sched.c 217.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409

#ifdef CONFIG_SMP
	/*
410
	 * the part of load.weight contributed by tasks
411
	 */
412
	unsigned long task_weight;
413

414 415 416 417 418 419 420
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
421

422 423 424 425
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
426
#endif
I
Ingo Molnar 已提交
427 428
#endif
};
L
Linus Torvalds 已提交
429

I
Ingo Molnar 已提交
430 431 432
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
433
	unsigned long rt_nr_running;
434
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
437
#ifdef CONFIG_SMP
438
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
439
	int overloaded;
P
Peter Zijlstra 已提交
440
#endif
P
Peter Zijlstra 已提交
441
	int rt_throttled;
P
Peter Zijlstra 已提交
442
	u64 rt_time;
P
Peter Zijlstra 已提交
443
	u64 rt_runtime;
I
Ingo Molnar 已提交
444
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
445
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
446

447
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
448 449
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
450 451 452 453 454
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
455 456
};

G
Gregory Haskins 已提交
457 458 459 460
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
461 462
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
463 464 465 466 467 468 469 470
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
471

I
Ingo Molnar 已提交
472
	/*
473 474 475 476
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
477
	atomic_t rto_count;
478 479 480
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
481 482
};

483 484 485 486
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
487 488 489 490
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
491 492 493 494 495 496 497
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
498
struct rq {
499 500
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
501 502 503 504 505 506

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
507 508
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509
	unsigned char idle_at_tick;
510
#ifdef CONFIG_NO_HZ
511
	unsigned long last_tick_seen;
512 513
	unsigned char in_nohz_recently;
#endif
514 515
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
516 517 518 519
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
520 521
	struct rt_rq rt;

I
Ingo Molnar 已提交
522
#ifdef CONFIG_FAIR_GROUP_SCHED
523 524
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
525 526
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
527
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

538
	struct task_struct *curr, *idle;
539
	unsigned long next_balance;
L
Linus Torvalds 已提交
540
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
541

542
	u64 clock;
I
Ingo Molnar 已提交
543

L
Linus Torvalds 已提交
544 545 546
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
547
	struct root_domain *rd;
L
Linus Torvalds 已提交
548 549 550 551 552
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
558 559 560
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
561 562 563 564 565 566
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
567 568 569 570 571
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
572 573 574 575
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588
#endif
589
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
590 591
};

592
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
593

I
Ingo Molnar 已提交
594 595 596 597 598
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

599 600 601 602 603 604 605 606 607
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
608 609
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
610
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
611 612 613 614
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
615 616
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
617 618 619 620 621 622

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

623 624 625 626 627
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
628 629 630 631 632 633 634 635 636 637 638 639
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
640 641 642 643

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
644
enum {
P
Peter Zijlstra 已提交
645
#include "sched_features.h"
I
Ingo Molnar 已提交
646 647
};

P
Peter Zijlstra 已提交
648 649 650 651 652
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
653
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

663
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
664 665 666 667 668 669
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

670
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
698
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
771

772 773 774 775 776 777
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
778
/*
P
Peter Zijlstra 已提交
779
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
780 781
 * default: 1s
 */
P
Peter Zijlstra 已提交
782
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
783

784 785
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
786 787 788 789 790
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798 799 800 801 802 803
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
804

L
Linus Torvalds 已提交
805
#ifndef prepare_arch_switch
806 807 808 809 810 811
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

812 813 814 815 816
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

817
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
818
static inline int task_running(struct rq *rq, struct task_struct *p)
819
{
820
	return task_current(rq, p);
821 822
}

823
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
824 825 826
{
}

827
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
828
{
829 830 831 832
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
833 834 835 836 837 838 839
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

840 841 842 843
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
844
static inline int task_running(struct rq *rq, struct task_struct *p)
845 846 847 848
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
849
	return task_current(rq, p);
850 851 852
#endif
}

853
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

870
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871 872 873 874 875 876 877 878 879 880 881 882
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
883
#endif
884 885
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
886

887 888 889 890
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
891
static inline struct rq *__task_rq_lock(struct task_struct *p)
892 893
	__acquires(rq->lock)
{
894 895 896 897 898
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
899 900 901 902
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
903 904
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
905
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
906 907
 * explicitly disabling preemption.
 */
908
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
909 910
	__acquires(rq->lock)
{
911
	struct rq *rq;
L
Linus Torvalds 已提交
912

913 914 915 916 917 918
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
919 920 921 922
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
923
static void __task_rq_unlock(struct rq *rq)
924 925 926 927 928
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

929
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
930 931 932 933 934 935
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
936
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
937
 */
A
Alexey Dobriyan 已提交
938
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
939 940
	__acquires(rq->lock)
{
941
	struct rq *rq;
L
Linus Torvalds 已提交
942 943 944 945 946 947 948 949

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
985
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
986 987 988 989 990 991 992 993 994 995 996
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
997 998
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075 1076 1077 1078 1079 1080
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1081
#ifdef CONFIG_SMP
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1137
#endif /* CONFIG_SMP */
1138 1139

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1176 1177 1178 1179

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1180 1181
#endif

I
Ingo Molnar 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1195
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1196 1197 1198 1199 1200
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1201
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1202 1203
		return;

P
Peter Zijlstra 已提交
1204
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1267
#endif /* CONFIG_NO_HZ */
1268

1269
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1270
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1271 1272
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1273
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1274
}
1275
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1276

1277 1278 1279 1280 1281 1282 1283 1284
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1285 1286 1287
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1288
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1289

1290 1291 1292
/*
 * delta *= weight / lw
 */
1293
static unsigned long
1294 1295 1296 1297 1298
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1299 1300 1301 1302 1303 1304 1305
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1306 1307 1308 1309 1310

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1311
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1312
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1313 1314
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1315
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1316

1317
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1318 1319
}

1320
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1321 1322
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1323
	lw->inv_weight = 0;
1324 1325
}

1326
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1327 1328
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332 1333 1334 1335
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1336
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 1338 1339 1340
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 1353 1354
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1355 1356
 */
static const int prio_to_weight[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1365 1366
};

1367 1368 1369 1370 1371 1372 1373
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1374
static const u32 prio_to_wmult[40] = {
1375 1376 1377 1378 1379 1380 1381 1382
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1383
};
1384

I
Ingo Molnar 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1410

1411 1412 1413 1414 1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1427 1428 1429 1430 1431
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1432 1433 1434

#ifdef CONFIG_FAIR_GROUP_SCHED

1435
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1436 1437 1438 1439 1440

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1441 1442
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1443 1444 1445 1446 1447 1448
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1449
	(*down)(parent, cpu, sd);
1450 1451 1452 1453 1454 1455 1456
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1457
	(*up)(parent, cpu, sd);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1472
__update_group_shares_cpu(struct task_group *tg, int cpu,
1473
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1474 1475 1476 1477 1478
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1479
	if (!tg->se[cpu])
1480 1481
		return;

1482
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1494 1495 1496
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1497 1498 1499 1500 1501 1502
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1503
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1504 1505 1506 1507

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1508
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1509 1510 1511 1512 1513 1514

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1515
	__set_se_shares(tg->se[cpu], shares);
1516 1517 1518
}

/*
1519 1520 1521
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1522 1523
 */
static void
1524
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1525
{
1526 1527 1528
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1529

1530 1531 1532
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1533 1534
	}

1535 1536 1537 1538 1539
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1540 1541 1542 1543 1544 1545

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1546
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1547 1548 1549 1550 1551
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1552 1553 1554
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1555
 */
1556
static void
1557
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1558
{
1559
	unsigned long load;
1560

1561 1562 1563 1564 1565 1566 1567
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1568

1569
	tg->cfs_rq[cpu]->h_load = load;
1570 1571
}

1572 1573
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1574 1575 1576
{
}

1577
static void update_shares(struct sched_domain *sd)
1578
{
1579
	walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1580 1581
}

1582 1583 1584 1585 1586 1587 1588
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1589
static void update_h_load(int cpu)
1590
{
1591
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1592 1593 1594 1595 1596 1597 1598 1599 1600
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

1601
static inline void update_shares(struct sched_domain *sd)
1602 1603 1604
{
}

1605 1606 1607 1608
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1609 1610
#endif

1611 1612
#endif

I
Ingo Molnar 已提交
1613 1614
#include "sched_stats.h"
#include "sched_idletask.c"
1615 1616
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1617 1618 1619 1620 1621
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1622 1623
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1624

1625
static void inc_nr_running(struct rq *rq)
1626 1627 1628 1629
{
	rq->nr_running++;
}

1630
static void dec_nr_running(struct rq *rq)
1631 1632 1633 1634
{
	rq->nr_running--;
}

1635 1636 1637
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1638 1639 1640 1641
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1642

I
Ingo Molnar 已提交
1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1651

I
Ingo Molnar 已提交
1652 1653
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1654 1655
}

1656
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1657
{
I
Ingo Molnar 已提交
1658
	sched_info_queued(p);
1659
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1660
	p->se.on_rq = 1;
1661 1662
}

1663
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1664
{
1665
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1666
	p->se.on_rq = 0;
1667 1668
}

1669
/*
I
Ingo Molnar 已提交
1670
 * __normal_prio - return the priority that is based on the static prio
1671 1672 1673
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1674
	return p->static_prio;
1675 1676
}

1677 1678 1679 1680 1681 1682 1683
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1684
static inline int normal_prio(struct task_struct *p)
1685 1686 1687
{
	int prio;

1688
	if (task_has_rt_policy(p))
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1702
static int effective_prio(struct task_struct *p)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1715
/*
I
Ingo Molnar 已提交
1716
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1717
 */
I
Ingo Molnar 已提交
1718
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1719
{
1720
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1721
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1722

1723
	enqueue_task(rq, p, wakeup);
1724
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1730
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1731
{
1732
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1733 1734
		rq->nr_uninterruptible++;

1735
	dequeue_task(rq, p, sleep);
1736
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1743
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1744 1745 1746 1747
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1748 1749
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1750
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1751
#ifdef CONFIG_SMP
1752 1753 1754 1755 1756 1757
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1758 1759
	task_thread_info(p)->cpu = cpu;
#endif
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1774
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1775

1776 1777 1778 1779 1780 1781
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1782 1783 1784
/*
 * Is this task likely cache-hot:
 */
1785
static int
1786 1787 1788 1789
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1790 1791 1792
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1793
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1794 1795
		return 1;

1796 1797 1798
	if (p->sched_class != &fair_sched_class)
		return 0;

1799 1800 1801 1802 1803
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1804 1805 1806 1807 1808 1809
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1810
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1811
{
I
Ingo Molnar 已提交
1812 1813
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1814 1815
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1816
	u64 clock_offset;
I
Ingo Molnar 已提交
1817 1818

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1819 1820 1821 1822

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1823 1824 1825 1826
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1827 1828 1829 1830 1831
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1832
#endif
1833 1834
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1835 1836

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1837 1838
}

1839
struct migration_req {
L
Linus Torvalds 已提交
1840 1841
	struct list_head list;

1842
	struct task_struct *task;
L
Linus Torvalds 已提交
1843 1844 1845
	int dest_cpu;

	struct completion done;
1846
};
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1852
static int
1853
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1854
{
1855
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1861
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1870

L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1883
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1884 1885
{
	unsigned long flags;
I
Ingo Molnar 已提交
1886
	int running, on_rq;
1887
	struct rq *rq;
L
Linus Torvalds 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1946

1947 1948 1949 1950 1951 1952 1953
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1969
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1981 1982
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1983 1984 1985 1986
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1987
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1988
{
1989
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1990
	unsigned long total = weighted_cpuload(cpu);
1991

1992
	if (type == 0)
I
Ingo Molnar 已提交
1993
		return total;
1994

I
Ingo Molnar 已提交
1995
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1996 1997 1998
}

/*
1999 2000
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2001
 */
A
Alexey Dobriyan 已提交
2002
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2003
{
2004
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2005
	unsigned long total = weighted_cpuload(cpu);
2006

N
Nick Piggin 已提交
2007
	if (type == 0)
I
Ingo Molnar 已提交
2008
		return total;
2009

I
Ingo Molnar 已提交
2010
	return max(rq->cpu_load[type-1], total);
2011 2012 2013 2014 2015
}

/*
 * Return the average load per task on the cpu's run queue
 */
2016
static unsigned long cpu_avg_load_per_task(int cpu)
2017
{
2018
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2019
	unsigned long total = weighted_cpuload(cpu);
2020 2021
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2022
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2023 2024
}

N
Nick Piggin 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2042 2043
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2044
			continue;
2045

N
Nick Piggin 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2062 2063
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2064 2065 2066 2067 2068 2069 2070 2071

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2072
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2073 2074 2075 2076 2077 2078 2079

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2080
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2081
 */
I
Ingo Molnar 已提交
2082
static int
2083 2084
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2085 2086 2087 2088 2089
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2090
	/* Traverse only the allowed CPUs */
2091
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2092

2093
	for_each_cpu_mask(i, *tmp) {
2094
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2120

2121
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2122 2123 2124
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2125 2126
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2127 2128
		if (tmp->flags & flag)
			sd = tmp;
2129
	}
N
Nick Piggin 已提交
2130 2131

	while (sd) {
2132
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2133
		struct sched_group *group;
2134 2135 2136 2137 2138 2139
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2140 2141 2142

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2143 2144 2145 2146
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2147

2148
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2149 2150 2151 2152 2153
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2154

2155
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2187
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2188
{
2189
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2190 2191
	unsigned long flags;
	long old_state;
2192
	struct rq *rq;
L
Linus Torvalds 已提交
2193

2194 2195 2196
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2197
	smp_wmb();
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2203
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2204 2205 2206
		goto out_running;

	cpu = task_cpu(p);
2207
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2214 2215 2216
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2223
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2224 2225 2226 2227 2228 2229
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2243
#endif /* CONFIG_SCHEDSTATS */
2244

L
Linus Torvalds 已提交
2245 2246
out_activate:
#endif /* CONFIG_SMP */
2247 2248 2249 2250 2251 2252 2253 2254 2255
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2256
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2257
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2258 2259 2260
	success = 1;

out_running:
I
Ingo Molnar 已提交
2261 2262
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2263
	p->state = TASK_RUNNING;
2264 2265 2266 2267
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2274
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2275
{
2276
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2277 2278 2279
}
EXPORT_SYMBOL(wake_up_process);

2280
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2281 2282 2283 2284 2285 2286 2287
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2288 2289 2290 2291 2292 2293 2294
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2295
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2296 2297
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2298 2299 2300

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2301 2302 2303 2304 2305 2306
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2307
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2308
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2309
#endif
N
Nick Piggin 已提交
2310

P
Peter Zijlstra 已提交
2311
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2312
	p->se.on_rq = 0;
2313
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2314

2315 2316 2317 2318
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324 2325
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2340
	set_task_cpu(p, cpu);
2341 2342 2343 2344 2345

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2346 2347
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2348

2349
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2350
	if (likely(sched_info_on()))
2351
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2352
#endif
2353
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2354 2355
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2356
#ifdef CONFIG_PREEMPT
2357
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2358
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2359
#endif
N
Nick Piggin 已提交
2360
	put_cpu();
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2370
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2371 2372
{
	unsigned long flags;
I
Ingo Molnar 已提交
2373
	struct rq *rq;
L
Linus Torvalds 已提交
2374 2375

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2376
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2377
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2378 2379 2380

	p->prio = effective_prio(p);

2381
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2382
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2383 2384
	} else {
		/*
I
Ingo Molnar 已提交
2385 2386
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2387
		 */
2388
		p->sched_class->task_new(rq, p);
2389
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2390
	}
I
Ingo Molnar 已提交
2391
	check_preempt_curr(rq, p);
2392 2393 2394 2395
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2396
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2397 2398
}

2399 2400 2401
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2402 2403
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2404 2405 2406 2407 2408 2409 2410 2411 2412
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2413
 * @notifier: notifier struct to unregister
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2443
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2455
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2456

2457 2458 2459
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2460
 * @prev: the current task that is being switched out
2461 2462 2463 2464 2465 2466 2467 2468 2469
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2470 2471 2472
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2473
{
2474
	fire_sched_out_preempt_notifiers(prev, next);
2475 2476 2477 2478
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2479 2480
/**
 * finish_task_switch - clean up after a task-switch
2481
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2482 2483
 * @prev: the thread we just switched away from.
 *
2484 2485 2486 2487
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2488 2489
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2490
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2491 2492 2493
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2494
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2495 2496 2497
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2498
	long prev_state;
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2504
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2505 2506
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2507
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2513
	prev_state = prev->state;
2514 2515
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2516 2517 2518 2519
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2520

2521
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2522 2523
	if (mm)
		mmdrop(mm);
2524
	if (unlikely(prev_state == TASK_DEAD)) {
2525 2526 2527
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2528
		 */
2529
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2530
		put_task_struct(prev);
2531
	}
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2538
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2539 2540
	__releases(rq->lock)
{
2541 2542
	struct rq *rq = this_rq();

2543 2544 2545 2546 2547
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2548
	if (current->set_child_tid)
2549
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2556
static inline void
2557
context_switch(struct rq *rq, struct task_struct *prev,
2558
	       struct task_struct *next)
L
Linus Torvalds 已提交
2559
{
I
Ingo Molnar 已提交
2560
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2561

2562
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2563 2564
	mm = next->mm;
	oldmm = prev->active_mm;
2565 2566 2567 2568 2569 2570 2571
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2572
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2579
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2580 2581 2582
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2583 2584 2585 2586 2587 2588 2589
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2590
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2591
#endif
L
Linus Torvalds 已提交
2592 2593 2594 2595

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2596 2597 2598 2599 2600 2601 2602
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2626
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2641 2642
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2643

2644
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2654
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2655 2656 2657 2658 2659
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2675
/*
I
Ingo Molnar 已提交
2676 2677
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2678
 */
I
Ingo Molnar 已提交
2679
static void update_cpu_load(struct rq *this_rq)
2680
{
2681
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2694 2695 2696 2697 2698 2699 2700
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2701 2702
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2703 2704
}

I
Ingo Molnar 已提交
2705 2706
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2713
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2714 2715 2716
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2717
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2718 2719 2720 2721
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2722
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728 2729
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2730 2731
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737 2738 2739
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2740
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2754
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2755 2756 2757 2758
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2759 2760
	int ret = 0;

2761 2762 2763 2764 2765
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2766
	if (unlikely(!spin_trylock(&busiest->lock))) {
2767
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2768 2769 2770
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2771
			ret = 1;
L
Linus Torvalds 已提交
2772 2773 2774
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2775
	return ret;
L
Linus Torvalds 已提交
2776 2777 2778 2779 2780
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2781
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2782 2783
 * the cpu_allowed mask is restored.
 */
2784
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2785
{
2786
	struct migration_req req;
L
Linus Torvalds 已提交
2787
	unsigned long flags;
2788
	struct rq *rq;
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2799

L
Linus Torvalds 已提交
2800 2801 2802 2803 2804
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2805

L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2813 2814
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2815 2816 2817 2818
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2819
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2820
	put_cpu();
N
Nick Piggin 已提交
2821 2822
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827 2828
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2829 2830
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2831
{
2832
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2833
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2834
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2835 2836 2837 2838
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2839
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2845
static
2846
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2847
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2848
		     int *all_pinned)
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854 2855
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2856 2857
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2858
		return 0;
2859
	}
2860 2861
	*all_pinned = 0;

2862 2863
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2864
		return 0;
2865
	}
L
Linus Torvalds 已提交
2866

2867 2868 2869 2870 2871 2872
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2873 2874
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2875
#ifdef CONFIG_SCHEDSTATS
2876
		if (task_hot(p, rq->clock, sd)) {
2877
			schedstat_inc(sd, lb_hot_gained[idle]);
2878 2879
			schedstat_inc(p, se.nr_forced_migrations);
		}
2880 2881 2882 2883
#endif
		return 1;
	}

2884 2885
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2886
		return 0;
2887
	}
L
Linus Torvalds 已提交
2888 2889 2890
	return 1;
}

2891 2892 2893 2894 2895
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2896
{
2897
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2898 2899
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2900

2901
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2902 2903
		goto out;

2904 2905
	pinned = 1;

L
Linus Torvalds 已提交
2906
	/*
I
Ingo Molnar 已提交
2907
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2908
	 */
I
Ingo Molnar 已提交
2909 2910
	p = iterator->start(iterator->arg);
next:
2911
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2912
		goto out;
2913
	/*
2914
	 * To help distribute high priority tasks across CPUs we don't
2915 2916 2917
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2918 2919
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2920
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2921 2922 2923
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2924 2925
	}

I
Ingo Molnar 已提交
2926
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2927
	pulled++;
I
Ingo Molnar 已提交
2928
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2929

2930
	/*
2931
	 * We only want to steal up to the prescribed amount of weighted load.
2932
	 */
2933
	if (rem_load_move > 0) {
2934 2935
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2936 2937
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2938 2939 2940
	}
out:
	/*
2941
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2942 2943 2944 2945
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2946 2947 2948

	if (all_pinned)
		*all_pinned = pinned;
2949 2950

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2951 2952
}

I
Ingo Molnar 已提交
2953
/*
P
Peter Williams 已提交
2954 2955 2956
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2957 2958 2959 2960
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2961
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2962 2963 2964
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2965
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2966
	unsigned long total_load_moved = 0;
2967
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2968 2969

	do {
P
Peter Williams 已提交
2970 2971
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2972
				max_load_move - total_load_moved,
2973
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2974
		class = class->next;
P
Peter Williams 已提交
2975
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2976

P
Peter Williams 已提交
2977 2978 2979
	return total_load_moved > 0;
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3016
	const struct sched_class *class;
P
Peter Williams 已提交
3017 3018

	for (class = sched_class_highest; class; class = class->next)
3019
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3020 3021 3022
			return 1;

	return 0;
I
Ingo Molnar 已提交
3023 3024
}

L
Linus Torvalds 已提交
3025 3026
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3027 3028
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3029 3030 3031
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3032
		   unsigned long *imbalance, enum cpu_idle_type idle,
3033
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3034 3035 3036
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3037
	unsigned long max_pull;
3038 3039
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3040
	int load_idx, group_imb = 0;
3041 3042 3043 3044 3045 3046
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3047 3048

	max_load = this_load = total_load = total_pwr = 0;
3049 3050
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3051
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3052
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3053
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3054 3055 3056
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3057 3058

	do {
3059
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3060 3061
		int local_group;
		int i;
3062
		int __group_imb = 0;
3063
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3064
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3065 3066 3067

		local_group = cpu_isset(this_cpu, group->cpumask);

3068 3069 3070
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3071
		/* Tally up the load of all CPUs in the group */
3072
		sum_weighted_load = sum_nr_running = avg_load = 0;
3073 3074
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3075 3076

		for_each_cpu_mask(i, group->cpumask) {
3077 3078 3079 3080 3081 3082
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3083

3084
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3085 3086
				*sd_idle = 0;

L
Linus Torvalds 已提交
3087
			/* Bias balancing toward cpus of our domain */
3088 3089 3090 3091 3092 3093
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3094
				load = target_load(i, load_idx);
3095
			} else {
N
Nick Piggin 已提交
3096
				load = source_load(i, load_idx);
3097 3098 3099 3100 3101
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3102 3103

			avg_load += load;
3104
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3105
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3106 3107
		}

3108 3109 3110
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3111 3112
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3113
		 */
3114 3115
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3116 3117 3118 3119
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3120
		total_load += avg_load;
3121
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3122 3123

		/* Adjust by relative CPU power of the group */
3124 3125
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3126

3127 3128 3129
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3130
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3131

L
Linus Torvalds 已提交
3132 3133 3134
		if (local_group) {
			this_load = avg_load;
			this = group;
3135 3136 3137
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3138
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3139 3140
			max_load = avg_load;
			busiest = group;
3141 3142
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3143
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3144
		}
3145 3146 3147 3148 3149 3150

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3151 3152 3153
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3154 3155 3156 3157 3158 3159 3160 3161 3162

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3163
		/*
3164 3165
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3166 3167
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3168
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3169
			goto group_next;
3170

I
Ingo Molnar 已提交
3171
		/*
3172
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3173 3174 3175 3176 3177
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3178 3179
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3180 3181
			group_min = group;
			min_nr_running = sum_nr_running;
3182 3183
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3184
		}
3185

I
Ingo Molnar 已提交
3186
		/*
3187
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3199
		}
3200 3201
group_next:
#endif
L
Linus Torvalds 已提交
3202 3203 3204
		group = group->next;
	} while (group != sd->groups);

3205
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3206 3207 3208 3209 3210 3211 3212 3213
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3214
	busiest_load_per_task /= busiest_nr_running;
3215 3216 3217
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3218 3219 3220 3221 3222 3223 3224 3225
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3226
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3227 3228
	 * appear as very large values with unsigned longs.
	 */
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3241 3242

	/* Don't want to pull so many tasks that a group would go idle */
3243
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3244

L
Linus Torvalds 已提交
3245
	/* How much load to actually move to equalise the imbalance */
3246 3247
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3248 3249
			/ SCHED_LOAD_SCALE;

3250 3251 3252 3253 3254 3255
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3256
	if (*imbalance < busiest_load_per_task) {
3257
		unsigned long tmp, pwr_now, pwr_move;
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3269

I
Ingo Molnar 已提交
3270 3271
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3272
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3282 3283 3284 3285
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3286 3287 3288
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3289 3290
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3291
		if (max_load > tmp)
3292
			pwr_move += busiest->__cpu_power *
3293
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3294 3295

		/* Amount of load we'd add */
3296
		if (max_load * busiest->__cpu_power <
3297
				busiest_load_per_task * SCHED_LOAD_SCALE)
3298 3299
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3300
		else
3301 3302 3303 3304
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3305 3306 3307
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3308 3309
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3310 3311 3312 3313 3314
	}

	return busiest;

out_balanced:
3315
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3316
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3317
		goto ret;
L
Linus Torvalds 已提交
3318

3319 3320 3321 3322 3323
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3324
ret:
L
Linus Torvalds 已提交
3325 3326 3327 3328 3329 3330 3331
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3332
static struct rq *
I
Ingo Molnar 已提交
3333
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3334
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3335
{
3336
	struct rq *busiest = NULL, *rq;
3337
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3338 3339 3340
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3341
		unsigned long wl;
3342 3343 3344 3345

		if (!cpu_isset(i, *cpus))
			continue;

3346
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3347
		wl = weighted_cpuload(i);
3348

I
Ingo Molnar 已提交
3349
		if (rq->nr_running == 1 && wl > imbalance)
3350
			continue;
L
Linus Torvalds 已提交
3351

I
Ingo Molnar 已提交
3352 3353
		if (wl > max_load) {
			max_load = wl;
3354
			busiest = rq;
L
Linus Torvalds 已提交
3355 3356 3357 3358 3359 3360
		}
	}

	return busiest;
}

3361 3362 3363 3364 3365 3366
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3367 3368 3369 3370
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3371
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3372
			struct sched_domain *sd, enum cpu_idle_type idle,
3373
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3374
{
P
Peter Williams 已提交
3375
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3376 3377
	struct sched_group *group;
	unsigned long imbalance;
3378
	struct rq *busiest;
3379
	unsigned long flags;
N
Nick Piggin 已提交
3380

3381 3382
	cpus_setall(*cpus);

3383 3384 3385
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3386
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3387
	 * portraying it as CPU_NOT_IDLE.
3388
	 */
I
Ingo Molnar 已提交
3389
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3390
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3391
		sd_idle = 1;
L
Linus Torvalds 已提交
3392

3393
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3394

3395
redo:
3396
	update_shares(sd);
3397
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3398
				   cpus, balance);
3399

3400
	if (*balance == 0)
3401 3402
		goto out_balanced;

L
Linus Torvalds 已提交
3403 3404 3405 3406 3407
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3408
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3409 3410 3411 3412 3413
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3414
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3415 3416 3417

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3418
	ld_moved = 0;
L
Linus Torvalds 已提交
3419 3420 3421 3422
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3423
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3424 3425
		 * correctly treated as an imbalance.
		 */
3426
		local_irq_save(flags);
N
Nick Piggin 已提交
3427
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3428
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3429
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3430
		double_rq_unlock(this_rq, busiest);
3431
		local_irq_restore(flags);
3432

3433 3434 3435
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3436
		if (ld_moved && this_cpu != smp_processor_id())
3437 3438
			resched_cpu(this_cpu);

3439
		/* All tasks on this runqueue were pinned by CPU affinity */
3440
		if (unlikely(all_pinned)) {
3441 3442
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3443
				goto redo;
3444
			goto out_balanced;
3445
		}
L
Linus Torvalds 已提交
3446
	}
3447

P
Peter Williams 已提交
3448
	if (!ld_moved) {
L
Linus Torvalds 已提交
3449 3450 3451 3452 3453
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3454
			spin_lock_irqsave(&busiest->lock, flags);
3455 3456 3457 3458 3459

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3460
				spin_unlock_irqrestore(&busiest->lock, flags);
3461 3462 3463 3464
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3465 3466 3467
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3468
				active_balance = 1;
L
Linus Torvalds 已提交
3469
			}
3470
			spin_unlock_irqrestore(&busiest->lock, flags);
3471
			if (active_balance)
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3478
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3479
		}
3480
	} else
L
Linus Torvalds 已提交
3481 3482
		sd->nr_balance_failed = 0;

3483
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3484 3485
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3486 3487 3488 3489 3490 3491 3492 3493 3494
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3495 3496
	}

P
Peter Williams 已提交
3497
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3498
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3499 3500 3501
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3502 3503 3504 3505

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3506
	sd->nr_balance_failed = 0;
3507 3508

out_one_pinned:
L
Linus Torvalds 已提交
3509
	/* tune up the balancing interval */
3510 3511
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3512 3513
		sd->balance_interval *= 2;

3514
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3515
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3516 3517 3518 3519
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3520 3521
	if (ld_moved)
		update_shares(sd);
3522
	return ld_moved;
L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3529
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3530 3531
 * this_rq is locked.
 */
3532
static int
3533 3534
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3535 3536
{
	struct sched_group *group;
3537
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3538
	unsigned long imbalance;
P
Peter Williams 已提交
3539
	int ld_moved = 0;
N
Nick Piggin 已提交
3540
	int sd_idle = 0;
3541
	int all_pinned = 0;
3542 3543

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3544

3545 3546 3547 3548
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3549
	 * portraying it as CPU_NOT_IDLE.
3550 3551 3552
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3553
		sd_idle = 1;
L
Linus Torvalds 已提交
3554

3555
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3556
redo:
3557
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3558
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3559
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3560
	if (!group) {
I
Ingo Molnar 已提交
3561
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3562
		goto out_balanced;
L
Linus Torvalds 已提交
3563 3564
	}

3565
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3566
	if (!busiest) {
I
Ingo Molnar 已提交
3567
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3568
		goto out_balanced;
L
Linus Torvalds 已提交
3569 3570
	}

N
Nick Piggin 已提交
3571 3572
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3573
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3574

P
Peter Williams 已提交
3575
	ld_moved = 0;
3576 3577 3578
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3579 3580
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3581
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3582 3583
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3584
		spin_unlock(&busiest->lock);
3585

3586
		if (unlikely(all_pinned)) {
3587 3588
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3589 3590
				goto redo;
		}
3591 3592
	}

P
Peter Williams 已提交
3593
	if (!ld_moved) {
I
Ingo Molnar 已提交
3594
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3595 3596
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3597 3598
			return -1;
	} else
3599
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3600

3601
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3602
	return ld_moved;
3603 3604

out_balanced:
I
Ingo Molnar 已提交
3605
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3606
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3607
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3608
		return -1;
3609
	sd->nr_balance_failed = 0;
3610

3611
	return 0;
L
Linus Torvalds 已提交
3612 3613 3614 3615 3616 3617
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3618
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3619 3620
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3621 3622
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3623
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3624 3625

	for_each_domain(this_cpu, sd) {
3626 3627 3628 3629 3630 3631
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3632
			/* If we've pulled tasks over stop searching: */
3633 3634
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3635 3636 3637 3638 3639 3640

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3641
	}
I
Ingo Molnar 已提交
3642
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3643 3644 3645 3646 3647
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3648
	}
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3659
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3660
{
3661
	int target_cpu = busiest_rq->push_cpu;
3662 3663
	struct sched_domain *sd;
	struct rq *target_rq;
3664

3665
	/* Is there any task to move? */
3666 3667 3668 3669
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3670 3671

	/*
3672
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3673
	 * we need to fix it. Originally reported by
3674
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3675
	 */
3676
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3677

3678 3679
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3680 3681
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3682 3683

	/* Search for an sd spanning us and the target CPU. */
3684
	for_each_domain(target_cpu, sd) {
3685
		if ((sd->flags & SD_LOAD_BALANCE) &&
3686
		    cpu_isset(busiest_cpu, sd->span))
3687
				break;
3688
	}
3689

3690
	if (likely(sd)) {
3691
		schedstat_inc(sd, alb_count);
3692

P
Peter Williams 已提交
3693 3694
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3695 3696 3697 3698
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3699
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3700 3701
}

3702 3703 3704
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3705
	cpumask_t cpu_mask;
3706 3707 3708 3709 3710
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3711
/*
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3722
 *
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3779 3780 3781 3782 3783
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3784
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3785
{
3786 3787
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3788 3789
	unsigned long interval;
	struct sched_domain *sd;
3790
	/* Earliest time when we have to do rebalance again */
3791
	unsigned long next_balance = jiffies + 60*HZ;
3792
	int update_next_balance = 0;
3793
	int need_serialize;
3794
	cpumask_t tmp;
L
Linus Torvalds 已提交
3795

3796
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3797 3798 3799 3800
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3801
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3802 3803 3804 3805 3806 3807
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3808 3809 3810
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3811
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3812

3813
		if (need_serialize) {
3814 3815 3816 3817
			if (!spin_trylock(&balancing))
				goto out;
		}

3818
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3819
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3820 3821
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3822 3823 3824
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3825
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3826
			}
3827
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3828
		}
3829
		if (need_serialize)
3830 3831
			spin_unlock(&balancing);
out:
3832
		if (time_after(next_balance, sd->last_balance + interval)) {
3833
			next_balance = sd->last_balance + interval;
3834 3835
			update_next_balance = 1;
		}
3836 3837 3838 3839 3840 3841 3842 3843

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3844
	}
3845 3846 3847 3848 3849 3850 3851 3852

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3853 3854 3855 3856 3857 3858 3859 3860 3861
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3862 3863 3864 3865
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3866

I
Ingo Molnar 已提交
3867
	rebalance_domains(this_cpu, idle);
3868 3869 3870 3871 3872 3873 3874

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3875 3876
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3877 3878 3879 3880
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3881
		cpu_clear(this_cpu, cpus);
3882 3883 3884 3885 3886 3887 3888 3889 3890
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3891
			rebalance_domains(balance_cpu, CPU_IDLE);
3892 3893

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3894 3895
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3908
static inline void trigger_load_balance(struct rq *rq, int cpu)
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3935
			if (ilb < nr_cpu_ids)
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3960
}
I
Ingo Molnar 已提交
3961 3962 3963

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3964 3965 3966
/*
 * on UP we do not need to balance between CPUs:
 */
3967
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3968 3969
{
}
I
Ingo Molnar 已提交
3970

L
Linus Torvalds 已提交
3971 3972 3973 3974 3975 3976 3977
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3978 3979
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3980
 */
3981
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3982 3983
{
	unsigned long flags;
3984 3985
	u64 ns, delta_exec;
	struct rq *rq;
3986

3987 3988
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3989
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3990 3991
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3992 3993 3994 3995
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3996

L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4020 4021 4022 4023 4024
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4025
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4059
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4060 4061
	cputime64_t tmp;

4062 4063 4064 4065
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4066

L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073 4074
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4075
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4076
		cpustat->system = cputime64_add(cpustat->system, tmp);
4077
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4078 4079 4080 4081 4082 4083 4084
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4105
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4106 4107 4108 4109 4110 4111 4112

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4113
	} else
L
Linus Torvalds 已提交
4114 4115 4116
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4128
	struct task_struct *curr = rq->curr;
4129 4130

	sched_clock_tick();
I
Ingo Molnar 已提交
4131 4132

	spin_lock(&rq->lock);
4133
	update_rq_clock(rq);
4134
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4135
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4136
	spin_unlock(&rq->lock);
4137

4138
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4139 4140
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4141
#endif
L
Linus Torvalds 已提交
4142 4143 4144 4145
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4146
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4147 4148 4149 4150
{
	/*
	 * Underflow?
	 */
4151 4152
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4153 4154 4155 4156
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4157 4158
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4159 4160 4161
}
EXPORT_SYMBOL(add_preempt_count);

4162
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4163 4164 4165 4166
{
	/*
	 * Underflow?
	 */
4167 4168
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4169 4170 4171
	/*
	 * Is the spinlock portion underflowing?
	 */
4172 4173 4174 4175
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4183
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4184
 */
I
Ingo Molnar 已提交
4185
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4186
{
4187 4188 4189 4190 4191
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4192
	debug_show_held_locks(prev);
4193
	print_modules();
I
Ingo Molnar 已提交
4194 4195
	if (irqs_disabled())
		print_irqtrace_events(prev);
4196 4197 4198 4199 4200

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4201
}
L
Linus Torvalds 已提交
4202

I
Ingo Molnar 已提交
4203 4204 4205 4206 4207
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4208
	/*
I
Ingo Molnar 已提交
4209
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4210 4211 4212
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4213
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4214 4215
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4216 4217
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4218
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4219 4220
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4221 4222
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4223 4224
	}
#endif
I
Ingo Molnar 已提交
4225 4226 4227 4228 4229 4230
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4231
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4232
{
4233
	const struct sched_class *class;
I
Ingo Molnar 已提交
4234
	struct task_struct *p;
L
Linus Torvalds 已提交
4235 4236

	/*
I
Ingo Molnar 已提交
4237 4238
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4239
	 */
I
Ingo Molnar 已提交
4240
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4241
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4242 4243
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4244 4245
	}

I
Ingo Molnar 已提交
4246 4247
	class = sched_class_highest;
	for ( ; ; ) {
4248
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4249 4250 4251 4252 4253 4254 4255 4256 4257
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4258

I
Ingo Molnar 已提交
4259 4260 4261 4262 4263 4264
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4265
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4266
	struct rq *rq;
M
Mike Galbraith 已提交
4267
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4281

M
Mike Galbraith 已提交
4282 4283
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4284

4285 4286 4287 4288
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4289
	update_rq_clock(rq);
4290 4291
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4292 4293

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4294
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4295
			prev->state = TASK_RUNNING;
4296
		else
4297
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4298
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4299 4300
	}

4301 4302 4303 4304
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4305

I
Ingo Molnar 已提交
4306
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4307 4308
		idle_balance(cpu, rq);

4309
	prev->sched_class->put_prev_task(rq, prev);
4310
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4311 4312

	if (likely(prev != next)) {
4313 4314
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4315 4316 4317 4318
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4319
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4320 4321 4322 4323 4324 4325
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4326 4327 4328
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4329 4330
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4331 4332

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4333
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4334

L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340 4341 4342
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4343
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4344
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4350

L
Linus Torvalds 已提交
4351 4352
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4353
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4354
	 */
N
Nick Piggin 已提交
4355
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4356 4357
		return;

4358 4359 4360 4361
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4362

4363 4364 4365 4366 4367 4368
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4369 4370 4371 4372
}
EXPORT_SYMBOL(preempt_schedule);

/*
4373
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4381

4382
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4383 4384
	BUG_ON(ti->preempt_count || !irqs_disabled());

4385 4386 4387 4388 4389 4390
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4391

4392 4393 4394 4395 4396 4397
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4398 4399 4400 4401
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4402 4403
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4404
{
4405
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4406 4407 4408 4409
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4410 4411
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4412 4413 4414
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4415
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4421
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4422

4423
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4424 4425
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4426
		if (curr->func(curr, mode, sync, key) &&
4427
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433 4434 4435 4436
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4437
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4438
 */
4439
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4440
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4453
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4459
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4471
void
I
Ingo Molnar 已提交
4472
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4489
void complete(struct completion *x)
L
Linus Torvalds 已提交
4490 4491 4492 4493 4494
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4495
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4496 4497 4498 4499
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4500
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4506
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4507 4508 4509 4510
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4511 4512
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4513 4514 4515 4516 4517 4518 4519
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4520 4521 4522 4523
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4524 4525
				timeout = -ERESTARTSYS;
				break;
4526 4527
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4528 4529 4530
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4531
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4532
		__remove_wait_queue(&x->wait, &wait);
4533 4534
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4535 4536
	}
	x->done--;
4537
	return timeout ?: 1;
L
Linus Torvalds 已提交
4538 4539
}

4540 4541
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4542 4543 4544 4545
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4546
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4547
	spin_unlock_irq(&x->wait.lock);
4548 4549
	return timeout;
}
L
Linus Torvalds 已提交
4550

4551
void __sched wait_for_completion(struct completion *x)
4552 4553
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4554
}
4555
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4556

4557
unsigned long __sched
4558
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4559
{
4560
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4561
}
4562
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4563

4564
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4565
{
4566 4567 4568 4569
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4570
}
4571
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4572

4573
unsigned long __sched
4574 4575
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4576
{
4577
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4578
}
4579
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4580

M
Matthew Wilcox 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4590 4591
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4592
{
I
Ingo Molnar 已提交
4593 4594 4595 4596
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4597

4598
	__set_current_state(state);
L
Linus Torvalds 已提交
4599

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4614 4615 4616
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4617
long __sched
I
Ingo Molnar 已提交
4618
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4619
{
4620
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4621 4622 4623
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4624
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4625
{
4626
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4627 4628 4629
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4630
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4631
{
4632
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4633 4634 4635
}
EXPORT_SYMBOL(sleep_on_timeout);

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4648
void rt_mutex_setprio(struct task_struct *p, int prio)
4649 4650
{
	unsigned long flags;
4651
	int oldprio, on_rq, running;
4652
	struct rq *rq;
4653
	const struct sched_class *prev_class = p->sched_class;
4654 4655 4656 4657

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4658
	update_rq_clock(rq);
4659

4660
	oldprio = p->prio;
I
Ingo Molnar 已提交
4661
	on_rq = p->se.on_rq;
4662
	running = task_current(rq, p);
4663
	if (on_rq)
4664
		dequeue_task(rq, p, 0);
4665 4666
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4667 4668 4669 4670 4671 4672

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4673 4674
	p->prio = prio;

4675 4676
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4677
	if (on_rq) {
4678
		enqueue_task(rq, p, 0);
4679 4680

		check_class_changed(rq, p, prev_class, oldprio, running);
4681 4682 4683 4684 4685 4686
	}
	task_rq_unlock(rq, &flags);
}

#endif

4687
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4688
{
I
Ingo Molnar 已提交
4689
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4690
	unsigned long flags;
4691
	struct rq *rq;
L
Linus Torvalds 已提交
4692 4693 4694 4695 4696 4697 4698 4699

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4700
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4701 4702 4703 4704
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4705
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4706
	 */
4707
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4708 4709 4710
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4711
	on_rq = p->se.on_rq;
4712
	if (on_rq)
4713
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4714 4715

	p->static_prio = NICE_TO_PRIO(nice);
4716
	set_load_weight(p);
4717 4718 4719
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4720

I
Ingo Molnar 已提交
4721
	if (on_rq) {
4722
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4723
		/*
4724 4725
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4726
		 */
4727
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733 4734
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4735 4736 4737 4738 4739
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4740
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4741
{
4742 4743
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4744

M
Matt Mackall 已提交
4745 4746 4747 4748
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4760
	long nice, retval;
L
Linus Torvalds 已提交
4761 4762 4763 4764 4765 4766

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4767 4768
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4778 4779 4780
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4799
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4808
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4809 4810 4811
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4812
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4827
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4828 4829 4830 4831 4832 4833 4834 4835
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4836
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4837
{
4838
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4839 4840 4841
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4842 4843
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4844
{
I
Ingo Molnar 已提交
4845
	BUG_ON(p->se.on_rq);
4846

L
Linus Torvalds 已提交
4847
	p->policy = policy;
I
Ingo Molnar 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4860
	p->rt_priority = prio;
4861 4862 4863
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4864
	set_load_weight(p);
L
Linus Torvalds 已提交
4865 4866 4867
}

/**
4868
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4869 4870 4871
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4872
 *
4873
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4874
 */
I
Ingo Molnar 已提交
4875 4876
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4877
{
4878
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4879
	unsigned long flags;
4880
	const struct sched_class *prev_class = p->sched_class;
4881
	struct rq *rq;
L
Linus Torvalds 已提交
4882

4883 4884
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4890 4891
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4892
		return -EINVAL;
L
Linus Torvalds 已提交
4893 4894
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4895 4896
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4897 4898
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4899
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4900
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4901
		return -EINVAL;
4902
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4903 4904
		return -EINVAL;

4905 4906 4907 4908
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4909
		if (rt_policy(policy)) {
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4926 4927 4928 4929 4930 4931
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4932

4933 4934 4935 4936 4937
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4938

4939 4940 4941 4942 4943
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4944
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4945 4946 4947
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4948 4949 4950
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4951 4952 4953 4954 4955
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4956 4957 4958 4959
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4960
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4961 4962 4963
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4964 4965
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4966 4967
		goto recheck;
	}
I
Ingo Molnar 已提交
4968
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4969
	on_rq = p->se.on_rq;
4970
	running = task_current(rq, p);
4971
	if (on_rq)
4972
		deactivate_task(rq, p, 0);
4973 4974
	if (running)
		p->sched_class->put_prev_task(rq, p);
4975

L
Linus Torvalds 已提交
4976
	oldprio = p->prio;
I
Ingo Molnar 已提交
4977
	__setscheduler(rq, p, policy, param->sched_priority);
4978

4979 4980
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4981 4982
	if (on_rq) {
		activate_task(rq, p, 0);
4983 4984

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4985
	}
4986 4987 4988
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4989 4990
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4991 4992 4993 4994
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4995 4996
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4997 4998 4999
{
	struct sched_param lparam;
	struct task_struct *p;
5000
	int retval;
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5006 5007 5008

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5009
	p = find_process_by_pid(pid);
5010 5011 5012
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5013

L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5023 5024
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5025
{
5026 5027 5028 5029
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5049
	struct task_struct *p;
5050
	int retval;
L
Linus Torvalds 已提交
5051 5052

	if (pid < 0)
5053
		return -EINVAL;
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5075
	struct task_struct *p;
5076
	int retval;
L
Linus Torvalds 已提交
5077 5078

	if (!param || pid < 0)
5079
		return -EINVAL;
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5106
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5107 5108
{
	cpumask_t cpus_allowed;
5109
	cpumask_t new_mask = *in_mask;
5110 5111
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5112

5113
	get_online_cpus();
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5119
		put_online_cpus();
L
Linus Torvalds 已提交
5120 5121 5122 5123 5124
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5125
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5136 5137 5138 5139
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5140
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5141
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5142
 again:
5143
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5144

P
Paul Menage 已提交
5145
	if (!retval) {
5146
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5157 5158
out_unlock:
	put_task_struct(p);
5159
	put_online_cpus();
L
Linus Torvalds 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5190
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5191 5192 5193 5194
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5195
	struct task_struct *p;
L
Linus Torvalds 已提交
5196 5197
	int retval;

5198
	get_online_cpus();
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5206 5207 5208 5209
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5210
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5211 5212 5213

out_unlock:
	read_unlock(&tasklist_lock);
5214
	put_online_cpus();
L
Linus Torvalds 已提交
5215

5216
	return retval;
L
Linus Torvalds 已提交
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5247 5248
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5249 5250 5251
 */
asmlinkage long sys_sched_yield(void)
{
5252
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5253

5254
	schedstat_inc(rq, yld_count);
5255
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260 5261

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5262
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267 5268 5269 5270
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5271
static void __cond_resched(void)
L
Linus Torvalds 已提交
5272
{
5273 5274 5275
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5276 5277 5278 5279 5280
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5281 5282 5283 5284 5285 5286 5287
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5288
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5289
{
5290 5291
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296
		__cond_resched();
		return 1;
	}
	return 0;
}
5297
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5303
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5304 5305 5306
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5307
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5308
{
N
Nick Piggin 已提交
5309
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5310 5311
	int ret = 0;

N
Nick Piggin 已提交
5312
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5313
		spin_unlock(lock);
N
Nick Piggin 已提交
5314 5315 5316 5317
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5318
		ret = 1;
L
Linus Torvalds 已提交
5319 5320
		spin_lock(lock);
	}
J
Jan Kara 已提交
5321
	return ret;
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5329
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5330
		local_bh_enable();
L
Linus Torvalds 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5342
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5353
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358 5359 5360
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5361
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5362

5363
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5364 5365 5366
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5367
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5373
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5374 5375
	long ret;

5376
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5377 5378 5379
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5380
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5401
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5402
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5426
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5427
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5444
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5445
	unsigned int time_slice;
5446
	int retval;
L
Linus Torvalds 已提交
5447 5448 5449
	struct timespec t;

	if (pid < 0)
5450
		return -EINVAL;
L
Linus Torvalds 已提交
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5462 5463 5464 5465 5466 5467
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5468
		time_slice = DEF_TIMESLICE;
5469
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5470 5471 5472 5473 5474
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5475 5476
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5477 5478
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5479
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5480
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5481 5482
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5483

L
Linus Torvalds 已提交
5484 5485 5486 5487 5488
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5489
static const char stat_nam[] = "RSDTtZX";
5490

5491
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5492 5493
{
	unsigned long free = 0;
5494
	unsigned state;
L
Linus Torvalds 已提交
5495 5496

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5497
	printk(KERN_INFO "%-13.13s %c", p->comm,
5498
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5499
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5500
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5501
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5502
	else
I
Ingo Molnar 已提交
5503
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5504 5505
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5506
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5507
	else
I
Ingo Molnar 已提交
5508
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5509 5510 5511
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5512
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5513 5514
		while (!*n)
			n++;
5515
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5516 5517
	}
#endif
5518
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5519
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5520

5521
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5522 5523
}

I
Ingo Molnar 已提交
5524
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5525
{
5526
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5527

5528 5529 5530
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5531
#else
5532 5533
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5534 5535 5536 5537 5538 5539 5540 5541
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5542
		if (!state_filter || (p->state & state_filter))
5543
			sched_show_task(p);
L
Linus Torvalds 已提交
5544 5545
	} while_each_thread(g, p);

5546 5547
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5548 5549 5550
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5551
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5552 5553 5554 5555 5556
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5557 5558
}

I
Ingo Molnar 已提交
5559 5560
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5561
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5562 5563
}

5564 5565 5566 5567 5568 5569 5570 5571
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5572
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5573
{
5574
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5575 5576
	unsigned long flags;

I
Ingo Molnar 已提交
5577 5578 5579
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5580
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5581
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5582
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5583 5584 5585

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5586 5587 5588
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5589 5590 5591
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5592 5593 5594
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5595
	task_thread_info(idle)->preempt_count = 0;
5596
#endif
I
Ingo Molnar 已提交
5597 5598 5599 5600
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5637 5638 5639 5640
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5641
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5660
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5661 5662
 * call is not atomic; no spinlocks may be held.
 */
5663
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5664
{
5665
	struct migration_req req;
L
Linus Torvalds 已提交
5666
	unsigned long flags;
5667
	struct rq *rq;
5668
	int ret = 0;
L
Linus Torvalds 已提交
5669 5670

	rq = task_rq_lock(p, &flags);
5671
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5672 5673 5674 5675
		ret = -EINVAL;
		goto out;
	}

5676 5677 5678 5679 5680 5681
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5682
	if (p->sched_class->set_cpus_allowed)
5683
		p->sched_class->set_cpus_allowed(p, new_mask);
5684
	else {
5685 5686
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5687 5688
	}

L
Linus Torvalds 已提交
5689
	/* Can the task run on the task's current CPU? If so, we're done */
5690
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5691 5692
		goto out;

5693
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5703

L
Linus Torvalds 已提交
5704 5705
	return ret;
}
5706
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5707 5708

/*
I
Ingo Molnar 已提交
5709
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714 5715
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5716 5717
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5718
 */
5719
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5720
{
5721
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5722
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5723 5724

	if (unlikely(cpu_is_offline(dest_cpu)))
5725
		return ret;
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5738
	on_rq = p->se.on_rq;
5739
	if (on_rq)
5740
		deactivate_task(rq_src, p, 0);
5741

L
Linus Torvalds 已提交
5742
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5743 5744 5745
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5746
	}
5747
	ret = 1;
L
Linus Torvalds 已提交
5748 5749
out:
	double_rq_unlock(rq_src, rq_dest);
5750
	return ret;
L
Linus Torvalds 已提交
5751 5752 5753 5754 5755 5756 5757
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5758
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5759 5760
{
	int cpu = (long)data;
5761
	struct rq *rq;
L
Linus Torvalds 已提交
5762 5763 5764 5765 5766 5767

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5768
		struct migration_req *req;
L
Linus Torvalds 已提交
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5791
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5792 5793
		list_del_init(head->next);

N
Nick Piggin 已提交
5794 5795 5796
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5826
/*
5827
 * Figure out where task on dead CPU should go, use force if necessary.
5828 5829
 * NOTE: interrupts should be disabled by the caller
 */
5830
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5831
{
5832
	unsigned long flags;
L
Linus Torvalds 已提交
5833
	cpumask_t mask;
5834 5835
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5836

5837 5838 5839 5840 5841 5842 5843
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5844
		if (dest_cpu >= nr_cpu_ids)
5845 5846 5847
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5848
		if (dest_cpu >= nr_cpu_ids) {
5849 5850 5851
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5852 5853 5854 5855
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5856
			 * cpuset_cpus_allowed() will not block. It must be
5857 5858
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5859
			rq = task_rq_lock(p, &flags);
5860
			p->cpus_allowed = cpus_allowed;
5861 5862
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5863

5864 5865 5866 5867 5868
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5869
			if (p->mm && printk_ratelimit()) {
5870 5871
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5872 5873
					task_pid_nr(p), p->comm, dead_cpu);
			}
5874
		}
5875
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5876 5877 5878 5879 5880 5881 5882 5883 5884
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5885
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5886
{
5887
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5901
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5902

5903
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5904

5905 5906
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5907 5908
			continue;

5909 5910 5911
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5912

5913
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5914 5915
}

I
Ingo Molnar 已提交
5916 5917
/*
 * Schedules idle task to be the next runnable task on current CPU.
5918 5919
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5920 5921 5922
 */
void sched_idle_next(void)
{
5923
	int this_cpu = smp_processor_id();
5924
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5925 5926 5927 5928
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5929
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5930

5931 5932 5933
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5934 5935 5936
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5937
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5938

5939 5940
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5941 5942 5943 5944

	spin_unlock_irqrestore(&rq->lock, flags);
}

5945 5946
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5960
/* called under rq->lock with disabled interrupts */
5961
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5962
{
5963
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5964 5965

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5966
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5967 5968

	/* Cannot have done final schedule yet: would have vanished. */
5969
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5970

5971
	get_task_struct(p);
L
Linus Torvalds 已提交
5972 5973 5974

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5975
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5976 5977
	 * fine.
	 */
5978
	spin_unlock_irq(&rq->lock);
5979
	move_task_off_dead_cpu(dead_cpu, p);
5980
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5981

5982
	put_task_struct(p);
L
Linus Torvalds 已提交
5983 5984 5985 5986 5987
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5988
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5989
	struct task_struct *next;
5990

I
Ingo Molnar 已提交
5991 5992 5993
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5994
		update_rq_clock(rq);
5995
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5996 5997 5998
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5999

L
Linus Torvalds 已提交
6000 6001 6002 6003
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6004 6005 6006
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6007 6008
	{
		.procname	= "sched_domain",
6009
		.mode		= 0555,
6010
	},
I
Ingo Molnar 已提交
6011
	{0, },
6012 6013 6014
};

static struct ctl_table sd_ctl_root[] = {
6015
	{
6016
		.ctl_name	= CTL_KERN,
6017
		.procname	= "kernel",
6018
		.mode		= 0555,
6019 6020
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6021
	{0, },
6022 6023 6024 6025 6026
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6027
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6028 6029 6030 6031

	return entry;
}

6032 6033
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6034
	struct ctl_table *entry;
6035

6036 6037 6038
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6039
	 * will always be set. In the lowest directory the names are
6040 6041 6042
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6043 6044
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6045 6046 6047
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6048 6049 6050 6051 6052

	kfree(*tablep);
	*tablep = NULL;
}

6053
static void
6054
set_table_entry(struct ctl_table *entry,
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6068
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6069

6070 6071 6072
	if (table == NULL)
		return NULL;

6073
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6074
		sizeof(long), 0644, proc_doulongvec_minmax);
6075
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6076
		sizeof(long), 0644, proc_doulongvec_minmax);
6077
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6078
		sizeof(int), 0644, proc_dointvec_minmax);
6079
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6080
		sizeof(int), 0644, proc_dointvec_minmax);
6081
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6082
		sizeof(int), 0644, proc_dointvec_minmax);
6083
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6084
		sizeof(int), 0644, proc_dointvec_minmax);
6085
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6086
		sizeof(int), 0644, proc_dointvec_minmax);
6087
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6088
		sizeof(int), 0644, proc_dointvec_minmax);
6089
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6090
		sizeof(int), 0644, proc_dointvec_minmax);
6091
	set_table_entry(&table[9], "cache_nice_tries",
6092 6093
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6094
	set_table_entry(&table[10], "flags", &sd->flags,
6095
		sizeof(int), 0644, proc_dointvec_minmax);
6096
	/* &table[11] is terminator */
6097 6098 6099 6100

	return table;
}

6101
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6102 6103 6104 6105 6106 6107 6108 6109 6110
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6111 6112
	if (table == NULL)
		return NULL;
6113 6114 6115 6116 6117

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6118
		entry->mode = 0555;
6119 6120 6121 6122 6123 6124 6125 6126
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6127
static void register_sched_domain_sysctl(void)
6128 6129 6130 6131 6132
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6133 6134 6135
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6136 6137 6138
	if (entry == NULL)
		return;

6139
	for_each_online_cpu(i) {
6140 6141
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6142
		entry->mode = 0555;
6143
		entry->child = sd_alloc_ctl_cpu_table(i);
6144
		entry++;
6145
	}
6146 6147

	WARN_ON(sd_sysctl_header);
6148 6149
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6150

6151
/* may be called multiple times per register */
6152 6153
static void unregister_sched_domain_sysctl(void)
{
6154 6155
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6156
	sd_sysctl_header = NULL;
6157 6158
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6159
}
6160
#else
6161 6162 6163 6164
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6165 6166 6167 6168
{
}
#endif

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6199 6200 6201 6202
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6203 6204
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6205 6206
{
	struct task_struct *p;
6207
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6208
	unsigned long flags;
6209
	struct rq *rq;
L
Linus Torvalds 已提交
6210 6211

	switch (action) {
6212

L
Linus Torvalds 已提交
6213
	case CPU_UP_PREPARE:
6214
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6215
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6216 6217 6218 6219 6220
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6221
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6222 6223 6224
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6225

L
Linus Torvalds 已提交
6226
	case CPU_ONLINE:
6227
	case CPU_ONLINE_FROZEN:
6228
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6229
		wake_up_process(cpu_rq(cpu)->migration_thread);
6230 6231 6232 6233 6234 6235

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6236 6237

			set_rq_online(rq);
6238 6239
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6240
		break;
6241

L
Linus Torvalds 已提交
6242 6243
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6244
	case CPU_UP_CANCELED_FROZEN:
6245 6246
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6247
		/* Unbind it from offline cpu so it can run. Fall thru. */
6248 6249
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6250 6251 6252
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6253

L
Linus Torvalds 已提交
6254
	case CPU_DEAD:
6255
	case CPU_DEAD_FROZEN:
6256
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6257 6258 6259 6260 6261
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6262
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6263
		update_rq_clock(rq);
6264
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6265
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6266 6267
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6268
		migrate_dead_tasks(cpu);
6269
		spin_unlock_irq(&rq->lock);
6270
		cpuset_unlock();
L
Linus Torvalds 已提交
6271 6272 6273
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6274 6275 6276 6277 6278
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6279 6280
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6281 6282
			struct migration_req *req;

L
Linus Torvalds 已提交
6283
			req = list_entry(rq->migration_queue.next,
6284
					 struct migration_req, list);
L
Linus Torvalds 已提交
6285 6286 6287 6288 6289
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6290

6291 6292
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6293 6294 6295 6296 6297
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6298
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6299 6300 6301
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6302 6303 6304 6305 6306 6307 6308 6309
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6310
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6311 6312 6313 6314
	.notifier_call = migration_call,
	.priority = 10
};

6315
void __init migration_init(void)
L
Linus Torvalds 已提交
6316 6317
{
	void *cpu = (void *)(long)smp_processor_id();
6318
	int err;
6319 6320

	/* Start one for the boot CPU: */
6321 6322
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6323 6324 6325 6326 6327 6328
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6329

6330
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6331

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6354 6355
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6356
{
I
Ingo Molnar 已提交
6357
	struct sched_group *group = sd->groups;
6358
	char str[256];
L
Linus Torvalds 已提交
6359

6360
	cpulist_scnprintf(str, sizeof(str), sd->span);
6361
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6371 6372
	}

6373 6374
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6375 6376 6377 6378 6379 6380 6381 6382 6383

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6384

I
Ingo Molnar 已提交
6385
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6386
	do {
I
Ingo Molnar 已提交
6387 6388 6389
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6390 6391 6392
			break;
		}

I
Ingo Molnar 已提交
6393 6394 6395 6396 6397 6398
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6399

I
Ingo Molnar 已提交
6400 6401 6402 6403 6404
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6405

6406
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6407 6408 6409 6410
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6411

6412
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6413

6414
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6415
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6416

I
Ingo Molnar 已提交
6417 6418 6419
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6420

6421
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6422
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6423

6424
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6425 6426 6427 6428
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6429

I
Ingo Molnar 已提交
6430 6431
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6432
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6433
	int level = 0;
L
Linus Torvalds 已提交
6434

I
Ingo Molnar 已提交
6435 6436 6437 6438
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6439

I
Ingo Molnar 已提交
6440 6441
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6442 6443 6444 6445 6446 6447
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6448
	for (;;) {
6449
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6450
			break;
L
Linus Torvalds 已提交
6451 6452
		level++;
		sd = sd->parent;
6453
		if (!sd)
I
Ingo Molnar 已提交
6454 6455
			break;
	}
6456
	kfree(groupmask);
L
Linus Torvalds 已提交
6457
}
6458
#else /* !CONFIG_SCHED_DEBUG */
6459
# define sched_domain_debug(sd, cpu) do { } while (0)
6460
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6461

6462
static int sd_degenerate(struct sched_domain *sd)
6463 6464 6465 6466 6467 6468 6469 6470
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6471 6472 6473
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6487 6488
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6507 6508 6509
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6510 6511 6512 6513 6514 6515 6516
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6517 6518 6519 6520 6521 6522 6523 6524 6525
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6526 6527
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6528

6529 6530
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6531 6532 6533 6534 6535 6536 6537
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6538
	cpu_set(rq->cpu, rd->span);
6539
	if (cpu_isset(rq->cpu, cpu_online_map))
6540
		set_rq_online(rq);
G
Gregory Haskins 已提交
6541 6542 6543 6544

	spin_unlock_irqrestore(&rq->lock, flags);
}

6545
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6546 6547 6548
{
	memset(rd, 0, sizeof(*rd));

6549 6550
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6551 6552

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6553 6554 6555 6556
}

static void init_defrootdomain(void)
{
6557
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6558 6559 6560
	atomic_set(&def_root_domain.refcount, 1);
}

6561
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6562 6563 6564 6565 6566 6567 6568
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6569
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6570 6571 6572 6573

	return rd;
}

L
Linus Torvalds 已提交
6574
/*
I
Ingo Molnar 已提交
6575
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6576 6577
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6578 6579
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6580
{
6581
	struct rq *rq = cpu_rq(cpu);
6582 6583 6584 6585 6586 6587 6588
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6589
		if (sd_parent_degenerate(tmp, parent)) {
6590
			tmp->parent = parent->parent;
6591 6592 6593
			if (parent->parent)
				parent->parent->child = tmp;
		}
6594 6595
	}

6596
	if (sd && sd_degenerate(sd)) {
6597
		sd = sd->parent;
6598 6599 6600
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6601 6602 6603

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6604
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6605
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6606 6607 6608
}

/* cpus with isolated domains */
6609
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6624
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6625 6626

/*
6627 6628 6629 6630
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6631 6632 6633 6634 6635
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6636
static void
6637
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6638
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6639 6640 6641
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6642 6643 6644 6645
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6646 6647 6648
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6649
		struct sched_group *sg;
6650
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6651 6652
		int j;

6653
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6654 6655
			continue;

6656
		cpus_clear(sg->cpumask);
6657
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6658

6659 6660
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6661 6662
				continue;

6663
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6675
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6676

6677
#ifdef CONFIG_NUMA
6678

6679 6680 6681 6682 6683
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6684
 * Find the next node to include in a given scheduling domain. Simply
6685 6686 6687 6688
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6689
static int find_next_best_node(int node, nodemask_t *used_nodes)
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6703
		if (node_isset(n, *used_nodes))
6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6715
	node_set(best_node, *used_nodes);
6716 6717 6718 6719 6720 6721
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6722
 * @span: resulting cpumask
6723
 *
I
Ingo Molnar 已提交
6724
 * Given a node, construct a good cpumask for its sched_domain to span. It
6725 6726 6727
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6728
static void sched_domain_node_span(int node, cpumask_t *span)
6729
{
6730 6731
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6732
	int i;
6733

6734
	cpus_clear(*span);
6735
	nodes_clear(used_nodes);
6736

6737
	cpus_or(*span, *span, *nodemask);
6738
	node_set(node, used_nodes);
6739 6740

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6741
		int next_node = find_next_best_node(node, &used_nodes);
6742

6743
		node_to_cpumask_ptr_next(nodemask, next_node);
6744
		cpus_or(*span, *span, *nodemask);
6745 6746
	}
}
6747
#endif /* CONFIG_NUMA */
6748

6749
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6750

6751
/*
6752
 * SMT sched-domains:
6753
 */
L
Linus Torvalds 已提交
6754 6755
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6756
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6757

I
Ingo Molnar 已提交
6758
static int
6759 6760
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6761
{
6762 6763
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6764 6765
	return cpu;
}
6766
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6767

6768 6769 6770
/*
 * multi-core sched-domains:
 */
6771 6772
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6773
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6774
#endif /* CONFIG_SCHED_MC */
6775 6776

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6777
static int
6778 6779
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6780
{
6781
	int group;
6782 6783 6784 6785

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6786 6787 6788
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6789 6790
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6791
static int
6792 6793
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6794
{
6795 6796
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6797 6798 6799 6800
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6801
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6802
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6803

I
Ingo Molnar 已提交
6804
static int
6805 6806
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6807
{
6808
	int group;
6809
#ifdef CONFIG_SCHED_MC
6810 6811 6812
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6813
#elif defined(CONFIG_SCHED_SMT)
6814 6815 6816
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6817
#else
6818
	group = cpu;
L
Linus Torvalds 已提交
6819
#endif
6820 6821 6822
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6823 6824 6825 6826
}

#ifdef CONFIG_NUMA
/*
6827 6828 6829
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6830
 */
6831
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6832
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6833

6834
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6835
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6836

6837
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6838
				 struct sched_group **sg, cpumask_t *nodemask)
6839
{
6840 6841
	int group;

6842 6843 6844
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6845 6846 6847 6848

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6849
}
6850

6851 6852 6853 6854 6855 6856 6857
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6858 6859 6860
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6861

6862 6863 6864 6865 6866 6867 6868 6869
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6870

6871 6872 6873 6874
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6875
}
6876
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6877

6878
#ifdef CONFIG_NUMA
6879
/* Free memory allocated for various sched_group structures */
6880
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6881
{
6882
	int cpu, i;
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6894 6895 6896
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6913
#else /* !CONFIG_NUMA */
6914
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6915 6916
{
}
6917
#endif /* CONFIG_NUMA */
6918

6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6945 6946
	sd->groups->__cpu_power = 0;

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6957
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6958 6959 6960 6961 6962 6963 6964 6965
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6966
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6967 6968 6969 6970
		group = group->next;
	} while (group != child->groups);
}

6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6982
	sd->level = SD_LV_##type;				\
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7031 7032 7033 7034
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7035 7036 7037 7038 7039 7040
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7066
/*
7067 7068
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7069
 */
7070 7071
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7072 7073
{
	int i;
G
Gregory Haskins 已提交
7074
	struct root_domain *rd;
7075 7076
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7077 7078
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7079
	int sd_allnodes = 0;
7080 7081 7082 7083

	/*
	 * Allocate the per-node list of sched groups
	 */
7084
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7085
				    GFP_KERNEL);
7086 7087
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7088
		return -ENOMEM;
7089 7090
	}
#endif
L
Linus Torvalds 已提交
7091

7092
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7093 7094
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7095 7096 7097
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7098 7099 7100
		return -ENOMEM;
	}

7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7120
	/*
7121
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7122
	 */
7123
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7124
		struct sched_domain *sd = NULL, *p;
7125
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7126

7127 7128
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7129 7130

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7131
		if (cpus_weight(*cpu_map) >
7132
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7133
			sd = &per_cpu(allnodes_domains, i);
7134
			SD_INIT(sd, ALLNODES);
7135
			set_domain_attribute(sd, attr);
7136
			sd->span = *cpu_map;
7137
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7138
			p = sd;
7139
			sd_allnodes = 1;
7140 7141 7142
		} else
			p = NULL;

L
Linus Torvalds 已提交
7143
		sd = &per_cpu(node_domains, i);
7144
		SD_INIT(sd, NODE);
7145
		set_domain_attribute(sd, attr);
7146
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7147
		sd->parent = p;
7148 7149
		if (p)
			p->child = sd;
7150
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7151 7152 7153 7154
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7155
		SD_INIT(sd, CPU);
7156
		set_domain_attribute(sd, attr);
7157
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7158
		sd->parent = p;
7159 7160
		if (p)
			p->child = sd;
7161
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7162

7163 7164 7165
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7166
		SD_INIT(sd, MC);
7167
		set_domain_attribute(sd, attr);
7168 7169 7170
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7171
		p->child = sd;
7172
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7173 7174
#endif

L
Linus Torvalds 已提交
7175 7176 7177
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7178
		SD_INIT(sd, SIBLING);
7179
		set_domain_attribute(sd, attr);
7180
		sd->span = per_cpu(cpu_sibling_map, i);
7181
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7182
		sd->parent = p;
7183
		p->child = sd;
7184
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7185 7186 7187 7188 7189
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7190
	for_each_cpu_mask(i, *cpu_map) {
7191 7192 7193 7194 7195 7196
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7197 7198
			continue;

I
Ingo Molnar 已提交
7199
		init_sched_build_groups(this_sibling_map, cpu_map,
7200 7201
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7202 7203 7204
	}
#endif

7205 7206 7207
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7208 7209 7210 7211 7212 7213
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7214
			continue;
7215

I
Ingo Molnar 已提交
7216
		init_sched_build_groups(this_core_map, cpu_map,
7217 7218
					&cpu_to_core_group,
					send_covered, tmpmask);
7219 7220 7221
	}
#endif

L
Linus Torvalds 已提交
7222 7223
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7224 7225
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7226

7227 7228 7229
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7230 7231
			continue;

7232 7233 7234
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7235 7236 7237 7238
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7239 7240 7241 7242 7243 7244 7245
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7246 7247 7248 7249

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7250 7251 7252
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7253 7254
		int j;

7255 7256 7257 7258 7259
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7260
			sched_group_nodes[i] = NULL;
7261
			continue;
7262
		}
7263

7264
		sched_domain_node_span(i, domainspan);
7265
		cpus_and(*domainspan, *domainspan, *cpu_map);
7266

7267
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7268 7269 7270 7271 7272
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7273
		sched_group_nodes[i] = sg;
7274
		for_each_cpu_mask(j, *nodemask) {
7275
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7276

7277 7278 7279
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7280
		sg->__cpu_power = 0;
7281
		sg->cpumask = *nodemask;
7282
		sg->next = sg;
7283
		cpus_or(*covered, *covered, *nodemask);
7284 7285 7286
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7287
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7288
			int n = (i + j) % MAX_NUMNODES;
7289
			node_to_cpumask_ptr(pnodemask, n);
7290

7291 7292 7293 7294
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7295 7296
				break;

7297 7298
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7299 7300
				continue;

7301 7302
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7303 7304 7305
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7306
				goto error;
7307
			}
7308
			sg->__cpu_power = 0;
7309
			sg->cpumask = *tmpmask;
7310
			sg->next = prev->next;
7311
			cpus_or(*covered, *covered, *tmpmask);
7312 7313 7314 7315
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7316 7317 7318
#endif

	/* Calculate CPU power for physical packages and nodes */
7319
#ifdef CONFIG_SCHED_SMT
7320
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7321 7322
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7323
		init_sched_groups_power(i, sd);
7324
	}
L
Linus Torvalds 已提交
7325
#endif
7326
#ifdef CONFIG_SCHED_MC
7327
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7328 7329
		struct sched_domain *sd = &per_cpu(core_domains, i);

7330
		init_sched_groups_power(i, sd);
7331 7332
	}
#endif
7333

7334
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7335 7336
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7337
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7338 7339
	}

7340
#ifdef CONFIG_NUMA
7341 7342
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7343

7344 7345
	if (sd_allnodes) {
		struct sched_group *sg;
7346

7347 7348
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7349 7350
		init_numa_sched_groups_power(sg);
	}
7351 7352
#endif

L
Linus Torvalds 已提交
7353
	/* Attach the domains */
7354
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7355 7356 7357
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7358 7359
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7360 7361 7362
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7363
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7364
	}
7365

7366
	SCHED_CPUMASK_FREE((void *)allmasks);
7367 7368
	return 0;

7369
#ifdef CONFIG_NUMA
7370
error:
7371 7372
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7373
	return -ENOMEM;
7374
#endif
L
Linus Torvalds 已提交
7375
}
P
Paul Jackson 已提交
7376

7377 7378 7379 7380 7381
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7382 7383
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7384 7385
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7386 7387 7388 7389 7390 7391 7392 7393

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7394 7395 7396 7397
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7410
/*
I
Ingo Molnar 已提交
7411
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7412 7413
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7414
 */
7415
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7416
{
7417 7418
	int err;

7419
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7420 7421 7422 7423 7424
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7425
	dattr_cur = NULL;
7426
	err = build_sched_domains(doms_cur);
7427
	register_sched_domain_sysctl();
7428 7429

	return err;
7430 7431
}

7432 7433
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7434
{
7435
	free_sched_groups(cpu_map, tmpmask);
7436
}
L
Linus Torvalds 已提交
7437

7438 7439 7440 7441
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7442
static void detach_destroy_domains(const cpumask_t *cpu_map)
7443
{
7444
	cpumask_t tmpmask;
7445 7446
	int i;

7447 7448
	unregister_sched_domain_sysctl();

7449
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7450
		cpu_attach_domain(NULL, &def_root_domain, i);
7451
	synchronize_sched();
7452
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7453 7454
}

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7471 7472
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7473
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7474 7475 7476 7477
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7478 7479 7480
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7481 7482 7483
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7484 7485
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7486 7487 7488 7489 7490 7491
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7492 7493
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7494 7495 7496
{
	int i, j;

7497
	mutex_lock(&sched_domains_mutex);
7498

7499 7500 7501
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7502 7503 7504 7505
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7506
		dattr_new = NULL;
P
Paul Jackson 已提交
7507 7508 7509 7510 7511
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7512 7513
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7525 7526
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7527 7528 7529
				goto match2;
		}
		/* no match - add a new doms_new */
7530 7531
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7532 7533 7534 7535 7536 7537 7538
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7539
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7540
	doms_cur = doms_new;
7541
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7542
	ndoms_cur = ndoms_new;
7543 7544

	register_sched_domain_sysctl();
7545

7546
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7547 7548
}

7549
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7550
int arch_reinit_sched_domains(void)
7551 7552 7553
{
	int err;

7554
	get_online_cpus();
7555
	mutex_lock(&sched_domains_mutex);
7556
	detach_destroy_domains(&cpu_online_map);
7557
	free_sched_domains();
7558
	err = arch_init_sched_domains(&cpu_online_map);
7559
	mutex_unlock(&sched_domains_mutex);
7560
	put_online_cpus();
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7587 7588
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7589 7590 7591
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7592 7593
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7594 7595 7596 7597 7598 7599 7600
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7601 7602
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7603 7604 7605
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7626
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7627

L
Linus Torvalds 已提交
7628
/*
I
Ingo Molnar 已提交
7629
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7630
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7631
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7632 7633 7634 7635 7636
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7637 7638
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7639 7640
	switch (action) {
	case CPU_DOWN_PREPARE:
7641
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7642 7643 7644 7645
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7646
		detach_destroy_domains(&cpu_online_map);
7647
		free_sched_domains();
L
Linus Torvalds 已提交
7648 7649
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7650

L
Linus Torvalds 已提交
7651
	case CPU_DOWN_FAILED:
7652
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7653
	case CPU_ONLINE:
7654
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7655 7656 7657 7658
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7659
	case CPU_DEAD:
7660
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7661 7662 7663 7664 7665 7666 7667 7668
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7669 7670 7671 7672 7673 7674 7675
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7676
	/* The hotplug lock is already held by cpu_up/cpu_down */
7677
	arch_init_sched_domains(&cpu_online_map);
7678
#endif
L
Linus Torvalds 已提交
7679 7680 7681 7682 7683 7684

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7685 7686
	cpumask_t non_isolated_cpus;

7687 7688 7689 7690 7691
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7692
	get_online_cpus();
7693
	mutex_lock(&sched_domains_mutex);
7694
	arch_init_sched_domains(&cpu_online_map);
7695
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7696 7697
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7698
	mutex_unlock(&sched_domains_mutex);
7699
	put_online_cpus();
L
Linus Torvalds 已提交
7700 7701
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7702
	init_hrtick();
7703 7704

	/* Move init over to a non-isolated CPU */
7705
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7706
		BUG();
I
Ingo Molnar 已提交
7707
	sched_init_granularity();
L
Linus Torvalds 已提交
7708 7709 7710 7711
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7712
	sched_init_granularity();
L
Linus Torvalds 已提交
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7723
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7724 7725
{
	cfs_rq->tasks_timeline = RB_ROOT;
7726
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7727 7728 7729
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7730
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7731 7732
}

P
Peter Zijlstra 已提交
7733 7734 7735 7736 7737 7738 7739
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7740
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7741 7742 7743 7744 7745
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7746
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7747 7748
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7749 7750 7751 7752 7753 7754 7755
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7756 7757
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7758

7759
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7760
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7761 7762
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7763 7764
}

P
Peter Zijlstra 已提交
7765
#ifdef CONFIG_FAIR_GROUP_SCHED
7766 7767 7768
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7769
{
7770
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7771 7772 7773 7774 7775 7776 7777
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7778 7779 7780 7781
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7782 7783 7784 7785 7786
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7787 7788
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7789
	se->load.inv_weight = 0;
7790
	se->parent = parent;
P
Peter Zijlstra 已提交
7791
}
7792
#endif
P
Peter Zijlstra 已提交
7793

7794
#ifdef CONFIG_RT_GROUP_SCHED
7795 7796 7797
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7798
{
7799 7800
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7801 7802 7803 7804
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7805
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7806 7807 7808 7809
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7810 7811 7812
	if (!rt_se)
		return;

7813 7814 7815 7816 7817
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7818
	rt_se->my_q = rt_rq;
7819
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7820 7821 7822 7823
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7824 7825
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7826
	int i, j;
7827 7828 7829 7830 7831 7832 7833
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7834 7835 7836
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7837 7838 7839 7840 7841 7842
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7843
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7844 7845 7846 7847 7848 7849 7850

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7851 7852 7853 7854 7855 7856 7857

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7858 7859
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7860 7861 7862 7863 7864
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7865 7866 7867 7868 7869 7870 7871 7872
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7873 7874
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7875
	}
I
Ingo Molnar 已提交
7876

G
Gregory Haskins 已提交
7877 7878 7879 7880
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7881 7882 7883 7884 7885 7886
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7887 7888 7889
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7890 7891
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7892

7893
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7894
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7895 7896 7897 7898 7899 7900
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7901 7902
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7903

7904
	for_each_possible_cpu(i) {
7905
		struct rq *rq;
L
Linus Torvalds 已提交
7906 7907 7908

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7909
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7910
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7911
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7912
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7913
#ifdef CONFIG_FAIR_GROUP_SCHED
7914
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7915
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7936
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7937
#elif defined CONFIG_USER_SCHED
7938 7939
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7951
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7952
				&per_cpu(init_cfs_rq, i),
7953 7954
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7955

7956
#endif
D
Dhaval Giani 已提交
7957 7958 7959
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7960
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7961
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7962
#ifdef CONFIG_CGROUP_SCHED
7963
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7964
#elif defined CONFIG_USER_SCHED
7965
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7966
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7967
				&per_cpu(init_rt_rq, i),
7968 7969
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7970
#endif
I
Ingo Molnar 已提交
7971
#endif
L
Linus Torvalds 已提交
7972

I
Ingo Molnar 已提交
7973 7974
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7975
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7976
		rq->sd = NULL;
G
Gregory Haskins 已提交
7977
		rq->rd = NULL;
L
Linus Torvalds 已提交
7978
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7979
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7980
		rq->push_cpu = 0;
7981
		rq->cpu = i;
7982
		rq->online = 0;
L
Linus Torvalds 已提交
7983 7984
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7985
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7986
#endif
P
Peter Zijlstra 已提交
7987
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7988 7989 7990
		atomic_set(&rq->nr_iowait, 0);
	}

7991
	set_load_weight(&init_task);
7992

7993 7994 7995 7996
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7997 7998 7999 8000
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8001 8002 8003 8004
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8018 8019 8020 8021
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8022 8023

	scheduler_running = 1;
L
Linus Torvalds 已提交
8024 8025 8026 8027 8028
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8029
#ifdef in_atomic
L
Linus Torvalds 已提交
8030 8031 8032 8033 8034 8035 8036
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8037
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8038 8039 8040
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8041
		debug_show_held_locks(current);
8042 8043
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8044 8045 8046 8047 8048 8049 8050 8051
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8052 8053 8054
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8055

8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8067 8068
void normalize_rt_tasks(void)
{
8069
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8070
	unsigned long flags;
8071
	struct rq *rq;
L
Linus Torvalds 已提交
8072

8073
	read_lock_irqsave(&tasklist_lock, flags);
8074
	do_each_thread(g, p) {
8075 8076 8077 8078 8079 8080
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8081 8082
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8083 8084 8085
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8086
#endif
I
Ingo Molnar 已提交
8087 8088 8089 8090 8091 8092 8093 8094

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8095
			continue;
I
Ingo Molnar 已提交
8096
		}
L
Linus Torvalds 已提交
8097

8098
		spin_lock(&p->pi_lock);
8099
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8100

8101
		normalize_task(rq, p);
8102

8103
		__task_rq_unlock(rq);
8104
		spin_unlock(&p->pi_lock);
8105 8106
	} while_each_thread(g, p);

8107
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8108 8109 8110
}

#endif /* CONFIG_MAGIC_SYSRQ */
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8129
struct task_struct *curr_task(int cpu)
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8140 8141
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8142 8143 8144 8145 8146 8147 8148
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8149
void set_curr_task(int cpu, struct task_struct *p)
8150 8151 8152 8153 8154
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8155

8156 8157
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8172 8173
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8174 8175
{
	struct cfs_rq *cfs_rq;
8176
	struct sched_entity *se, *parent_se;
8177
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8178 8179
	int i;

8180
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8181 8182
	if (!tg->cfs_rq)
		goto err;
8183
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8184 8185
	if (!tg->se)
		goto err;
8186 8187

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8188 8189

	for_each_possible_cpu(i) {
8190
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8191

P
Peter Zijlstra 已提交
8192 8193
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8194 8195 8196
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8197 8198
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8199 8200 8201
		if (!se)
			goto err;

8202 8203
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8222
#else /* !CONFG_FAIR_GROUP_SCHED */
8223 8224 8225 8226
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8227 8228
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8240
#endif /* CONFIG_FAIR_GROUP_SCHED */
8241 8242

#ifdef CONFIG_RT_GROUP_SCHED
8243 8244 8245 8246
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8247 8248
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8260 8261
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8262 8263
{
	struct rt_rq *rt_rq;
8264
	struct sched_rt_entity *rt_se, *parent_se;
8265 8266 8267
	struct rq *rq;
	int i;

8268
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8269 8270
	if (!tg->rt_rq)
		goto err;
8271
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8272 8273 8274
	if (!tg->rt_se)
		goto err;

8275 8276
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8277 8278 8279 8280

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8281 8282 8283 8284
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8285

P
Peter Zijlstra 已提交
8286 8287 8288 8289
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8290

8291 8292
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8293 8294
	}

8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8311
#else /* !CONFIG_RT_GROUP_SCHED */
8312 8313 8314 8315
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8316 8317
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8329
#endif /* CONFIG_RT_GROUP_SCHED */
8330

8331
#ifdef CONFIG_GROUP_SCHED
8332 8333 8334 8335 8336 8337 8338 8339
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8340
struct task_group *sched_create_group(struct task_group *parent)
8341 8342 8343 8344 8345 8346 8347 8348 8349
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8350
	if (!alloc_fair_sched_group(tg, parent))
8351 8352
		goto err;

8353
	if (!alloc_rt_sched_group(tg, parent))
8354 8355
		goto err;

8356
	spin_lock_irqsave(&task_group_lock, flags);
8357
	for_each_possible_cpu(i) {
8358 8359
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8360
	}
P
Peter Zijlstra 已提交
8361
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8362 8363 8364 8365 8366 8367

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8368
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8369

8370
	return tg;
S
Srivatsa Vaddagiri 已提交
8371 8372

err:
P
Peter Zijlstra 已提交
8373
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8374 8375 8376
	return ERR_PTR(-ENOMEM);
}

8377
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8378
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8379 8380
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8381
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8382 8383
}

8384
/* Destroy runqueue etc associated with a task group */
8385
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8386
{
8387
	unsigned long flags;
8388
	int i;
S
Srivatsa Vaddagiri 已提交
8389

8390
	spin_lock_irqsave(&task_group_lock, flags);
8391
	for_each_possible_cpu(i) {
8392 8393
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8394
	}
P
Peter Zijlstra 已提交
8395
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8396
	list_del_rcu(&tg->siblings);
8397
	spin_unlock_irqrestore(&task_group_lock, flags);
8398 8399

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8400
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8401 8402
}

8403
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8404 8405 8406
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8407 8408
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8409 8410 8411 8412 8413 8414 8415 8416 8417
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8418
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8419 8420
	on_rq = tsk->se.on_rq;

8421
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8422
		dequeue_task(rq, tsk, 0);
8423 8424
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8425

P
Peter Zijlstra 已提交
8426
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8427

P
Peter Zijlstra 已提交
8428 8429 8430 8431 8432
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8433 8434 8435
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8436
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8437 8438 8439

	task_rq_unlock(rq, &flags);
}
8440
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8441

8442
#ifdef CONFIG_FAIR_GROUP_SCHED
8443
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8444 8445 8446 8447 8448
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8449
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8450 8451 8452
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8453
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8454

8455
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8456
		enqueue_entity(cfs_rq, se, 0);
8457
}
8458

8459 8460 8461 8462 8463 8464 8465 8466 8467
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8468 8469
}

8470 8471
static DEFINE_MUTEX(shares_mutex);

8472
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8473 8474
{
	int i;
8475
	unsigned long flags;
8476

8477 8478 8479 8480 8481 8482
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8483 8484
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8485 8486
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8487

8488
	mutex_lock(&shares_mutex);
8489
	if (tg->shares == shares)
8490
		goto done;
S
Srivatsa Vaddagiri 已提交
8491

8492
	spin_lock_irqsave(&task_group_lock, flags);
8493 8494
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8495
	list_del_rcu(&tg->siblings);
8496
	spin_unlock_irqrestore(&task_group_lock, flags);
8497 8498 8499 8500 8501 8502 8503 8504

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8505
	tg->shares = shares;
8506 8507 8508 8509 8510
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8511
		set_se_shares(tg->se[i], shares);
8512
	}
S
Srivatsa Vaddagiri 已提交
8513

8514 8515 8516 8517
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8518
	spin_lock_irqsave(&task_group_lock, flags);
8519 8520
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8521
	list_add_rcu(&tg->siblings, &tg->parent->children);
8522
	spin_unlock_irqrestore(&task_group_lock, flags);
8523
done:
8524
	mutex_unlock(&shares_mutex);
8525
	return 0;
S
Srivatsa Vaddagiri 已提交
8526 8527
}

8528 8529 8530 8531
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8532
#endif
8533

8534
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8535
/*
P
Peter Zijlstra 已提交
8536
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8537
 */
P
Peter Zijlstra 已提交
8538 8539 8540 8541 8542 8543 8544
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8545
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8546 8547
}

8548 8549 8550
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8551
	struct task_group *tgi, *parent = tg->parent;
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8575
	return total + to_ratio(period, runtime) <=
8576 8577 8578 8579
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8580
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8581 8582 8583
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8584
	unsigned long global_ratio =
8585
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8586 8587

	rcu_read_lock();
P
Peter Zijlstra 已提交
8588 8589 8590
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8591

8592 8593
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8594 8595
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8596

P
Peter Zijlstra 已提交
8597
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8598
}
8599
#endif
P
Peter Zijlstra 已提交
8600

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8612 8613
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8614
{
P
Peter Zijlstra 已提交
8615
	int i, err = 0;
P
Peter Zijlstra 已提交
8616 8617

	mutex_lock(&rt_constraints_mutex);
8618
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8619
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8620 8621 8622
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8623 8624 8625 8626
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8627 8628

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8629 8630
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8631 8632 8633 8634 8635 8636 8637 8638 8639

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8640
 unlock:
8641
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8642 8643 8644
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8645 8646
}

8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8659 8660 8661 8662
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8663
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8664 8665
		return -1;

8666
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8667 8668 8669
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8692 8693
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8694 8695
	int ret = 0;

8696 8697 8698
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8699
	mutex_lock(&rt_constraints_mutex);
8700
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8701 8702 8703 8704 8705
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8706
#else /* !CONFIG_RT_GROUP_SCHED */
8707 8708
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8722 8723
	return 0;
}
8724
#endif /* CONFIG_RT_GROUP_SCHED */
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8755

8756
#ifdef CONFIG_CGROUP_SCHED
8757 8758

/* return corresponding task_group object of a cgroup */
8759
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8760
{
8761 8762
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8763 8764 8765
}

static struct cgroup_subsys_state *
8766
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8767
{
8768
	struct task_group *tg, *parent;
8769

8770
	if (!cgrp->parent) {
8771
		/* This is early initialization for the top cgroup */
8772
		init_task_group.css.cgroup = cgrp;
8773 8774 8775
		return &init_task_group.css;
	}

8776 8777
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8778 8779 8780 8781
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8782
	tg->css.cgroup = cgrp;
8783 8784 8785 8786

	return &tg->css;
}

I
Ingo Molnar 已提交
8787 8788
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8789
{
8790
	struct task_group *tg = cgroup_tg(cgrp);
8791 8792 8793 8794

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8795 8796 8797
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8798
{
8799 8800
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8801
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8802 8803
		return -EINVAL;
#else
8804 8805 8806
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8807
#endif
8808 8809 8810 8811 8812

	return 0;
}

static void
8813
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8814 8815 8816 8817 8818
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8819
#ifdef CONFIG_FAIR_GROUP_SCHED
8820
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8821
				u64 shareval)
8822
{
8823
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8824 8825
}

8826
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8827
{
8828
	struct task_group *tg = cgroup_tg(cgrp);
8829 8830 8831

	return (u64) tg->shares;
}
8832
#endif /* CONFIG_FAIR_GROUP_SCHED */
8833

8834
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8835
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8836
				s64 val)
P
Peter Zijlstra 已提交
8837
{
8838
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8839 8840
}

8841
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8842
{
8843
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8844
}
8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8856
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8857

8858
static struct cftype cpu_files[] = {
8859
#ifdef CONFIG_FAIR_GROUP_SCHED
8860 8861
	{
		.name = "shares",
8862 8863
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8864
	},
8865 8866
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8867
	{
P
Peter Zijlstra 已提交
8868
		.name = "rt_runtime_us",
8869 8870
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8871
	},
8872 8873
	{
		.name = "rt_period_us",
8874 8875
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8876
	},
8877
#endif
8878 8879 8880 8881
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8882
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8883 8884 8885
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8886 8887 8888 8889 8890 8891 8892
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8893 8894 8895
	.early_init	= 1,
};

8896
#endif	/* CONFIG_CGROUP_SCHED */
8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8917
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8918
{
8919
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8932
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8949
static void
8950
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8951
{
8952
	struct cpuacct *ca = cgroup_ca(cgrp);
8953 8954 8955 8956 8957 8958

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8959
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8960
{
8961
	struct cpuacct *ca = cgroup_ca(cgrp);
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9003 9004 9005
static struct cftype files[] = {
	{
		.name = "usage",
9006 9007
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9008 9009 9010
	},
};

9011
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9012
{
9013
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */