       Default: 'BILINEAR'
6400 6401 6402
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6403
                                :attr:`out_shape` and :attr:`scale` specifying
6404 6405 6406 6407 6408 6409 6410
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6411 6412
                                constructing stage.
                                Default: None
6413 6414

    Returns:
Q
update  
qiaolongfei 已提交
6415 6416
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6417

6418 6419 6420
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6421
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6422 6423 6424 6425
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6426 6427 6428
    Examples:
        .. code-block:: python

6429
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6430
    """
6431 6432 6433 6434
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6435 6436
    if resample not in resample_methods:
        raise ValueError(
6437
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6438
        )
6439
    resample_type = resample_methods[resample]
6440
    if out_shape is None and scale is None:
6441
        raise ValueError("One of out_shape and scale must not be None.")
6442
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6443
    dtype = helper.input_dtype()
6444 6445 6446 6447

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6448 6449 6450
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6451
    if out_shape is not None:
6452 6453 6454 6455
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6456
            inputs['OutSize'] = out_shape
6457 6458 6459 6460 6461 6462 6463 6464
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6465 6466 6467 6468
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6469 6470 6471 6472 6473
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6474
    out = helper.create_variable_for_type_inference(dtype)
6475
    helper.append_op(
6476
        type='{}_interp'.format(resample_type),
6477
        inputs=inputs,
6478
        outputs={"Out": out},
6479 6480 6481
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6482
    return out
F
stash  
fengjiayi 已提交
6483 6484


6485
@templatedoc(op_type="bilinear_interp")
6486 6487 6488 6489 6490
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6491
    """
6492 6493
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6494 6495
    in priority order.

6496 6497 6498 6499
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6500 6501
    again in the other direction.

6502
    For details of bilinear interpolation, please refer to Wikipedia:
6503
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6504 6505 6506 6507 6508

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6509

Y
yuyang18 已提交
6510 6511 6512 6513 6514
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6515 6516 6517
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6518
                                :attr:`out_shape` and :attr:`scale` specifying
6519 6520 6521 6522 6523 6524 6525
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6526 6527
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6528 6529 6530

    Returns:
        ${out_comment}.
6531 6532 6533 6534 6535

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6536 6537
    """

6538
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6539 6540


6541
@templatedoc(op_type="nearest_interp")
6542 6543 6544 6545 6546
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6547
    """
6548
    Resize input by performing nearest neighbor interpolation in both the
6549 6550
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6551 6552
    out_shape and scale in priority order.

6553
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6554
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6555 6556 6557 6558 6559

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6560

Y
yuyang18 已提交
6561 6562 6563 6564 6565
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6566 6567 6568
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6569
                                :attr:`out_shape` and :attr:`scale` specifying
6570 6571 6572 6573 6574 6575 6576
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6577 6578
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6579 6580 6581

    Returns:
        ${out_comment}.
6582 6583 6584 6585 6586

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6587 6588
    """

6589
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6590 6591 6592 6593


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6594 6595 6596
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6597 6598 6599 6600 6601 6602 6603
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6604
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6605

6606
    Returns:
Q
update  
qiaolongfei 已提交
6607
        Variable: The output is a 4-D tensor of the shape
6608
        (num_batches, channls, out_h, out_w).
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6619 6620 6621
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6622 6623 6624
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6625 6626
def gather(input, index):
    """
Q
qiaolongfei 已提交
6627 6628
    **Gather Layer**

6629
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6630 6631 6632 6633
    of X indexed by `index` and concatenate them together.

    .. math::

6634
        Out = X[Index]
W
whs 已提交
6635 6636 6637 6638 6639 6640 6641


    .. code-block:: text


                Given:

6642 6643
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6654
        input (Variable): The source input with rank>=1.
W
whs 已提交
6655 6656 6657 6658 6659 6660
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6661

W
whs 已提交
6662 6663 6664 6665 6666 6667
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6668
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6669 6670 6671 6672 6673 6674 6675 6676
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6708
    out = helper.create_variable_for_type_inference(dtype)
6709 6710 6711 6712 6713 6714 6715 6716 6717
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6768
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6791

6792 6793 6794
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6795
    """
F
stash  
fengjiayi 已提交
6796
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6797
    dtype = x.dtype
X
Xin Pan 已提交
6798
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6799
    if seed is None:
6800
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6801
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6802
    if isinstance(seed, int):
F
fengjiayi 已提交
6803 6804 6805 6806 6807
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6808 6809 6810 6811
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6812
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6813 6814
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6815 6816
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6817
    return out
W
whs 已提交
6818 6819


6820
def log(x, name=None):
W
wanghaoshuang 已提交
6821 6822 6823 6824 6825
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6826
        Out = \\ln(x)
W
wanghaoshuang 已提交
6827 6828

    Args:
6829
        x (Variable): Input tensor.
6830 6831
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6832 6833 6834 6835 6836 6837 6838 6839

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6840
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6841 6842
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6843
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6844
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6845
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6846 6847 6848
    return out


6849
def relu(x, name=None):
W
wanghaoshuang 已提交
6850 6851
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6852
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6853 6854 6855 6856
    the tensor elementwise.

    .. math::

6857
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6858 6859

    Args:
6860
        x (Variable): The input tensor.
6861 6862
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6863 6864 6865 6866 6867 6868 6869 6870

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6871
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6872 6873
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6874
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6875
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6876 6877
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6878
    return out
6879 6880


C
chengduo 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6922 6923 6924
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6925 6926 6927 6928
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6929
    .. math::
6930 6931

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6932

6933
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6934 6935 6936 6937 6938
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6939
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6940
                           Its shape should be the same as input.
6941
        num_classes (int): The possible number of labels.
W
whs 已提交
6942 6943 6944 6945

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6946
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6947 6948 6949 6950

    Examples:

        .. code-block:: python
6951

W
whs 已提交
6952 6953 6954 6955
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6956 6957 6958
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6959 6960
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6961 6962
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6963
        outputs={
W
whs 已提交
6964 6965 6966
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6967 6968 6969
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7038
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7039 7040 7041 7042 7043

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7044
            isinstance(shape, Variable)):
7045 7046 7047 7048 7049
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7050
    out = helper.create_variable_for_type_inference(x.dtype)
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7068 7069


W
whs 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7087

W
whs 已提交
7088
              out_shape = [2, 3, 5, 5]
7089

W
whs 已提交
7090
          Step 1:
7091

W
whs 已提交
7092 7093 7094
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7095

W
whs 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7166
            isinstance(out_shape, Variable)):
W
whs 已提交
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7188 7189 7190 7191 7192 7193 7194 7195
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7196

7197 7198
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7199

7200 7201 7202 7203
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7204

7205 7206 7207 7208 7209
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7210 7211 7212

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7248
    out = helper.create_variable_for_type_inference("float32")
7249 7250 7251 7252 7253 7254 7255 7256

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7257 7258


M
minqiyang 已提交
7259 7260
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7261
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7262
    which compares left score and right score passed in.
M
minqiyang 已提交
7263
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7264 7265 7266 7267 7268 7269

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7270
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7271 7272
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7273
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7274 7275 7276
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7277
       Variable: The ranking loss.
M
minqiyang 已提交
7278
    Raises:
M
minqiyang 已提交
7279
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7280 7281 7282 7283 7284 7285 7286
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7287
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7288 7289 7290 7291 7292 7293
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7294 7295
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7319
        .. code-block:: text
W
whs 已提交
7320

T
Tink_Y 已提交
7321
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7322

T
Tink_Y 已提交
7323 7324
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7325

T
Tink_Y 已提交
7326
	      Case 0:
M
minqiyang 已提交
7327

T
Tink_Y 已提交
7328 7329 7330
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7331

T
Tink_Y 已提交
7332 7333 7334
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7335

T
Tink_Y 已提交
7336
	      Case 1:
M
minqiyang 已提交
7337

T
Tink_Y 已提交
7338 7339
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7340

T
Tink_Y 已提交
7341 7342 7343
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7344

T
Tink_Y 已提交
7345
	      Case 2:
M
minqiyang 已提交
7346

T
Tink_Y 已提交
7347 7348
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7349

T
Tink_Y 已提交
7350 7351 7352
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7353 7354


W
whs 已提交
7355 7356
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7357
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7381
    out = helper.create_variable_for_type_inference(dtype)
7382 7383 7384 7385 7386 7387 7388 7389 7390
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7391
    helper.append_op(
7392
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7393 7394 7395 7396

    return out


7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7409 7410 7411 7412 7413

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7414 7415
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7416 7417
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7418
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7439 7440 7441 7442 7443

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7444 7445
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7446 7447
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7448
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7469 7470 7471 7472 7473

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7474 7475
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7476 7477
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7478
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7500 7501 7502 7503 7504

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7505
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7506
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7507 7508
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7509
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7532 7533 7534 7535 7536

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7537 7538
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7539 7540
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7541
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7563 7564 7565 7566 7567

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7568 7569
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7570 7571
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7572
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7573 7574 7575 7576 7577 7578 7579 7580
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7581 7582 7583 7584
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7585
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7586 7587 7588

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7589
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7590
          weight (alpha).
J
jerrywgz 已提交
7591
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7592 7593 7594
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7595
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7596
          will be named automatically.
J
jerrywgz 已提交
7597 7598 7599 7600 7601 7602 7603 7604

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7605
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7619
        attr=helper.param_attr,
J
jerrywgz 已提交
7620 7621 7622 7623
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7624
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7644
    Returns:
7645
        output(${out_type}): ${out_comment}
7646 7647 7648 7649 7650 7651 7652

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7653 7654
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7655
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7674
    Returns:
7675
        output(${out_type}): ${out_comment}
7676 7677 7678 7679 7680 7681 7682

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7683 7684
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7685
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7703
    Returns:
7704
        output(${out_type}): ${out_comment}
7705 7706 7707 7708 7709 7710 7711

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7712 7713
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7714
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7715 7716 7717 7718 7719 7720 7721 7722
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7736

7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7747 7748
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7764
        ValueError: If axis is not in range [0, rank(x)].
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7781 7782
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7783
    helper.append_op(
7784
        type='flatten2',
7785
        inputs={"X": x},
7786 7787
        outputs={'Out': out,
                 'XShape': x_shape},
7788 7789
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7790 7791


C
chenweihang 已提交
7792
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7793
    """
C
chenweihang 已提交
7794
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7795
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7796 7797
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7798

C
chenweihang 已提交
7799 7800 7801 7802
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7803
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7804 7805 7806 7807 7808 7809
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7810
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7811 7812 7813
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7814 7815 7816
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7828 7829
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7830 7831 7832 7833 7834 7835
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7836
    return out
7837

7838

S
sneaxiy 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7848

S
sneaxiy 已提交
7849
    .. math::
7850

S
sneaxiy 已提交
7851 7852 7853
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7854
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7855 7856 7857 7858
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7859 7860 7861
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7862 7863
    Returns:
        Variable: The output sequence mask.
7864

S
sneaxiy 已提交
7865 7866
    """

Q
qingqing01 已提交
7867
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7868
    if name is None:
X
Xin Pan 已提交
7869
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7870
    else:
X
Xin Pan 已提交
7871
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7872

Q
qingqing01 已提交
7873 7874 7875
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7876 7877
        outputs={'Y': out},
        attrs={
7878
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7879 7880 7881
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7882 7883


X
Xin Pan 已提交
7884
def stack(x, axis=0):
S
sneaxiy 已提交
7885 7886 7887 7888
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7889 7890 7891 7892 7893 7894 7895

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7896
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7897
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7898 7899

    Args:
7900
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7901
        axis (int|None): The axis along which all inputs are stacked.
7902

S
sneaxiy 已提交
7903 7904
    Returns:
        Variable: The stacked variable.
7905

S
sneaxiy 已提交
7906 7907
    """

X
Xin Pan 已提交
7908 7909 7910 7911 7912 7913
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7914
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7915
    helper.append_op(
S
sneaxiy 已提交
7916 7917
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7918

X
Xin Pan 已提交
7919
    return out
D
dzhwinter 已提交
7920 7921 7922 7923 7924 7925 7926


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7927

D
dzhwinter 已提交
7928 7929 7930
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7931
    raised.
D
dzhwinter 已提交
7932 7933

    Args:
M
minqiyang 已提交
7934
        x (Variable): Input variable.
D
dzhwinter 已提交
7935 7936
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7937

D
dzhwinter 已提交
7938 7939
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7940

D
dzhwinter 已提交
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
7951
    for _ in range(num):
X
Xin Pan 已提交
7952
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7953 7954 7955 7956 7957 7958 7959 7960

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7973

W
whs 已提交
7974 7975 7976 7977
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7978

W
whs 已提交
7979
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7980

W
whs 已提交
7981
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7982

W
whs 已提交
7983 7984 7985 7986
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7987

W
whs 已提交
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8004
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8005 8006 8007 8008 8009 8010
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8011 8012


G
fix  
gongweibao 已提交
8013 8014 8015
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8016
@templatedoc()
G
fix  
gongweibao 已提交
8017 8018 8019 8020 8021 8022 8023 8024 8025
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8026
    ${comment}
G
fix  
gongweibao 已提交
8027 8028

    Args:
G
gongweibao 已提交
8029 8030 8031
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8032
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8033 8034 8035
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8036 8037
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8038
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8039

8040 8041 8042 8043 8044
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8045 8046 8047
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8048
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8065 8066


G
gongweibao 已提交
8067
@templatedoc()
X
Xin Pan 已提交
8068
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8069
    """
G
gongweibao 已提交
8070
    ${comment}
G
fix  
gongweibao 已提交
8071 8072

    Args:
G
gongweibao 已提交
8073 8074 8075 8076
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8077 8078 8079
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8080
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8081

8082 8083 8084 8085
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8086 8087 8088
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8089
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8090 8091 8092 8093 8094 8095 8096 8097 8098 8099
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8100
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8101 8102 8103 8104 8105
        })

    return out


G
gongweibao 已提交
8106
@templatedoc()
G
fix  
gongweibao 已提交
8107
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8108
    """
G
gongweibao 已提交
8109
    ${comment}
G
fix  
gongweibao 已提交
8110 8111

    Args:
G
gongweibao 已提交
8112 8113 8114 8115
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8116
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8117 8118

    Returns:
G
gongweibao 已提交
8119
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8120

8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8131 8132 8133
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8134
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8146
@templatedoc()
G
fix  
gongweibao 已提交
8147 8148 8149 8150 8151 8152 8153 8154 8155
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8156
    ${comment}
G
fix  
gongweibao 已提交
8157 8158

    Args:
G
gongweibao 已提交
8159 8160
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8161
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8162 8163 8164 8165
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8166
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8167 8168

    Returns:
G
gongweibao 已提交
8169
        out (Variable): ${out_comment}
8170 8171 8172 8173 8174 8175 8176 8177

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8178 8179 8180
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8181
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8200
@templatedoc()
X
Xin Pan 已提交
8201
def sum(x):
G
fix  
gongweibao 已提交
8202
    """
G
gongweibao 已提交
8203
    ${comment}
G
fix  
gongweibao 已提交
8204 8205

    Args:
G
gongweibao 已提交
8206
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8207 8208

    Returns:
G
gongweibao 已提交
8209
        out (Variable): ${out_comment}
8210 8211 8212 8213 8214 8215

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8216 8217 8218
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8219 8220
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8221 8222 8223 8224
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8225
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8226 8227 8228 8229

    return out


G
gongweibao 已提交
8230
@templatedoc()
G
fix  
gongweibao 已提交
8231 8232
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8233
    ${comment}
G
fix  
gongweibao 已提交
8234 8235

    Args:
G
gongweibao 已提交
8236 8237 8238 8239
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8240 8241

    Returns:
G
gongweibao 已提交
8242
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8243

8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8255 8256 8257
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8258 8259
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8271
@templatedoc()
G
fix  
gongweibao 已提交
8272 8273
def shape(input):
    """
G
gongweibao 已提交
8274
    ${comment}
G
fix  
gongweibao 已提交
8275 8276

    Args:
G
gongweibao 已提交
8277
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8278 8279

    Returns:
G
gongweibao 已提交
8280
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8281

8282 8283 8284 8285 8286 8287
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8288 8289 8290
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8291 8292
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8293
    helper.append_op(
G
fix  
gongweibao 已提交
8294
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8295 8296

    return out
G
merge  
gongweibao 已提交
8297 8298


S
sneaxiy 已提交
8299 8300 8301 8302 8303 8304 8305 8306
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8307 8308
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8309
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8310 8311 8312
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8313

S
sneaxiy 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8325
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8326 8327 8328 8329 8330 8331 8332 8333
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8334
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8335
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8336 8337 8338 8339 8340 8341

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8342
    if name is None:
X
Xin Pan 已提交
8343
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8344 8345 8346
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8347 8348 8349 8350 8351 8352 8353 8354 8355 8356

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8357
    return helper.append_activation(out)
S
sneaxiy 已提交
8358 8359


X
Xin Pan 已提交
8360
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8361 8362 8363
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8364
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8365 8366 8367
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8368
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8369 8370 8371
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8372
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8373 8374 8375
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8376
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8377 8378 8379
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8380
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8381 8382 8383
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8384
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8396 8397
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8398
        ])
M
minqiyang 已提交
8399 8400


8401
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8402 8403
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8404 8405
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8406 8407 8408

    if out is None:
        if name is None:
X
Xin Pan 已提交
8409
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8425
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8437 8438 8439 8440 8441 8442 8443 8444 8445

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8446 8447 8448 8449 8450 8451 8452
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8453
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8465 8466 8467 8468 8469 8470 8471 8472 8473

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8474 8475 8476 8477 8478 8479 8480
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8481
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8493 8494 8495 8496 8497 8498 8499 8500 8501

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8502 8503 8504 8505 8506 8507 8508
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8509
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8520 8521 8522 8523 8524 8525 8526

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8527 8528 8529 8530
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8546 8547 8548 8549 8550 8551 8552

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8553 8554 8555 8556 8557
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8558 8559 8560 8561
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8585 8586 8587 8588 8589 8590 8591

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8592 8593 8594 8595 8596
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8597 8598 8599 8600
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8601 8602 8603 8604 8605 8606 8607 8608

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8627
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8680
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8681 8682 8683 8684 8685 8686 8687 8688 8689
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8690 8691
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8692 8693 8694 8695 8696 8697
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8698 8699 8700 8701
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8702 8703 8704 8705 8706 8707
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8708
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8718
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8719 8720 8721 8722 8723 8724 8725 8726
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8727
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8748
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8749 8750 8751 8752 8753 8754 8755 8756 8757 8758
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8759 8760


J
JiabinYang 已提交
8761
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8762
    """
J
JiabinYang 已提交
8763
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8764 8765 8766

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8767
    The attr blocksize indicates the input block size.
8768 8769

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8770
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8771 8772

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8773
    (but keeping all data)
J
JiabinYang 已提交
8774

J
JiabinYang 已提交
8775
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8776
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8777 8778 8779 8780 8781
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8782
    Args:
J
JiabinYang 已提交
8783
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8784
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8785 8786

    Returns:
J
JiabinYang 已提交
8787
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8788 8789

    Raises:
J
JiabinYang 已提交
8790
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8791 8792 8793 8794 8795 8796

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8797
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8798
                x=data, blocksize=2)
J
JiabinYang 已提交
8799 8800
    """

J
JiabinYang 已提交
8801
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8802

J
JiabinYang 已提交
8803 8804
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8805 8806

    if name is None:
J
JiabinYang 已提交
8807 8808
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8809 8810 8811 8812 8813
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8814
        type="space_to_depth",
J
JiabinYang 已提交
8815
        inputs={"X": x},
J
JiabinYang 已提交
8816
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8817
        outputs={"Out": out})
J
JiabinYang 已提交
8818 8819
    return out

J
JiabinYang 已提交
8820

S
sneaxiy 已提交
8821 8822
@templatedoc()
def sequence_reverse(x, name=None):
8823
    """
S
sneaxiy 已提交
8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8835
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8846 8847


8848 8849 8850 8851 8852 8853
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8854

8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8874
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8887 8888


B
barrierye 已提交
8889
def similarity_focus(input, axis, indexes, name=None):
8890
    """
B
barrierye 已提交
8891
    SimilarityFocus Operator
B
barrierye 已提交
8892 8893

    Generate a similarity focus mask with the same shape of input using the following method:
8894 8895 8896
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8897
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8898 8899 8900 8901 8902 8903 8904
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8905
       each index.
B
barrierye 已提交
8906 8907 8908 8909
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8959
    Args:
8960
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8961
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8962
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8963
            1, 2 or 3.
B
barrierye 已提交
8964
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8965 8966

    Returns:
8967
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8968
            as the input.
8969

B
barrierye 已提交
8970 8971 8972
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8973 8974
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8987 8988 8989 8990 8991
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8992 8993 8994 8995 8996 8997 8998
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8999 9000


M
minqiyang 已提交
9001 9002
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9003 9004
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9005 9006
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9045
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9046
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9047 9048 9049 9050 9051 9052 9053 9054 9055

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9056 9057
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9058 9059
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9060 9061 9062 9063 9064 9065 9066
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9067 9068


D
dengkaipeng 已提交
9069
@templatedoc()
9070 9071
def grid_sampler(x, grid, name=None):
    """
9072
    This operation samples input X by using bilinear interpolation based on
9073
    flow field grid, which is usually gennerated by affine_grid. The grid of
9074 9075 9076 9077
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9078
    interpolation value of 4 nearest corner points.
9079 9080 9081 9082 9083 9084 9085 9086

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9087
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9117 9118

    Args:
9119 9120 9121
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9122 9123

    Returns:
9124
        out(Variable): Output of shape [N, C, H, W] data samples input X
9125 9126 9127 9128 9129 9130 9131 9132 9133
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9134 9135 9136 9137 9138 9139 9140 9141 9142
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9143
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9144 9145
    ipts = {'X': x, 'Grid': grid}

9146
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9147 9148 9149
    return out


G
gmcather 已提交
9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9244 9245 9246 9247 9248 9249 9250 9251 9252 9253


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9254
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9255

Q
Qiao Longfei 已提交
9256
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9257 9258 9259
    For example:

    .. math::
9260
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9261

Q
Qiao Longfei 已提交
9262
    In this formula:
9263 9264
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9265
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9266
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9267 9268 9269
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9270 9271
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9272 9273 9274
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9275
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9276
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9277
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9278 9279 9280 9281
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9282
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9283 9284 9285 9286

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9287
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9288 9289
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9290
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9291 9292 9293 9294

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9295
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
S
shippingwang 已提交
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347


def shuffle_channel(x, group=1, name=None):
    """
    **Shuffle Channel Operator**
    This operator obtains the group convolutional layer with channels shuffled.
    First, divide the input channels in each group into several subgroups,
    then, feed each group in the next layer with different subgroups.
    Shuffle channel operation makes it possible to build more powerful structures
    with multiple group convolutional layers.
    
    Args: 
S
shippingwang 已提交
9348 9349
        x(Variable): The input tensor variable.
        group(Integer): The num of group.
S
shippingwang 已提交
9350 9351

    Returns:
S
shippingwang 已提交
9352
        Variable: channels shuffled tensor variable.
S
shippingwang 已提交
9353 9354

    Raises:
S
shippingwang 已提交
9355
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9356 9357 9358

    Examples:
        .. code-block:: python
S
shippingwang 已提交
9359 9360

        out = fluid.layers.shuffle_channel(x=group_conv,group=4)
S
shippingwang 已提交
9361 9362 9363 9364

    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
9365
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
9366 9367 9368 9369 9370 9371 9372 9373 9374

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9375
    return out
S
Add  
shippingwang 已提交
9376 9377


S
sneaxiy 已提交
9378
class PyFuncRegistry(object):
S
sneaxiy 已提交
9379 9380 9381
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9382
        if func is None or not callable(func):
S
sneaxiy 已提交
9383 9384 9385 9386
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection 
S
sneaxiy 已提交
9387 9388 9389 9390 9391 9392 9393
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9394 9395 9396 9397 9398
        '''
        Why record self here?

        1. For debug usage. Users can call 
           :code:`py_func.registered_func(idx)` method 
S
sneaxiy 已提交
9399
           to find the registered function corresponding
S
sneaxiy 已提交
9400 9401 9402 9403 9404 9405 9406 9407
           to :code:`idx`. 

        2. For increasing reference count of self. 
           It seems that to release Python object 
           whose reference count is 1 would cause
           segmentation fault error in C++ side. 
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9408
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9423 9424 9425 9426 9427 9428 9429 9430 9431
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9432

S
sneaxiy 已提交
9433 9434
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9435 9436

        ret = []
S
sneaxiy 已提交
9437 9438 9439
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9440 9441
                continue

S
sneaxiy 已提交
9442 9443
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9444

S
sneaxiy 已提交
9445 9446 9447
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9448

S
sneaxiy 已提交
9449
        return tuple(ret)
S
sneaxiy 已提交
9450 9451


S
sneaxiy 已提交
9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
    
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9465
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9466

S
sneaxiy 已提交
9467 9468
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9469 9470 9471 9472
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9473 9474 9475 9476
    This function can also be used to debug the running network. User can
    add a :code:`py_func` operator without output, and print input 
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
            should create :code:`out` beforehand. 
        backward_func (callable|None): backward Python function.
                                       None means no backward. Default None. 
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
            Variables that are not needed in :code:`backward_func` inputs. 
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
            Only useful when :code:`backward_func` is not None. Default None. 

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533

    Examples:
    
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
        >>>         name=name, dtype=dtype, shape=shape) 
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
        >>> # Here, we only use tanh to be an example to show the usage 
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
        >>> 
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
        >>>     print(x) 
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
        >>>             dtype=hidden.dtype, shape=hidden.shape)    
        >>>
        >>>         # user-defined layers with forward and backward
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden, 
        >>>             out=new_hidden, backward_func=tanh_grad, 
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9534
    """
S
sneaxiy 已提交
9535
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9536 9537 9538
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9539
        x = [x]
S
sneaxiy 已提交
9540 9541
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9542

S
sneaxiy 已提交
9543 9544 9545
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9546
        out_list = [out]
S
sneaxiy 已提交
9547
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9548
        out_list = out
S
sneaxiy 已提交
9549 9550 9551
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9552

S
sneaxiy 已提交
9553 9554
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9555
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9556 9557

    for each_out in out_list:
S
sneaxiy 已提交
9558 9559
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9560 9561
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9562

S
sneaxiy 已提交
9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9578 9579 9580 9581

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9582 9583
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9584 9585 9586
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9587
        })
S
sneaxiy 已提交
9588
    return out
S
sneaxiy 已提交
9589 9590 9591


# For debug usage
S
sneaxiy 已提交
9592 9593 9594 9595
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
S
shippingwang 已提交
9647
    return out
9648

M
minqiyang 已提交
9649

M
minqiyang 已提交
9650
def huber_loss(input, label, delta):
9651
    """
M
minqiyang 已提交
9652 9653 9654
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9655 9656 9657 9658

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9659
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9660 9661 9662 9663

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9664
        huber\_loss = 0.5 * (label - input) * (label - input)
9665 9666 9667 9668 9669 9670 9671


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9672
        delta (float): The parameter of huber loss, which controls
9673 9674 9675
                       the range of outliers

    Returns:
M
minqiyang 已提交
9676
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9677 9678 9679 9680 9681

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9682
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9683
    """
M
minqiyang 已提交
9684
    helper = LayerHelper('huber_loss', **locals())
9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
X
Xin Pan 已提交
9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739


class FC(layers.PyLayer):
    def __init__(self,
                 size,
                 param_attr=None,
                 num_flatten_dims=1,
                 dtype=core.VarDesc.VarType.FP32):
        super(FC, self).__init__()
        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._helper = LayerHelper('FC', param_attr=param_attr)

    def _build_once(self, inputs):
        input_shape = inputs[0].shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, inputs):
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": inputs[0],
                    "Y": self._w},
            outputs={"Out": tmp},
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="sum",
            inputs={"X": [tmp]},
            outputs={"Out": out},
            attrs={"use_mkldnn": False})
        return out