workqueue.c 152.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150

T
Tejun Heo 已提交
151 152
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

153 154
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
155 156

	/* nr_idle includes the ones off idle_list for rebinding */
157 158 159 160 161 162
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

163
	/* a workers is either on busy_hash or idle_list, or the manager */
164 165 166
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

167
	/* see manage_workers() for details on the two manager mutexes */
168
	struct mutex		manager_arb;	/* manager arbitration */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

T
Tejun Heo 已提交
176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

L
Linus Torvalds 已提交
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

293 294
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

295 296 297
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

298
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300

301
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303

304 305 306 307 308
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309

310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

322 323 324 325
/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

326
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
327

328
/* PL: hash of all unbound pools keyed by pool->attrs */
329 330
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

331
/* I: attributes used when instantiating standard unbound pools on demand */
332 333
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

334 335 336
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

337
struct workqueue_struct *system_wq __read_mostly;
338
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
339
struct workqueue_struct *system_highpri_wq __read_mostly;
340
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
341
struct workqueue_struct *system_long_wq __read_mostly;
342
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
343
struct workqueue_struct *system_unbound_wq __read_mostly;
344
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
345
struct workqueue_struct *system_freezable_wq __read_mostly;
346
EXPORT_SYMBOL_GPL(system_freezable_wq);
347 348 349 350
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
351

352
static int worker_thread(void *__worker);
353
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
354

355 356 357
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

358
#define assert_rcu_or_pool_mutex()					\
359 360 361
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
362

363
#define assert_rcu_or_wq_mutex(wq)					\
364 365 366
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
367

368
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
369 370 371 372
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
373

374 375 376
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377
	     (pool)++)
378

T
Tejun Heo 已提交
379 380 381
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
382
 * @pi: integer used for iteration
383
 *
384 385 386
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
387 388 389
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
390
 */
391 392
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
393
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
394
		else
T
Tejun Heo 已提交
395

396 397 398 399 400
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
401
 * This must be called with @pool->attach_mutex.
402 403 404 405
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
406 407
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
408
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
409 410
		else

411 412 413 414
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
415
 *
416
 * This must be called either with wq->mutex held or sched RCU read locked.
417 418
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
419 420 421
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
422 423
 */
#define for_each_pwq(pwq, wq)						\
424
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
425
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
426
		else
427

428 429 430 431
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

432 433 434 435 436
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
472
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
508
	.debug_hint	= work_debug_hint,
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

539 540 541 542 543 544 545
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

546 547 548 549 550
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

551 552 553 554 555 556 557
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
558 559 560 561
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

562
	lockdep_assert_held(&wq_pool_mutex);
563

564 565
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
566
	if (ret >= 0) {
T
Tejun Heo 已提交
567
		pool->id = ret;
568 569
		return 0;
	}
570
	return ret;
571 572
}

573 574 575 576 577
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
578 579
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
580 581
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
582 583
 *
 * Return: The unbound pool_workqueue for @node.
584 585 586 587
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
588
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
589 590 591 592 593 594 595 596 597 598

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

599 600 601
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
617

618
/*
619 620
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
621
 * is cleared and the high bits contain OFFQ flags and pool ID.
622
 *
623 624
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
625 626
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
627
 *
628
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629
 * corresponding to a work.  Pool is available once the work has been
630
 * queued anywhere after initialization until it is sync canceled.  pwq is
631
 * available only while the work item is queued.
632
 *
633 634 635 636
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
637
 */
638 639
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
640
{
641
	WARN_ON_ONCE(!work_pending(work));
642 643
	atomic_long_set(&work->data, data | flags | work_static(work));
}
644

645
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
646 647
			 unsigned long extra_flags)
{
648 649
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
650 651
}

652 653 654 655 656 657 658
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

659 660
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
661
{
662 663 664 665 666 667 668
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
669
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670
}
671

672
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
673
{
674 675
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
676 677
}

678
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
679
{
680
	unsigned long data = atomic_long_read(&work->data);
681

682
	if (data & WORK_STRUCT_PWQ)
683 684 685
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
686 687
}

688 689 690 691
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
692 693 694
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
695 696 697 698 699
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
700 701
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
702 703
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
704
{
705
	unsigned long data = atomic_long_read(&work->data);
706
	int pool_id;
707

708
	assert_rcu_or_pool_mutex();
709

710 711
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
712
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
713

714 715
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
716 717
		return NULL;

718
	return idr_find(&worker_pool_idr, pool_id);
719 720 721 722 723 724
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
725
 * Return: The worker_pool ID @work was last associated with.
726 727 728 729
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
730 731
	unsigned long data = atomic_long_read(&work->data);

732 733
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
734
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
735

736
	return data >> WORK_OFFQ_POOL_SHIFT;
737 738
}

739 740
static void mark_work_canceling(struct work_struct *work)
{
741
	unsigned long pool_id = get_work_pool_id(work);
742

743 744
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
745 746 747 748 749 750
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

751
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
752 753
}

754
/*
755 756
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
757
 * they're being called with pool->lock held.
758 759
 */

760
static bool __need_more_worker(struct worker_pool *pool)
761
{
762
	return !atomic_read(&pool->nr_running);
763 764
}

765
/*
766 767
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
768 769
 *
 * Note that, because unbound workers never contribute to nr_running, this
770
 * function will always return %true for unbound pools as long as the
771
 * worklist isn't empty.
772
 */
773
static bool need_more_worker(struct worker_pool *pool)
774
{
775
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
776
}
777

778
/* Can I start working?  Called from busy but !running workers. */
779
static bool may_start_working(struct worker_pool *pool)
780
{
781
	return pool->nr_idle;
782 783 784
}

/* Do I need to keep working?  Called from currently running workers. */
785
static bool keep_working(struct worker_pool *pool)
786
{
787 788
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
789 790 791
}

/* Do we need a new worker?  Called from manager. */
792
static bool need_to_create_worker(struct worker_pool *pool)
793
{
794
	return need_more_worker(pool) && !may_start_working(pool);
795
}
796

797
/* Do we have too many workers and should some go away? */
798
static bool too_many_workers(struct worker_pool *pool)
799
{
800
	bool managing = mutex_is_locked(&pool->manager_arb);
801 802
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
803 804

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
805 806
}

807
/*
808 809 810
 * Wake up functions.
 */

811 812
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
813
{
814
	if (unlikely(list_empty(&pool->idle_list)))
815 816
		return NULL;

817
	return list_first_entry(&pool->idle_list, struct worker, entry);
818 819 820 821
}

/**
 * wake_up_worker - wake up an idle worker
822
 * @pool: worker pool to wake worker from
823
 *
824
 * Wake up the first idle worker of @pool.
825 826
 *
 * CONTEXT:
827
 * spin_lock_irq(pool->lock).
828
 */
829
static void wake_up_worker(struct worker_pool *pool)
830
{
831
	struct worker *worker = first_idle_worker(pool);
832 833 834 835 836

	if (likely(worker))
		wake_up_process(worker->task);
}

837
/**
838 839 840 841 842 843 844 845 846 847
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
848
void wq_worker_waking_up(struct task_struct *task, int cpu)
849 850 851
{
	struct worker *worker = kthread_data(task);

852
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
853
		WARN_ON_ONCE(worker->pool->cpu != cpu);
854
		atomic_inc(&worker->pool->nr_running);
855
	}
856 857 858 859 860 861 862 863 864 865 866 867 868 869
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
870
 * Return:
871 872
 * Worker task on @cpu to wake up, %NULL if none.
 */
873
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
874 875
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
876
	struct worker_pool *pool;
877

878 879 880 881 882
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
883
	if (worker->flags & WORKER_NOT_RUNNING)
884 885
		return NULL;

886 887
	pool = worker->pool;

888
	/* this can only happen on the local cpu */
889
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
890
		return NULL;
891 892 893 894 895 896

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
897 898 899
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
900
	 * manipulating idle_list, so dereferencing idle_list without pool
901
	 * lock is safe.
902
	 */
903 904
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
905
		to_wakeup = first_idle_worker(pool);
906 907 908 909 910
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
911
 * @worker: self
912 913
 * @flags: flags to set
 *
914
 * Set @flags in @worker->flags and adjust nr_running accordingly.
915
 *
916
 * CONTEXT:
917
 * spin_lock_irq(pool->lock)
918
 */
919
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
920
{
921
	struct worker_pool *pool = worker->pool;
922

923 924
	WARN_ON_ONCE(worker->task != current);

925
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
926 927
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
928
		atomic_dec(&pool->nr_running);
929 930
	}

931 932 933 934
	worker->flags |= flags;
}

/**
935
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
936
 * @worker: self
937 938
 * @flags: flags to clear
 *
939
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
940
 *
941
 * CONTEXT:
942
 * spin_lock_irq(pool->lock)
943 944 945
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
946
	struct worker_pool *pool = worker->pool;
947 948
	unsigned int oflags = worker->flags;

949 950
	WARN_ON_ONCE(worker->task != current);

951
	worker->flags &= ~flags;
952

953 954 955 956 957
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
958 959
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
960
			atomic_inc(&pool->nr_running);
961 962
}

963 964
/**
 * find_worker_executing_work - find worker which is executing a work
965
 * @pool: pool of interest
966 967
 * @work: work to find worker for
 *
968 969
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
970 971 972 973 974 975 976 977 978 979 980 981
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
982 983 984 985 986 987
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
988 989
 *
 * CONTEXT:
990
 * spin_lock_irq(pool->lock).
991
 *
992 993
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
994
 * otherwise.
995
 */
996
static struct worker *find_worker_executing_work(struct worker_pool *pool,
997
						 struct work_struct *work)
998
{
999 1000
	struct worker *worker;

1001
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1002 1003 1004
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1005 1006 1007
			return worker;

	return NULL;
1008 1009
}

1010 1011 1012 1013
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1014
 * @nextp: out parameter for nested worklist walking
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1025
 * spin_lock_irq(pool->lock).
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1109
static void pwq_activate_delayed_work(struct work_struct *work)
1110
{
1111
	struct pool_workqueue *pwq = get_work_pwq(work);
1112 1113

	trace_workqueue_activate_work(work);
T
Tejun Heo 已提交
1114 1115
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1116
	move_linked_works(work, &pwq->pool->worklist, NULL);
1117
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1118
	pwq->nr_active++;
1119 1120
}

1121
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1122
{
1123
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1124 1125
						    struct work_struct, entry);

1126
	pwq_activate_delayed_work(work);
1127 1128
}

1129
/**
1130 1131
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1132 1133 1134
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1135
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1136 1137
 *
 * CONTEXT:
1138
 * spin_lock_irq(pool->lock).
1139
 */
1140
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1141
{
T
Tejun Heo 已提交
1142
	/* uncolored work items don't participate in flushing or nr_active */
1143
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1144
		goto out_put;
1145

1146
	pwq->nr_in_flight[color]--;
1147

1148 1149
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1150
		/* one down, submit a delayed one */
1151 1152
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1153 1154 1155
	}

	/* is flush in progress and are we at the flushing tip? */
1156
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1157
		goto out_put;
1158 1159

	/* are there still in-flight works? */
1160
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1161
		goto out_put;
1162

1163 1164
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1165 1166

	/*
1167
	 * If this was the last pwq, wake up the first flusher.  It
1168 1169
	 * will handle the rest.
	 */
1170 1171
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1172 1173
out_put:
	put_pwq(pwq);
1174 1175
}

1176
/**
1177
 * try_to_grab_pending - steal work item from worklist and disable irq
1178 1179
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1180
 * @flags: place to store irq state
1181 1182
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1183
 * stable state - idle, on timer or on worklist.
1184
 *
1185
 * Return:
1186 1187 1188
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1189 1190
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1191
 *
1192
 * Note:
1193
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1194 1195 1196
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1197 1198 1199 1200
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1201
 * This function is safe to call from any context including IRQ handler.
1202
 */
1203 1204
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1205
{
1206
	struct worker_pool *pool;
1207
	struct pool_workqueue *pwq;
1208

1209 1210
	local_irq_save(*flags);

1211 1212 1213 1214
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1215 1216 1217 1218 1219
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1220 1221 1222 1223 1224
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1225 1226 1227 1228 1229 1230 1231
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1232 1233
	pool = get_work_pool(work);
	if (!pool)
1234
		goto fail;
1235

1236
	spin_lock(&pool->lock);
1237
	/*
1238 1239 1240 1241 1242
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1243 1244
	 * item is currently queued on that pool.
	 */
1245 1246
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1247 1248 1249 1250 1251
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1252
		 * on the delayed_list, will confuse pwq->nr_active
1253 1254 1255 1256
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1257
			pwq_activate_delayed_work(work);
1258 1259

		list_del_init(&work->entry);
1260
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1261

1262
		/* work->data points to pwq iff queued, point to pool */
1263 1264 1265 1266
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1267
	}
1268
	spin_unlock(&pool->lock);
1269 1270 1271 1272 1273
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1274
	return -EAGAIN;
1275 1276
}

T
Tejun Heo 已提交
1277
/**
1278
 * insert_work - insert a work into a pool
1279
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1280 1281 1282 1283
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1284
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1285
 * work_struct flags.
T
Tejun Heo 已提交
1286 1287
 *
 * CONTEXT:
1288
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1289
 */
1290 1291
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1292
{
1293
	struct worker_pool *pool = pwq->pool;
1294

T
Tejun Heo 已提交
1295
	/* we own @work, set data and link */
1296
	set_work_pwq(work, pwq, extra_flags);
1297
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1298
	get_pwq(pwq);
1299 1300

	/*
1301 1302 1303
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1304 1305 1306
	 */
	smp_mb();

1307 1308
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1309 1310
}

1311 1312
/*
 * Test whether @work is being queued from another work executing on the
1313
 * same workqueue.
1314 1315 1316
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1317 1318 1319 1320 1321 1322 1323
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1324
	return worker && worker->current_pwq->wq == wq;
1325 1326
}

1327 1328 1329 1330 1331 1332 1333
/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
1334
	static bool printed_dbg_warning;
1335 1336
	int new_cpu;

1337 1338 1339 1340 1341 1342 1343 1344
	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else if (!printed_dbg_warning) {
		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
		printed_dbg_warning = true;
	}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (cpumask_empty(wq_unbound_cpumask))
		return cpu;

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

1360
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1361 1362
			 struct work_struct *work)
{
1363
	struct pool_workqueue *pwq;
1364
	struct worker_pool *last_pool;
1365
	struct list_head *worklist;
1366
	unsigned int work_flags;
1367
	unsigned int req_cpu = cpu;
1368 1369 1370 1371 1372 1373 1374 1375

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1376

1377
	debug_work_activate(work);
1378

1379
	/* if draining, only works from the same workqueue are allowed */
1380
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1381
	    WARN_ON_ONCE(!is_chained_work(wq)))
1382
		return;
1383
retry:
1384
	if (req_cpu == WORK_CPU_UNBOUND)
1385
		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1386

1387
	/* pwq which will be used unless @work is executing elsewhere */
1388
	if (!(wq->flags & WQ_UNBOUND))
1389
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1390 1391
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1392

1393 1394 1395 1396 1397 1398 1399 1400
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1401

1402
		spin_lock(&last_pool->lock);
1403

1404
		worker = find_worker_executing_work(last_pool, work);
1405

1406 1407
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1408
		} else {
1409 1410
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1411
			spin_lock(&pwq->pool->lock);
1412
		}
1413
	} else {
1414
		spin_lock(&pwq->pool->lock);
1415 1416
	}

1417 1418 1419 1420
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1421 1422
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1436 1437
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1438

1439
	if (WARN_ON(!list_empty(&work->entry))) {
1440
		spin_unlock(&pwq->pool->lock);
1441 1442
		return;
	}
1443

1444 1445
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1446

1447
	if (likely(pwq->nr_active < pwq->max_active)) {
1448
		trace_workqueue_activate_work(work);
1449 1450
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
T
Tejun Heo 已提交
1451 1452
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1453 1454
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1455
		worklist = &pwq->delayed_works;
1456
	}
1457

1458
	insert_work(pwq, work, worklist, work_flags);
1459

1460
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1461 1462
}

1463
/**
1464 1465
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1466 1467 1468
 * @wq: workqueue to use
 * @work: work to queue
 *
1469 1470
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1471 1472
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1473
 */
1474 1475
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1476
{
1477
	bool ret = false;
1478
	unsigned long flags;
1479

1480
	local_irq_save(flags);
1481

1482
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1483
		__queue_work(cpu, wq, work);
1484
		ret = true;
1485
	}
1486

1487
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1488 1489
	return ret;
}
1490
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1491

1492
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1493
{
1494
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1495

1496
	/* should have been called from irqsafe timer with irq already off */
1497
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1498
}
1499
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1500

1501 1502
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1503
{
1504 1505 1506 1507 1508
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1509 1510
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1523
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1524

1525
	dwork->wq = wq;
1526
	dwork->cpu = cpu;
1527 1528
	timer->expires = jiffies + delay;

1529 1530 1531 1532
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1533 1534
}

1535 1536 1537 1538
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1539
 * @dwork: work to queue
1540 1541
 * @delay: number of jiffies to wait before queueing
 *
1542
 * Return: %false if @work was already on a queue, %true otherwise.  If
1543 1544
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1545
 */
1546 1547
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1548
{
1549
	struct work_struct *work = &dwork->work;
1550
	bool ret = false;
1551
	unsigned long flags;
1552

1553 1554
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1555

1556
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1557
		__queue_delayed_work(cpu, wq, dwork, delay);
1558
		ret = true;
1559
	}
1560

1561
	local_irq_restore(flags);
1562 1563
	return ret;
}
1564
EXPORT_SYMBOL(queue_delayed_work_on);
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1578
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1579 1580
 * pending and its timer was modified.
 *
1581
 * This function is safe to call from any context including IRQ handler.
1582 1583 1584 1585 1586 1587 1588
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1589

1590 1591 1592
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1593

1594 1595 1596
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1597
	}
1598 1599

	/* -ENOENT from try_to_grab_pending() becomes %true */
1600 1601
	return ret;
}
1602 1603
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1604 1605 1606 1607 1608 1609 1610 1611
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1612
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1613 1614
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1615
{
1616
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1617

1618 1619 1620 1621
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1622

1623
	/* can't use worker_set_flags(), also called from create_worker() */
1624
	worker->flags |= WORKER_IDLE;
1625
	pool->nr_idle++;
1626
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1627 1628

	/* idle_list is LIFO */
1629
	list_add(&worker->entry, &pool->idle_list);
1630

1631 1632
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1633

1634
	/*
1635
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1636
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1637 1638
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1639
	 */
1640
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1641
		     pool->nr_workers == pool->nr_idle &&
1642
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1652
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1653 1654 1655
 */
static void worker_leave_idle(struct worker *worker)
{
1656
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1657

1658 1659
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1660
	worker_clr_flags(worker, WORKER_IDLE);
1661
	pool->nr_idle--;
T
Tejun Heo 已提交
1662 1663 1664
	list_del_init(&worker->entry);
}

1665
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1666 1667 1668
{
	struct worker *worker;

1669
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1670 1671
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1672
		INIT_LIST_HEAD(&worker->scheduled);
1673
		INIT_LIST_HEAD(&worker->node);
1674 1675
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1676
	}
T
Tejun Heo 已提交
1677 1678 1679
	return worker;
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1713 1714 1715 1716 1717
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1718 1719 1720
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1721 1722 1723 1724 1725 1726
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1727
	mutex_lock(&pool->attach_mutex);
1728 1729
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1730
		detach_completion = pool->detach_completion;
1731
	mutex_unlock(&pool->attach_mutex);
1732

1733 1734 1735
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1736 1737 1738 1739
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1740 1741
/**
 * create_worker - create a new workqueue worker
1742
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1743
 *
1744
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1745 1746 1747 1748
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1749
 * Return:
T
Tejun Heo 已提交
1750 1751
 * Pointer to the newly created worker.
 */
1752
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1753 1754
{
	struct worker *worker = NULL;
1755
	int id = -1;
1756
	char id_buf[16];
T
Tejun Heo 已提交
1757

1758 1759
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1760 1761
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1762

1763
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1764 1765 1766
	if (!worker)
		goto fail;

1767
	worker->pool = pool;
T
Tejun Heo 已提交
1768 1769
	worker->id = id;

1770
	if (pool->cpu >= 0)
1771 1772
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1773
	else
1774 1775
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1776
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1777
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1778 1779 1780
	if (IS_ERR(worker->task))
		goto fail;

1781
	set_user_nice(worker->task, pool->attrs->nice);
1782
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1783

1784
	/* successful, attach the worker to the pool */
1785
	worker_attach_to_pool(worker, pool);
1786

1787 1788 1789 1790 1791 1792 1793
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1794
	return worker;
1795

T
Tejun Heo 已提交
1796
fail:
1797
	if (id >= 0)
1798
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1799 1800 1801 1802 1803 1804 1805 1806
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1807 1808
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1809 1810
 *
 * CONTEXT:
1811
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1812 1813 1814
 */
static void destroy_worker(struct worker *worker)
{
1815
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1816

1817 1818
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1819
	/* sanity check frenzy */
1820
	if (WARN_ON(worker->current_work) ||
1821 1822
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1823
		return;
T
Tejun Heo 已提交
1824

1825 1826
	pool->nr_workers--;
	pool->nr_idle--;
1827

T
Tejun Heo 已提交
1828
	list_del_init(&worker->entry);
1829
	worker->flags |= WORKER_DIE;
1830
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1831 1832
}

1833
static void idle_worker_timeout(unsigned long __pool)
1834
{
1835
	struct worker_pool *pool = (void *)__pool;
1836

1837
	spin_lock_irq(&pool->lock);
1838

1839
	while (too_many_workers(pool)) {
1840 1841 1842 1843
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1844
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1845 1846
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1847
		if (time_before(jiffies, expires)) {
1848
			mod_timer(&pool->idle_timer, expires);
1849
			break;
1850
		}
1851 1852

		destroy_worker(worker);
1853 1854
	}

1855
	spin_unlock_irq(&pool->lock);
1856
}
1857

1858
static void send_mayday(struct work_struct *work)
1859
{
1860 1861
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1862

1863
	lockdep_assert_held(&wq_mayday_lock);
1864

1865
	if (!wq->rescuer)
1866
		return;
1867 1868

	/* mayday mayday mayday */
1869
	if (list_empty(&pwq->mayday_node)) {
1870 1871 1872 1873 1874 1875
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1876
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1877
		wake_up_process(wq->rescuer->task);
1878
	}
1879 1880
}

1881
static void pool_mayday_timeout(unsigned long __pool)
1882
{
1883
	struct worker_pool *pool = (void *)__pool;
1884 1885
	struct work_struct *work;

1886 1887
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1888

1889
	if (need_to_create_worker(pool)) {
1890 1891 1892 1893 1894 1895
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1896
		list_for_each_entry(work, &pool->worklist, entry)
1897
			send_mayday(work);
L
Linus Torvalds 已提交
1898
	}
1899

1900 1901
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1902

1903
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1904 1905
}

1906 1907
/**
 * maybe_create_worker - create a new worker if necessary
1908
 * @pool: pool to create a new worker for
1909
 *
1910
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1911 1912
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1913
 * sent to all rescuers with works scheduled on @pool to resolve
1914 1915
 * possible allocation deadlock.
 *
1916 1917
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1918 1919
 *
 * LOCKING:
1920
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1921 1922 1923
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1924
static void maybe_create_worker(struct worker_pool *pool)
1925 1926
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1927
{
1928
restart:
1929
	spin_unlock_irq(&pool->lock);
1930

1931
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1932
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1933 1934

	while (true) {
1935
		if (create_worker(pool) || !need_to_create_worker(pool))
1936
			break;
L
Linus Torvalds 已提交
1937

1938
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1939

1940
		if (!need_to_create_worker(pool))
1941 1942 1943
			break;
	}

1944
	del_timer_sync(&pool->mayday_timer);
1945
	spin_lock_irq(&pool->lock);
1946 1947 1948 1949 1950
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1951
	if (need_to_create_worker(pool))
1952 1953 1954
		goto restart;
}

1955
/**
1956 1957
 * manage_workers - manage worker pool
 * @worker: self
1958
 *
1959
 * Assume the manager role and manage the worker pool @worker belongs
1960
 * to.  At any given time, there can be only zero or one manager per
1961
 * pool.  The exclusion is handled automatically by this function.
1962 1963 1964 1965
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1966 1967
 *
 * CONTEXT:
1968
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1969 1970
 * multiple times.  Does GFP_KERNEL allocations.
 *
1971
 * Return:
1972 1973 1974 1975
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1976
 */
1977
static bool manage_workers(struct worker *worker)
1978
{
1979
	struct worker_pool *pool = worker->pool;
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1991
	if (!mutex_trylock(&pool->manager_arb))
1992
		return false;
1993
	pool->manager = worker;
1994

1995
	maybe_create_worker(pool);
1996

1997
	pool->manager = NULL;
1998
	mutex_unlock(&pool->manager_arb);
1999
	return true;
2000 2001
}

2002 2003
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2004
 * @worker: self
2005 2006 2007 2008 2009 2010 2011 2012 2013
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2014
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2015
 */
T
Tejun Heo 已提交
2016
static void process_one_work(struct worker *worker, struct work_struct *work)
2017 2018
__releases(&pool->lock)
__acquires(&pool->lock)
2019
{
2020
	struct pool_workqueue *pwq = get_work_pwq(work);
2021
	struct worker_pool *pool = worker->pool;
2022
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2023
	int work_color;
2024
	struct worker *collision;
2025 2026 2027 2028 2029 2030 2031 2032
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2033 2034 2035
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2036
#endif
2037
	/* ensure we're on the correct CPU */
2038
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2039
		     raw_smp_processor_id() != pool->cpu);
2040

2041 2042 2043 2044 2045 2046
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2047
	collision = find_worker_executing_work(pool, work);
2048 2049 2050 2051 2052
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2053
	/* claim and dequeue */
2054
	debug_work_deactivate(work);
2055
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2056
	worker->current_work = work;
2057
	worker->current_func = work->func;
2058
	worker->current_pwq = pwq;
2059
	work_color = get_work_color(work);
2060

2061 2062
	list_del_init(&work->entry);

2063
	/*
2064 2065 2066 2067
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2068 2069
	 */
	if (unlikely(cpu_intensive))
2070
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2071

2072
	/*
2073 2074 2075 2076
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2077
	 * UNBOUND and CPU_INTENSIVE ones.
2078
	 */
2079
	if (need_more_worker(pool))
2080
		wake_up_worker(pool);
2081

2082
	/*
2083
	 * Record the last pool and clear PENDING which should be the last
2084
	 * update to @work.  Also, do this inside @pool->lock so that
2085 2086
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2087
	 */
2088
	set_work_pool_and_clear_pending(work, pool->id);
2089

2090
	spin_unlock_irq(&pool->lock);
2091

2092
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2093
	lock_map_acquire(&lockdep_map);
2094
	trace_workqueue_execute_start(work);
2095
	worker->current_func(work);
2096 2097 2098 2099 2100
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2101
	lock_map_release(&lockdep_map);
2102
	lock_map_release(&pwq->wq->lockdep_map);
2103 2104

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2105 2106
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2107 2108
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2109 2110 2111 2112
		debug_show_held_locks(current);
		dump_stack();
	}

2113 2114 2115 2116 2117
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2118 2119
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2120
	 */
2121
	cond_resched_rcu_qs();
2122

2123
	spin_lock_irq(&pool->lock);
2124

2125 2126 2127 2128
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2129
	/* we're done with it, release */
2130
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2131
	worker->current_work = NULL;
2132
	worker->current_func = NULL;
2133
	worker->current_pwq = NULL;
2134
	worker->desc_valid = false;
2135
	pwq_dec_nr_in_flight(pwq, work_color);
2136 2137
}

2138 2139 2140 2141 2142 2143 2144 2145 2146
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2147
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2148 2149 2150
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2151
{
2152 2153
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2154
						struct work_struct, entry);
T
Tejun Heo 已提交
2155
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2156 2157 2158
	}
}

T
Tejun Heo 已提交
2159 2160
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2161
 * @__worker: self
T
Tejun Heo 已提交
2162
 *
2163 2164 2165 2166 2167
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2168 2169
 *
 * Return: 0
T
Tejun Heo 已提交
2170
 */
T
Tejun Heo 已提交
2171
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2172
{
T
Tejun Heo 已提交
2173
	struct worker *worker = __worker;
2174
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2175

2176 2177
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2178
woke_up:
2179
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2180

2181 2182
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2183
		spin_unlock_irq(&pool->lock);
2184 2185
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2186 2187

		set_task_comm(worker->task, "kworker/dying");
2188
		ida_simple_remove(&pool->worker_ida, worker->id);
2189 2190
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2191
		return 0;
T
Tejun Heo 已提交
2192
	}
2193

T
Tejun Heo 已提交
2194
	worker_leave_idle(worker);
2195
recheck:
2196
	/* no more worker necessary? */
2197
	if (!need_more_worker(pool))
2198 2199 2200
		goto sleep;

	/* do we need to manage? */
2201
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2202 2203
		goto recheck;

T
Tejun Heo 已提交
2204 2205 2206 2207 2208
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2209
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2210

2211
	/*
2212 2213 2214 2215 2216
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2217
	 */
2218
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2219 2220

	do {
T
Tejun Heo 已提交
2221
		struct work_struct *work =
2222
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2223 2224
					 struct work_struct, entry);

T
Tejun Heo 已提交
2225 2226
		pool->watchdog_ts = jiffies;

T
Tejun Heo 已提交
2227 2228 2229 2230
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2231
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2232 2233 2234
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2235
		}
2236
	} while (keep_working(pool));
2237

2238
	worker_set_flags(worker, WORKER_PREP);
2239
sleep:
T
Tejun Heo 已提交
2240
	/*
2241 2242 2243 2244 2245
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2246 2247 2248
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2249
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2250 2251
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2252 2253
}

2254 2255
/**
 * rescuer_thread - the rescuer thread function
2256
 * @__rescuer: self
2257 2258
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2259
 * workqueue which has WQ_MEM_RECLAIM set.
2260
 *
2261
 * Regular work processing on a pool may block trying to create a new
2262 2263 2264 2265 2266
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2267 2268
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2269 2270 2271
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2272 2273
 *
 * Return: 0
2274
 */
2275
static int rescuer_thread(void *__rescuer)
2276
{
2277 2278
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2279
	struct list_head *scheduled = &rescuer->scheduled;
2280
	bool should_stop;
2281 2282

	set_user_nice(current, RESCUER_NICE_LEVEL);
2283 2284 2285 2286 2287 2288

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2289 2290 2291
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2292 2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2301

2302
	/* see whether any pwq is asking for help */
2303
	spin_lock_irq(&wq_mayday_lock);
2304 2305 2306 2307

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2308
		struct worker_pool *pool = pwq->pool;
2309
		struct work_struct *work, *n;
T
Tejun Heo 已提交
2310
		bool first = true;
2311 2312

		__set_current_state(TASK_RUNNING);
2313 2314
		list_del_init(&pwq->mayday_node);

2315
		spin_unlock_irq(&wq_mayday_lock);
2316

2317 2318 2319
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2320
		rescuer->pool = pool;
2321 2322 2323 2324 2325

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2326
		WARN_ON_ONCE(!list_empty(scheduled));
T
Tejun Heo 已提交
2327 2328 2329 2330
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2331
				move_linked_works(work, scheduled, &n);
T
Tejun Heo 已提交
2332 2333 2334
			}
			first = false;
		}
2335

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2355

2356 2357
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2358
		 * go away while we're still attached to it.
2359 2360 2361
		 */
		put_pwq(pwq);

2362
		/*
2363
		 * Leave this pool.  If need_more_worker() is %true, notify a
2364 2365 2366
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2367
		if (need_more_worker(pool))
2368
			wake_up_worker(pool);
2369

2370
		rescuer->pool = NULL;
2371 2372 2373 2374 2375
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2376 2377
	}

2378
	spin_unlock_irq(&wq_mayday_lock);
2379

2380 2381 2382 2383 2384 2385
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2386 2387
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2388 2389
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2390 2391
}

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2417 2418
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2419 2420 2421 2422 2423
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

O
Oleg Nesterov 已提交
2424 2425 2426
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2427
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2428 2429 2430 2431 2432 2433 2434 2435
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2436 2437
/**
 * insert_wq_barrier - insert a barrier work
2438
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2439
 * @barr: wq_barrier to insert
2440 2441
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2442
 *
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2455
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2456 2457
 *
 * CONTEXT:
2458
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2459
 */
2460
static void insert_wq_barrier(struct pool_workqueue *pwq,
2461 2462
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2463
{
2464 2465 2466
	struct list_head *head;
	unsigned int linked = 0;

2467
	/*
2468
	 * debugobject calls are safe here even with pool->lock locked
2469 2470 2471 2472
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2473
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2474
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2475
	init_completion(&barr->done);
2476
	barr->task = current;
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2493
	debug_work_activate(&barr->work);
2494
	insert_work(pwq, &barr->work, head,
2495
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2496 2497
}

2498
/**
2499
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2500 2501 2502 2503
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2504
 * Prepare pwqs for workqueue flushing.
2505
 *
2506 2507 2508 2509 2510
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2511 2512 2513 2514 2515 2516 2517
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2518
 * If @work_color is non-negative, all pwqs should have the same
2519 2520 2521 2522
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2523
 * mutex_lock(wq->mutex).
2524
 *
2525
 * Return:
2526 2527 2528
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2529
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2530
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2531
{
2532
	bool wait = false;
2533
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2534

2535
	if (flush_color >= 0) {
2536
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2537
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2538
	}
2539

2540
	for_each_pwq(pwq, wq) {
2541
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2542

2543
		spin_lock_irq(&pool->lock);
2544

2545
		if (flush_color >= 0) {
2546
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2547

2548 2549 2550
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2551 2552 2553
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2554

2555
		if (work_color >= 0) {
2556
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2557
			pwq->work_color = work_color;
2558
		}
L
Linus Torvalds 已提交
2559

2560
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2561
	}
2562

2563
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2564
		complete(&wq->first_flusher->done);
2565

2566
	return wait;
L
Linus Torvalds 已提交
2567 2568
}

2569
/**
L
Linus Torvalds 已提交
2570
 * flush_workqueue - ensure that any scheduled work has run to completion.
2571
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2572
 *
2573 2574
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2575
 */
2576
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2577
{
2578 2579 2580 2581 2582 2583
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2584

2585 2586
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2587

2588
	mutex_lock(&wq->mutex);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2601
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2602 2603 2604 2605 2606
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2607
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2608 2609 2610

			wq->first_flusher = &this_flusher;

2611
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2612 2613 2614 2615 2616 2617 2618 2619
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2620
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2621
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2622
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2633 2634
	check_flush_dependency(wq, NULL);

2635
	mutex_unlock(&wq->mutex);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2648
	mutex_lock(&wq->mutex);
2649

2650 2651 2652 2653
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2654 2655
	wq->first_flusher = NULL;

2656 2657
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2670 2671
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2691
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2692 2693 2694
		}

		if (list_empty(&wq->flusher_queue)) {
2695
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2696 2697 2698 2699 2700
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2701
		 * the new first flusher and arm pwqs.
2702
		 */
2703 2704
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2705 2706 2707 2708

		list_del_init(&next->list);
		wq->first_flusher = next;

2709
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2720
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2721
}
2722
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2723

2724 2725 2726 2727 2728 2729 2730
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2731
 * repeatedly until it becomes empty.  The number of flushing is determined
2732 2733 2734 2735 2736 2737
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2738
	struct pool_workqueue *pwq;
2739 2740 2741 2742

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2743
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2744
	 */
2745
	mutex_lock(&wq->mutex);
2746
	if (!wq->nr_drainers++)
2747
		wq->flags |= __WQ_DRAINING;
2748
	mutex_unlock(&wq->mutex);
2749 2750 2751
reflush:
	flush_workqueue(wq);

2752
	mutex_lock(&wq->mutex);
2753

2754
	for_each_pwq(pwq, wq) {
2755
		bool drained;
2756

2757
		spin_lock_irq(&pwq->pool->lock);
2758
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2759
		spin_unlock_irq(&pwq->pool->lock);
2760 2761

		if (drained)
2762 2763 2764 2765
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2766
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2767
				wq->name, flush_cnt);
2768

2769
		mutex_unlock(&wq->mutex);
2770 2771 2772 2773
		goto reflush;
	}

	if (!--wq->nr_drainers)
2774
		wq->flags &= ~__WQ_DRAINING;
2775
	mutex_unlock(&wq->mutex);
2776 2777 2778
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2779
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2780
{
2781
	struct worker *worker = NULL;
2782
	struct worker_pool *pool;
2783
	struct pool_workqueue *pwq;
2784 2785

	might_sleep();
2786 2787

	local_irq_disable();
2788
	pool = get_work_pool(work);
2789 2790
	if (!pool) {
		local_irq_enable();
2791
		return false;
2792
	}
2793

2794
	spin_lock(&pool->lock);
2795
	/* see the comment in try_to_grab_pending() with the same code */
2796 2797 2798
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2799
			goto already_gone;
2800
	} else {
2801
		worker = find_worker_executing_work(pool, work);
2802
		if (!worker)
T
Tejun Heo 已提交
2803
			goto already_gone;
2804
		pwq = worker->current_pwq;
2805
	}
2806

2807 2808
	check_flush_dependency(pwq->wq, work);

2809
	insert_wq_barrier(pwq, barr, work, worker);
2810
	spin_unlock_irq(&pool->lock);
2811

2812 2813 2814 2815 2816 2817
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2818
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2819
		lock_map_acquire(&pwq->wq->lockdep_map);
2820
	else
2821 2822
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2823

2824
	return true;
T
Tejun Heo 已提交
2825
already_gone:
2826
	spin_unlock_irq(&pool->lock);
2827
	return false;
2828
}
2829 2830 2831 2832 2833

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2834 2835
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2836
 *
2837
 * Return:
2838 2839 2840 2841 2842
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2843 2844
	struct wq_barrier barr;

2845 2846 2847
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2848 2849 2850 2851 2852 2853 2854
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2855
}
2856
EXPORT_SYMBOL_GPL(flush_work);
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2872
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2873
{
2874
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2875
	unsigned long flags;
2876 2877 2878
	int ret;

	do {
2879 2880
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2895
		 */
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2909 2910
	} while (unlikely(ret < 0));

2911 2912 2913 2914
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2915
	flush_work(work);
2916
	clear_work_data(work);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2927 2928 2929
	return ret;
}

2930
/**
2931 2932
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2933
 *
2934 2935 2936 2937
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2938
 *
2939 2940
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2941
 *
2942
 * The caller must ensure that the workqueue on which @work was last
2943
 * queued can't be destroyed before this function returns.
2944
 *
2945
 * Return:
2946
 * %true if @work was pending, %false otherwise.
2947
 */
2948
bool cancel_work_sync(struct work_struct *work)
2949
{
2950
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2951
}
2952
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2953

2954
/**
2955 2956
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2957
 *
2958 2959 2960
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2961
 *
2962
 * Return:
2963 2964
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2965
 */
2966 2967
bool flush_delayed_work(struct delayed_work *dwork)
{
2968
	local_irq_disable();
2969
	if (del_timer_sync(&dwork->timer))
2970
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2971
	local_irq_enable();
2972 2973 2974 2975
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2976
/**
2977 2978
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2979
 *
2980 2981 2982 2983 2984 2985 2986 2987 2988
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2989
 *
2990
 * This function is safe to call from any context including IRQ handler.
2991
 */
2992
bool cancel_delayed_work(struct delayed_work *dwork)
2993
{
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

3004 3005
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
3006
	local_irq_restore(flags);
3007
	return ret;
3008
}
3009
EXPORT_SYMBOL(cancel_delayed_work);
3010

3011 3012 3013 3014 3015 3016
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3017
 * Return:
3018 3019 3020
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3021
{
3022
	return __cancel_work_timer(&dwork->work, true);
3023
}
3024
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3025

3026
/**
3027
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3028 3029
 * @func: the function to call
 *
3030 3031
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3032
 * schedule_on_each_cpu() is very slow.
3033
 *
3034
 * Return:
3035
 * 0 on success, -errno on failure.
3036
 */
3037
int schedule_on_each_cpu(work_func_t func)
3038 3039
{
	int cpu;
3040
	struct work_struct __percpu *works;
3041

3042 3043
	works = alloc_percpu(struct work_struct);
	if (!works)
3044
		return -ENOMEM;
3045

3046 3047
	get_online_cpus();

3048
	for_each_online_cpu(cpu) {
3049 3050 3051
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3052
		schedule_work_on(cpu, work);
3053
	}
3054 3055 3056 3057

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3058
	put_online_cpus();
3059
	free_percpu(works);
3060 3061 3062
	return 0;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3072
 * Return:	0 - function was executed
3073 3074
 *		1 - function was scheduled for execution
 */
3075
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 3077
{
	if (!in_interrupt()) {
3078
		fn(&ew->work);
3079 3080 3081
		return 0;
	}

3082
	INIT_WORK(&ew->work, fn);
3083 3084 3085 3086 3087 3088
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3089 3090 3091
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3092
 *
3093
 * Undo alloc_workqueue_attrs().
3094
 */
3095
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3096
{
3097 3098 3099 3100
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3113
{
3114
	struct workqueue_attrs *attrs;
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3127 3128
}

3129 3130
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3131
{
3132 3133 3134 3135 3136 3137 3138 3139
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3140 3141
}

3142 3143
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3144
{
3145
	u32 hash = 0;
3146

3147 3148 3149 3150
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3151 3152
}

3153 3154 3155
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3156
{
3157 3158 3159 3160 3161
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3162 3163
}

3164 3165 3166 3167
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3168
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3169 3170 3171 3172 3173 3174
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3175
{
3176 3177 3178 3179 3180
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
T
Tejun Heo 已提交
3181
	pool->watchdog_ts = jiffies;
3182 3183 3184
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3185

3186 3187 3188
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3189

3190 3191
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3192

3193 3194 3195
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3196

3197 3198 3199
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3200

3201 3202 3203 3204 3205
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3206 3207
}

3208
static void rcu_free_wq(struct rcu_head *rcu)
3209
{
3210 3211
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3212

3213 3214
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3215
	else
3216
		free_workqueue_attrs(wq->unbound_attrs);
3217

3218 3219
	kfree(wq->rescuer);
	kfree(wq);
3220 3221
}

3222
static void rcu_free_pool(struct rcu_head *rcu)
3223
{
3224
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3225

3226 3227 3228
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3229 3230
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3243
{
3244 3245
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3246

3247
	lockdep_assert_held(&wq_pool_mutex);
3248

3249 3250
	if (--pool->refcnt)
		return;
3251

3252 3253 3254 3255
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3256

3257 3258 3259 3260
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3261

3262 3263 3264 3265 3266 3267
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3268

3269 3270 3271 3272 3273
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3274

3275 3276 3277 3278
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3279

3280 3281
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3282

3283
	mutex_unlock(&pool->manager_arb);
3284

3285 3286 3287
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3288

3289 3290
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3291 3292 3293
}

/**
3294 3295
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3296
 *
3297 3298 3299 3300
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3301
 *
3302
 * Should be called with wq_pool_mutex held.
3303
 *
3304 3305
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3306
 */
3307
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3308
{
3309 3310 3311
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3312
	int target_node = NUMA_NO_NODE;
3313

3314
	lockdep_assert_held(&wq_pool_mutex);
3315

3316 3317 3318 3319 3320 3321 3322
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3323

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3335
	/* nope, create a new one */
3336
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3337 3338 3339 3340 3341
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3342
	pool->node = target_node;
3343 3344

	/*
3345 3346
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3347
	 */
3348
	pool->attrs->no_numa = false;
3349

3350 3351
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3352

3353 3354 3355
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3356

3357 3358
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3359

3360 3361 3362 3363 3364
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3365 3366
}

3367
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3368
{
3369 3370
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3371 3372
}

3373 3374 3375
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3376
 */
3377
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3378
{
3379 3380 3381 3382 3383
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3384

3385 3386
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3398

3399
	/*
3400 3401
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3402
	 */
3403 3404
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3405 3406
}

T
Tejun Heo 已提交
3407
/**
3408 3409
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3410
 *
3411 3412 3413
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3414
 */
3415
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3416
{
3417 3418
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3419

3420 3421
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3422

3423 3424 3425
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3426

3427
	spin_lock_irq(&pwq->pool->lock);
3428

3429 3430 3431 3432 3433 3434 3435
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3436

3437 3438 3439
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3440

3441 3442 3443 3444 3445 3446 3447 3448
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3449

3450
	spin_unlock_irq(&pwq->pool->lock);
3451 3452
}

3453 3454 3455
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3456
{
3457
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3469 3470
}

3471 3472
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3473
{
3474
	struct workqueue_struct *wq = pwq->wq;
3475

3476
	lockdep_assert_held(&wq->mutex);
3477

3478 3479
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3480 3481
		return;

3482 3483
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3484

3485 3486
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3487

3488 3489 3490
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3491

3492 3493 3494 3495 3496 3497
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3498

3499
	lockdep_assert_held(&wq_pool_mutex);
3500

3501 3502 3503
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3504

3505 3506 3507 3508 3509
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3510

3511 3512 3513
	init_pwq(pwq, wq, pool);
	return pwq;
}
3514 3515

/**
3516
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3517
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3518 3519 3520
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3521
 *
3522 3523 3524
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3525
 *
3526 3527 3528 3529
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3530
 *
3531 3532 3533 3534 3535
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3536
 */
3537 3538
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3539
{
3540 3541
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3542

3543 3544 3545 3546
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3547

3548 3549
	if (cpumask_empty(cpumask))
		goto use_dfl;
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3560 3561 3562 3563 3564 3565 3566
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3567
	lockdep_assert_held(&wq_pool_mutex);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3578 3579 3580 3581
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3582
	struct list_head	list;		/* queued for batching commit */
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3607
{
3608
	struct apply_wqattrs_ctx *ctx;
3609
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3610
	int node;
3611

3612
	lockdep_assert_held(&wq_pool_mutex);
3613

3614 3615
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3616

3617
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3618
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3619 3620
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3621

3622 3623 3624 3625 3626
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3627
	copy_workqueue_attrs(new_attrs, attrs);
3628
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3629 3630
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3631

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3644 3645 3646
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3647 3648

	for_each_node(node) {
3649
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3650 3651 3652
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3653
		} else {
3654 3655
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3656 3657 3658
		}
	}

3659 3660 3661
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3662
	ctx->attrs = new_attrs;
3663

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3679

3680
	/* all pwqs have been created successfully, let's install'em */
3681
	mutex_lock(&ctx->wq->mutex);
3682

3683
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3684 3685

	/* save the previous pwq and install the new one */
3686
	for_each_node(node)
3687 3688
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3689 3690

	/* @dfl_pwq might not have been used, ensure it's linked */
3691 3692
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3693

3694 3695
	mutex_unlock(&ctx->wq->mutex);
}
3696

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3712 3713
{
	struct apply_wqattrs_ctx *ctx;
3714

3715 3716 3717
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3718

3719 3720 3721 3722 3723
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);
3724 3725
	if (!ctx)
		return -ENOMEM;
3726 3727

	/* the ctx has been prepared successfully, let's commit it */
3728
	apply_wqattrs_commit(ctx);
3729 3730
	apply_wqattrs_cleanup(ctx);

3731
	return 0;
3732 3733
}

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3795 3796
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3812 3813 3814
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3815
	 */
3816
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3817
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3818
			return;
3819
	} else {
3820
		goto use_dfl_pwq;
3821 3822 3823 3824 3825
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3826 3827
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3828
		goto use_dfl_pwq;
3829 3830
	}

3831
	/* Install the new pwq. */
3832 3833 3834 3835 3836
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3837
	mutex_lock(&wq->mutex);
3838 3839 3840 3841 3842 3843 3844 3845 3846
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3847
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3848
{
3849
	bool highpri = wq->flags & WQ_HIGHPRI;
3850
	int cpu, ret;
3851 3852

	if (!(wq->flags & WQ_UNBOUND)) {
3853 3854
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3855 3856 3857
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3858 3859
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3860
			struct worker_pool *cpu_pools =
3861
				per_cpu(cpu_worker_pools, cpu);
3862

3863 3864 3865
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3866
			link_pwq(pwq);
3867
			mutex_unlock(&wq->mutex);
3868
		}
3869
		return 0;
3870 3871 3872 3873 3874 3875 3876
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3877
	} else {
3878
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3879
	}
T
Tejun Heo 已提交
3880 3881
}

3882 3883
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3884
{
3885 3886 3887
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3888 3889
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3890

3891
	return clamp_val(max_active, 1, lim);
3892 3893
}

3894
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3895 3896 3897
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3898
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3899
{
3900
	size_t tbl_size = 0;
3901
	va_list args;
L
Linus Torvalds 已提交
3902
	struct workqueue_struct *wq;
3903
	struct pool_workqueue *pwq;
3904

3905 3906 3907 3908
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3909
	/* allocate wq and format name */
3910
	if (flags & WQ_UNBOUND)
3911
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3912 3913

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3914
	if (!wq)
3915
		return NULL;
3916

3917 3918 3919 3920 3921 3922
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3923 3924
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3925
	va_end(args);
L
Linus Torvalds 已提交
3926

3927
	max_active = max_active ?: WQ_DFL_ACTIVE;
3928
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3929

3930
	/* init wq */
3931
	wq->flags = flags;
3932
	wq->saved_max_active = max_active;
3933
	mutex_init(&wq->mutex);
3934
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3935
	INIT_LIST_HEAD(&wq->pwqs);
3936 3937
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3938
	INIT_LIST_HEAD(&wq->maydays);
3939

3940
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3941
	INIT_LIST_HEAD(&wq->list);
3942

3943
	if (alloc_and_link_pwqs(wq) < 0)
3944
		goto err_free_wq;
T
Tejun Heo 已提交
3945

3946 3947 3948 3949 3950
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3951 3952
		struct worker *rescuer;

3953
		rescuer = alloc_worker(NUMA_NO_NODE);
3954
		if (!rescuer)
3955
			goto err_destroy;
3956

3957 3958
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3959
					       wq->name);
3960 3961 3962 3963
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3964

3965
		wq->rescuer = rescuer;
3966
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3967
		wake_up_process(rescuer->task);
3968 3969
	}

3970 3971 3972
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3973
	/*
3974 3975 3976
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3977
	 */
3978
	mutex_lock(&wq_pool_mutex);
3979

3980
	mutex_lock(&wq->mutex);
3981 3982
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3983
	mutex_unlock(&wq->mutex);
3984

3985
	list_add_tail_rcu(&wq->list, &workqueues);
3986

3987
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3988

3989
	return wq;
3990 3991

err_free_wq:
3992
	free_workqueue_attrs(wq->unbound_attrs);
3993 3994 3995 3996
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3997
	return NULL;
3998
}
3999
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4000

4001 4002 4003 4004 4005 4006 4007 4008
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4009
	struct pool_workqueue *pwq;
4010
	int node;
4011

4012 4013
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4014

4015
	/* sanity checks */
4016
	mutex_lock(&wq->mutex);
4017
	for_each_pwq(pwq, wq) {
4018 4019
		int i;

4020 4021
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4022
				mutex_unlock(&wq->mutex);
4023
				return;
4024 4025 4026
			}
		}

4027
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4028
		    WARN_ON(pwq->nr_active) ||
4029
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4030
			mutex_unlock(&wq->mutex);
4031
			return;
4032
		}
4033
	}
4034
	mutex_unlock(&wq->mutex);
4035

4036 4037 4038 4039
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4040
	mutex_lock(&wq_pool_mutex);
4041
	list_del_rcu(&wq->list);
4042
	mutex_unlock(&wq_pool_mutex);
4043

4044 4045
	workqueue_sysfs_unregister(wq);

4046
	if (wq->rescuer)
4047 4048
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4049 4050 4051
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4052
		 * schedule RCU free.
T
Tejun Heo 已提交
4053
		 */
4054
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4055 4056 4057
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4058 4059
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4060
		 */
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4073
		put_pwq_unlocked(pwq);
4074
	}
4075 4076 4077
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4090
	struct pool_workqueue *pwq;
4091

4092 4093 4094 4095
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4096
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4097

4098
	mutex_lock(&wq->mutex);
4099 4100 4101

	wq->saved_max_active = max_active;

4102 4103
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4104

4105
	mutex_unlock(&wq->mutex);
4106
}
4107
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4108

4109 4110 4111 4112 4113
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4114 4115
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4116 4117 4118 4119 4120
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4121
	return worker && worker->rescue_wq;
4122 4123
}

4124
/**
4125 4126 4127
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4128
 *
4129 4130 4131
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4132
 *
4133 4134 4135 4136 4137 4138
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4139
 * Return:
4140
 * %true if congested, %false otherwise.
4141
 */
4142
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4143
{
4144
	struct pool_workqueue *pwq;
4145 4146
	bool ret;

4147
	rcu_read_lock_sched();
4148

4149 4150 4151
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4152 4153 4154
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4155
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4156

4157
	ret = !list_empty(&pwq->delayed_works);
4158
	rcu_read_unlock_sched();
4159 4160

	return ret;
L
Linus Torvalds 已提交
4161
}
4162
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4163

4164 4165 4166 4167 4168 4169 4170 4171
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4172
 * Return:
4173 4174 4175
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4176
{
4177
	struct worker_pool *pool;
4178 4179
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4180

4181 4182
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4183

4184 4185
	local_irq_save(flags);
	pool = get_work_pool(work);
4186
	if (pool) {
4187
		spin_lock(&pool->lock);
4188 4189
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4190
		spin_unlock(&pool->lock);
4191
	}
4192
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4193

4194
	return ret;
L
Linus Torvalds 已提交
4195
}
4196
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
T
Tejun Heo 已提交
4418 4419 4420
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4437 4438 4439
/*
 * CPU hotplug.
 *
4440
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4441
 * are a lot of assumptions on strong associations among work, pwq and
4442
 * pool which make migrating pending and scheduled works very
4443
 * difficult to implement without impacting hot paths.  Secondly,
4444
 * worker pools serve mix of short, long and very long running works making
4445 4446
 * blocked draining impractical.
 *
4447
 * This is solved by allowing the pools to be disassociated from the CPU
4448 4449
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4450
 */
L
Linus Torvalds 已提交
4451

4452
static void wq_unbind_fn(struct work_struct *work)
4453
{
4454
	int cpu = smp_processor_id();
4455
	struct worker_pool *pool;
4456
	struct worker *worker;
4457

4458
	for_each_cpu_worker_pool(pool, cpu) {
4459
		mutex_lock(&pool->attach_mutex);
4460
		spin_lock_irq(&pool->lock);
4461

4462
		/*
4463
		 * We've blocked all attach/detach operations. Make all workers
4464 4465 4466 4467 4468
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4469
		for_each_pool_worker(worker, pool)
4470
			worker->flags |= WORKER_UNBOUND;
4471

4472
		pool->flags |= POOL_DISASSOCIATED;
4473

4474
		spin_unlock_irq(&pool->lock);
4475
		mutex_unlock(&pool->attach_mutex);
4476

4477 4478 4479 4480 4481 4482 4483
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4484

4485 4486 4487 4488 4489 4490 4491 4492
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4493
		atomic_set(&pool->nr_running, 0);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4504 4505
}

T
Tejun Heo 已提交
4506 4507 4508 4509
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4510
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4511 4512 4513
 */
static void rebind_workers(struct worker_pool *pool)
{
4514
	struct worker *worker;
T
Tejun Heo 已提交
4515

4516
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4517

4518 4519 4520
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4521
	 * wake-ups for concurrency management happen, restore CPU affinity
4522 4523 4524
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4525
	for_each_pool_worker(worker, pool)
4526 4527
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4528

4529
	spin_lock_irq(&pool->lock);
4530
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4531

4532
	for_each_pool_worker(worker, pool) {
4533
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4534 4535

		/*
4536 4537 4538 4539 4540 4541
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4542
		 */
4543 4544
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4545

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4565
	}
4566 4567

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4568 4569
}

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4585
	lockdep_assert_held(&pool->attach_mutex);
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4597
	for_each_pool_worker(worker, pool)
4598 4599 4600 4601
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4602 4603 4604 4605
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4606
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4607 4608
					       unsigned long action,
					       void *hcpu)
4609
{
4610
	int cpu = (unsigned long)hcpu;
4611
	struct worker_pool *pool;
4612
	struct workqueue_struct *wq;
4613
	int pi;
4614

T
Tejun Heo 已提交
4615
	switch (action & ~CPU_TASKS_FROZEN) {
4616
	case CPU_UP_PREPARE:
4617
		for_each_cpu_worker_pool(pool, cpu) {
4618 4619
			if (pool->nr_workers)
				continue;
4620
			if (!create_worker(pool))
4621
				return NOTIFY_BAD;
4622
		}
T
Tejun Heo 已提交
4623
		break;
4624

4625 4626
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4627
		mutex_lock(&wq_pool_mutex);
4628 4629

		for_each_pool(pool, pi) {
4630
			mutex_lock(&pool->attach_mutex);
4631

4632
			if (pool->cpu == cpu)
4633
				rebind_workers(pool);
4634
			else if (pool->cpu < 0)
4635
				restore_unbound_workers_cpumask(pool, cpu);
4636

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4890
		apply_wqattrs_lock();
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4903
		apply_wqattrs_unlock();
4904 4905 4906 4907 4908 4909
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

5014 5015
	lockdep_assert_held(&wq_pool_mutex);

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5029 5030 5031
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5032 5033 5034

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5035
		goto out_unlock;
5036 5037 5038

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5039
		ret = apply_workqueue_attrs_locked(wq, attrs);
5040 5041 5042
	else
		ret = -EINVAL;

5043 5044
out_unlock:
	apply_wqattrs_unlock();
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5068 5069 5070
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5071 5072 5073

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5074
		goto out_unlock;
5075 5076 5077

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5078
		ret = apply_workqueue_attrs_locked(wq, attrs);
5079

5080 5081
out_unlock:
	apply_wqattrs_unlock();
5082 5083 5084 5085 5086 5087 5088 5089 5090
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5091

5092 5093 5094 5095
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5096

5097
	return written;
5098 5099
}

5100 5101
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5102
{
5103 5104
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5105 5106 5107
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5108

5109 5110
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5111
		goto out_unlock;
5112

5113 5114 5115
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5116
		ret = apply_workqueue_attrs_locked(wq, attrs);
5117
	}
5118

5119 5120
out_unlock:
	apply_wqattrs_unlock();
5121 5122
	free_workqueue_attrs(attrs);
	return ret ?: count;
5123 5124
}

5125 5126 5127 5128 5129 5130 5131
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5132

5133 5134 5135
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5136 5137
};

5138 5139 5140 5141 5142
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5143
	mutex_lock(&wq_pool_mutex);
5144 5145
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5146
	mutex_unlock(&wq_pool_mutex);
5147 5148 5149 5150

	return written;
}

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5168
static struct device_attribute wq_sysfs_cpumask_attr =
5169 5170
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5171

5172
static int __init wq_sysfs_init(void)
5173
{
5174 5175 5176 5177 5178 5179 5180
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5181
}
5182
core_initcall(wq_sysfs_init);
5183

5184
static void wq_device_release(struct device *dev)
5185
{
5186
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5187

5188
	kfree(wq_dev);
5189
}
5190 5191

/**
5192 5193
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5194
 *
5195 5196 5197
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5198
 *
5199 5200 5201 5202 5203 5204
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5205
 */
5206
int workqueue_sysfs_register(struct workqueue_struct *wq)
5207
{
5208 5209
	struct wq_device *wq_dev;
	int ret;
5210

5211
	/*
5212
	 * Adjusting max_active or creating new pwqs by applying
5213 5214 5215 5216 5217
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5218

5219 5220 5221
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5222

5223 5224 5225 5226
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;
5227

5228 5229 5230 5231 5232
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5233

5234 5235 5236 5237 5238 5239
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5240

5241 5242
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5243

5244 5245 5246 5247 5248 5249
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5250 5251 5252
			}
		}
	}
5253 5254 5255 5256

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5257 5258 5259
}

/**
5260 5261
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5262
 *
5263
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5264
 */
5265
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5266
{
5267
	struct wq_device *wq_dev = wq->wq_dev;
5268

5269 5270
	if (!wq->wq_dev)
		return;
5271

5272 5273
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5274
}
5275 5276 5277
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5278

T
Tejun Heo 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static void wq_watchdog_timer_fn(unsigned long data);

static unsigned long wq_watchdog_thresh = 30;
static struct timer_list wq_watchdog_timer =
	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

static void wq_watchdog_timer_fn(unsigned long data)
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5427 5428 5429 5430 5431 5432 5433 5434
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5435 5436 5437 5438 5439
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5440 5441 5442
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5443 5444 5445 5446 5447
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5448
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5449 5450 5451
	BUG_ON(!tbl);

	for_each_node(node)
5452
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5453
				node_online(node) ? node : NUMA_NO_NODE));
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5469
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5470
{
T
Tejun Heo 已提交
5471 5472
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5473

5474 5475
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5476 5477 5478
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5479 5480
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5481
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5482
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5483

5484 5485
	wq_numa_init();

5486
	/* initialize CPU pools */
5487
	for_each_possible_cpu(cpu) {
5488
		struct worker_pool *pool;
5489

T
Tejun Heo 已提交
5490
		i = 0;
5491
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5492
			BUG_ON(init_worker_pool(pool));
5493
			pool->cpu = cpu;
5494
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5495
			pool->attrs->nice = std_nice[i++];
5496
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5497

T
Tejun Heo 已提交
5498
			/* alloc pool ID */
5499
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5500
			BUG_ON(worker_pool_assign_id(pool));
5501
			mutex_unlock(&wq_pool_mutex);
5502
		}
5503 5504
	}

5505
	/* create the initial worker */
5506
	for_each_online_cpu(cpu) {
5507
		struct worker_pool *pool;
5508

5509
		for_each_cpu_worker_pool(pool, cpu) {
5510
			pool->flags &= ~POOL_DISASSOCIATED;
5511
			BUG_ON(!create_worker(pool));
5512
		}
5513 5514
	}

5515
	/* create default unbound and ordered wq attrs */
5516 5517 5518 5519 5520 5521
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5532 5533
	}

5534
	system_wq = alloc_workqueue("events", 0, 0);
5535
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5536
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5537 5538
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5539 5540
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5541 5542 5543 5544 5545
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5546
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5547 5548 5549
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
T
Tejun Heo 已提交
5550 5551 5552

	wq_watchdog_init();

5553
	return 0;
L
Linus Torvalds 已提交
5554
}
5555
early_initcall(init_workqueues);