i915_gem.c 138.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321 322
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(dev);
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_alloc_object(dev, size);
385 386 387
	if (obj == NULL)
		return -ENOMEM;

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

V
Ville Syrjälä 已提交
603
	user_data = to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
690
		       to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

V
Ville Syrjälä 已提交
782
	user_data = to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

V
Ville Syrjälä 已提交
906
	user_data = to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(dev);
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1035
		       to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040 1041 1042 1043 1044
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_device *dev = engine->dev;
1234
	struct drm_i915_private *dev_priv = dev->dev_private;
1235
	const bool irq_test_in_progress =
1236
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238
	DEFINE_WAIT(wait);
1239
	unsigned long timeout_expire;
1240
	s64 before = 0; /* Only to silence a compiler warning. */
1241 1242
	int ret;

1243
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244

1245 1246 1247
	if (list_empty(&req->list))
		return 0;

1248
	if (i915_gem_request_completed(req, true))
1249 1250
		return 0;

1251 1252 1253 1254 1255 1256 1257 1258 1259
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260 1261 1262 1263 1264

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1265
	}
1266

1267
	if (INTEL_INFO(dev_priv)->gen >= 6)
1268
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269

1270
	trace_i915_gem_request_wait_begin(req);
1271 1272

	/* Optimistic spin for the next jiffie before touching IRQs */
1273
	ret = __i915_spin_request(req, state);
1274 1275 1276
	if (ret == 0)
		goto out;

1277
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278 1279 1280 1281
		ret = -ENODEV;
		goto out;
	}

1282 1283
	for (;;) {
		struct timer_list timer;
1284

1285
		prepare_to_wait(&engine->irq_queue, &wait, state);
1286

1287
		/* We need to check whether any gpu reset happened in between
1288 1289 1290 1291 1292 1293
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1294
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295
			ret = 0;
1296 1297
			break;
		}
1298

1299
		if (i915_gem_request_completed(req, false)) {
1300 1301 1302
			ret = 0;
			break;
		}
1303

1304
		if (signal_pending_state(state, current)) {
1305 1306 1307 1308
			ret = -ERESTARTSYS;
			break;
		}

1309
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310 1311 1312 1313 1314
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1315
		if (timeout || missed_irq(dev_priv, engine)) {
1316 1317
			unsigned long expire;

1318
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320 1321 1322
			mod_timer(&timer, expire);
		}

1323
		io_schedule();
1324 1325 1326 1327 1328 1329

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1330
	if (!irq_test_in_progress)
1331
		engine->irq_put(engine);
1332

1333
	finish_wait(&engine->irq_queue, &wait);
1334

1335 1336 1337
out:
	trace_i915_gem_request_wait_end(req);

1338
	if (timeout) {
1339
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340 1341

		*timeout = tres < 0 ? 0 : tres;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1352 1353
	}

1354
	return ret;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1394 1395 1396

	put_pid(request->pid);
	request->pid = NULL;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1422
	struct intel_engine_cs *engine = req->engine;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1440
/**
1441
 * Waits for a request to be signaled, and cleans up the
1442 1443 1444
 * request and object lists appropriately for that event.
 */
int
1445
i915_wait_request(struct drm_i915_gem_request *req)
1446
{
1447
	struct drm_i915_private *dev_priv = req->i915;
1448
	bool interruptible;
1449 1450
	int ret;

1451 1452
	interruptible = dev_priv->mm.interruptible;

1453
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454

1455
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456 1457
	if (ret)
		return ret;
1458

1459
	__i915_gem_request_retire__upto(req);
1460 1461 1462
	return 0;
}

1463 1464 1465 1466
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1467
int
1468 1469 1470
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1471
	int ret, i;
1472

1473
	if (!obj->active)
1474 1475
		return 0;

1476 1477 1478 1479 1480
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1481

1482
			i = obj->last_write_req->engine->id;
1483 1484 1485 1486 1487 1488
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1489
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1490 1491 1492 1493 1494 1495 1496 1497 1498
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1499
		GEM_BUG_ON(obj->active);
1500 1501 1502 1503 1504 1505 1506 1507 1508
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1509
	int ring = req->engine->id;
1510 1511 1512 1513 1514 1515 1516

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1517 1518
}

1519 1520 1521 1522 1523
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1524
					    struct intel_rps_client *rps,
1525 1526 1527 1528
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1529
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1530
	int ret, i, n = 0;
1531 1532 1533 1534

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1535
	if (!obj->active)
1536 1537
		return 0;

1538 1539 1540 1541 1542 1543 1544 1545 1546
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1547
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1558
	mutex_unlock(&dev->struct_mutex);
1559
	ret = 0;
1560
	for (i = 0; ret == 0 && i < n; i++)
1561
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1562 1563
	mutex_lock(&dev->struct_mutex);

1564 1565 1566 1567 1568 1569 1570
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1571 1572
}

1573 1574 1575 1576 1577 1578
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1579
/**
1580 1581
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1582 1583 1584
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1585
			  struct drm_file *file)
1586 1587
{
	struct drm_i915_gem_set_domain *args = data;
1588
	struct drm_i915_gem_object *obj;
1589 1590
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1591 1592
	int ret;

1593
	/* Only handle setting domains to types used by the CPU. */
1594
	if (write_domain & I915_GEM_GPU_DOMAINS)
1595 1596
		return -EINVAL;

1597
	if (read_domains & I915_GEM_GPU_DOMAINS)
1598 1599 1600 1601 1602 1603 1604 1605
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1606
	ret = i915_mutex_lock_interruptible(dev);
1607
	if (ret)
1608
		return ret;
1609

1610
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1611
	if (&obj->base == NULL) {
1612 1613
		ret = -ENOENT;
		goto unlock;
1614
	}
1615

1616 1617 1618 1619
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1620
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1621
							  to_rps_client(file),
1622
							  !write_domain);
1623 1624 1625
	if (ret)
		goto unref;

1626
	if (read_domains & I915_GEM_DOMAIN_GTT)
1627
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1628
	else
1629
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1630

1631 1632 1633 1634 1635
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1636
unref:
1637
	drm_gem_object_unreference(&obj->base);
1638
unlock:
1639 1640 1641 1642 1643 1644 1645 1646 1647
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1648
			 struct drm_file *file)
1649 1650
{
	struct drm_i915_gem_sw_finish *args = data;
1651
	struct drm_i915_gem_object *obj;
1652 1653
	int ret = 0;

1654
	ret = i915_mutex_lock_interruptible(dev);
1655
	if (ret)
1656
		return ret;
1657

1658
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1659
	if (&obj->base == NULL) {
1660 1661
		ret = -ENOENT;
		goto unlock;
1662 1663 1664
	}

	/* Pinned buffers may be scanout, so flush the cache */
1665
	if (obj->pin_display)
1666
		i915_gem_object_flush_cpu_write_domain(obj);
1667

1668
	drm_gem_object_unreference(&obj->base);
1669
unlock:
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1690 1691 1692
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1693
		    struct drm_file *file)
1694 1695 1696 1697 1698
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1699 1700 1701 1702 1703 1704
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1705
	obj = drm_gem_object_lookup(file, args->handle);
1706
	if (obj == NULL)
1707
		return -ENOENT;
1708

1709 1710 1711 1712 1713 1714 1715 1716
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1717
	addr = vm_mmap(obj->filp, 0, args->size,
1718 1719
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1733
	drm_gem_object_unreference_unlocked(obj);
1734 1735 1736 1737 1738 1739 1740 1741
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1742 1743
/**
 * i915_gem_fault - fault a page into the GTT
1744 1745
 * @vma: VMA in question
 * @vmf: fault info
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1760 1761
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1762 1763
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1764
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1765 1766 1767
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1768
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1769

1770 1771
	intel_runtime_pm_get(dev_priv);

1772 1773 1774 1775
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1776 1777 1778
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1779

C
Chris Wilson 已提交
1780 1781
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1782 1783 1784 1785 1786 1787 1788 1789 1790
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1791 1792
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1793
		ret = -EFAULT;
1794 1795 1796
		goto unlock;
	}

1797
	/* Use a partial view if the object is bigger than the aperture. */
1798
	if (obj->base.size >= ggtt->mappable_end &&
1799
	    obj->tiling_mode == I915_TILING_NONE) {
1800
		static const unsigned int chunk_size = 256; // 1 MiB
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1814 1815
	if (ret)
		goto unlock;
1816

1817 1818 1819
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1820

1821
	ret = i915_gem_object_get_fence(obj);
1822
	if (ret)
1823
		goto unpin;
1824

1825
	/* Finally, remap it using the new GTT offset */
1826
	pfn = ggtt->mappable_base +
1827
		i915_gem_obj_ggtt_offset_view(obj, &view);
1828
	pfn >>= PAGE_SHIFT;
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1839

1840 1841
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1842 1843 1844 1845 1846
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1868
unpin:
1869
	i915_gem_object_ggtt_unpin_view(obj, &view);
1870
unlock:
1871
	mutex_unlock(&dev->struct_mutex);
1872
out:
1873
	switch (ret) {
1874
	case -EIO:
1875 1876 1877 1878 1879 1880 1881
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1882 1883 1884
			ret = VM_FAULT_SIGBUS;
			break;
		}
1885
	case -EAGAIN:
D
Daniel Vetter 已提交
1886 1887 1888 1889
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1890
		 */
1891 1892
	case 0:
	case -ERESTARTSYS:
1893
	case -EINTR:
1894 1895 1896 1897 1898
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1899 1900
		ret = VM_FAULT_NOPAGE;
		break;
1901
	case -ENOMEM:
1902 1903
		ret = VM_FAULT_OOM;
		break;
1904
	case -ENOSPC:
1905
	case -EFAULT:
1906 1907
		ret = VM_FAULT_SIGBUS;
		break;
1908
	default:
1909
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1910 1911
		ret = VM_FAULT_SIGBUS;
		break;
1912
	}
1913 1914 1915

	intel_runtime_pm_put(dev_priv);
	return ret;
1916 1917
}

1918 1919 1920 1921
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1922
 * Preserve the reservation of the mmapping with the DRM core code, but
1923 1924 1925 1926 1927 1928 1929 1930 1931
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1932
void
1933
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1934
{
1935 1936 1937 1938 1939 1940
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1941 1942
	if (!obj->fault_mappable)
		return;
1943

1944 1945
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1956
	obj->fault_mappable = false;
1957 1958
}

1959 1960 1961 1962 1963 1964 1965 1966 1967
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1968
uint32_t
1969
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1970
{
1971
	uint32_t gtt_size;
1972 1973

	if (INTEL_INFO(dev)->gen >= 4 ||
1974 1975
	    tiling_mode == I915_TILING_NONE)
		return size;
1976 1977 1978

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1979
		gtt_size = 1024*1024;
1980
	else
1981
		gtt_size = 512*1024;
1982

1983 1984
	while (gtt_size < size)
		gtt_size <<= 1;
1985

1986
	return gtt_size;
1987 1988
}

1989 1990 1991 1992 1993
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1994
 * potential fence register mapping.
1995
 */
1996 1997 1998
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1999 2000 2001 2002 2003
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2004
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2005
	    tiling_mode == I915_TILING_NONE)
2006 2007
		return 4096;

2008 2009 2010 2011
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2012
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2013 2014
}

2015 2016 2017 2018 2019
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2020 2021
	dev_priv->mm.shrinker_no_lock_stealing = true;

2022 2023
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2024
		goto out;
2025 2026 2027 2028 2029 2030 2031 2032

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2033 2034 2035 2036 2037
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2038 2039
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2040
		goto out;
2041 2042

	i915_gem_shrink_all(dev_priv);
2043 2044 2045 2046 2047
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2048 2049 2050 2051 2052 2053 2054
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2055
int
2056 2057
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2058
		  uint32_t handle,
2059
		  uint64_t *offset)
2060
{
2061
	struct drm_i915_gem_object *obj;
2062 2063
	int ret;

2064
	ret = i915_mutex_lock_interruptible(dev);
2065
	if (ret)
2066
		return ret;
2067

2068
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2069
	if (&obj->base == NULL) {
2070 2071 2072
		ret = -ENOENT;
		goto unlock;
	}
2073

2074
	if (obj->madv != I915_MADV_WILLNEED) {
2075
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2076
		ret = -EFAULT;
2077
		goto out;
2078 2079
	}

2080 2081 2082
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2083

2084
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2085

2086
out:
2087
	drm_gem_object_unreference(&obj->base);
2088
unlock:
2089
	mutex_unlock(&dev->struct_mutex);
2090
	return ret;
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2114
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2115 2116
}

D
Daniel Vetter 已提交
2117 2118 2119
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2120
{
2121
	i915_gem_object_free_mmap_offset(obj);
2122

2123 2124
	if (obj->base.filp == NULL)
		return;
2125

D
Daniel Vetter 已提交
2126 2127 2128 2129 2130
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2131
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2132 2133
	obj->madv = __I915_MADV_PURGED;
}
2134

2135 2136 2137
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2138
{
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2153 2154
}

2155
static void
2156
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2157
{
2158 2159
	struct sg_page_iter sg_iter;
	int ret;
2160

2161
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2162

C
Chris Wilson 已提交
2163
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2164
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2165 2166 2167
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2168
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2169 2170 2171
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2172 2173
	i915_gem_gtt_finish_object(obj);

2174
	if (i915_gem_object_needs_bit17_swizzle(obj))
2175 2176
		i915_gem_object_save_bit_17_swizzle(obj);

2177 2178
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2179

2180
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2181
		struct page *page = sg_page_iter_page(&sg_iter);
2182

2183
		if (obj->dirty)
2184
			set_page_dirty(page);
2185

2186
		if (obj->madv == I915_MADV_WILLNEED)
2187
			mark_page_accessed(page);
2188

2189
		put_page(page);
2190
	}
2191
	obj->dirty = 0;
2192

2193 2194
	sg_free_table(obj->pages);
	kfree(obj->pages);
2195
}
C
Chris Wilson 已提交
2196

2197
int
2198 2199 2200 2201
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2202
	if (obj->pages == NULL)
2203 2204
		return 0;

2205 2206 2207
	if (obj->pages_pin_count)
		return -EBUSY;

2208
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2209

2210 2211 2212
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2213
	list_del(&obj->global_list);
2214

2215
	if (obj->mapping) {
2216 2217 2218 2219
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2220 2221 2222
		obj->mapping = NULL;
	}

2223
	ops->put_pages(obj);
2224
	obj->pages = NULL;
2225

2226
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2227 2228 2229 2230

	return 0;
}

2231
static int
C
Chris Wilson 已提交
2232
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2233
{
C
Chris Wilson 已提交
2234
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2235 2236
	int page_count, i;
	struct address_space *mapping;
2237 2238
	struct sg_table *st;
	struct scatterlist *sg;
2239
	struct sg_page_iter sg_iter;
2240
	struct page *page;
2241
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2242
	int ret;
C
Chris Wilson 已提交
2243
	gfp_t gfp;
2244

C
Chris Wilson 已提交
2245 2246 2247 2248 2249 2250 2251
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2252 2253 2254 2255
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2256
	page_count = obj->base.size / PAGE_SIZE;
2257 2258
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2259
		return -ENOMEM;
2260
	}
2261

2262 2263 2264 2265 2266
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2267
	mapping = file_inode(obj->base.filp)->i_mapping;
2268
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2269
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2270 2271 2272
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2273 2274
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2275 2276 2277 2278 2279
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2280 2281 2282 2283 2284 2285 2286 2287
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2288
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2289 2290
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2291
				goto err_pages;
I
Imre Deak 已提交
2292
			}
C
Chris Wilson 已提交
2293
		}
2294 2295 2296 2297 2298 2299 2300 2301
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2302 2303 2304 2305 2306 2307 2308 2309 2310
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2311 2312 2313

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2314
	}
2315 2316 2317 2318
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2319 2320
	obj->pages = st;

I
Imre Deak 已提交
2321 2322 2323 2324
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2325
	if (i915_gem_object_needs_bit17_swizzle(obj))
2326 2327
		i915_gem_object_do_bit_17_swizzle(obj);

2328 2329 2330 2331
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2332 2333 2334
	return 0;

err_pages:
2335 2336
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2337
		put_page(sg_page_iter_page(&sg_iter));
2338 2339
	sg_free_table(st);
	kfree(st);
2340 2341 2342 2343 2344 2345 2346 2347 2348

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2349 2350 2351 2352
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2353 2354
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2369
	if (obj->pages)
2370 2371
		return 0;

2372
	if (obj->madv != I915_MADV_WILLNEED) {
2373
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2374
		return -EFAULT;
2375 2376
	}

2377 2378
	BUG_ON(obj->pages_pin_count);

2379 2380 2381 2382
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2383
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2384 2385 2386 2387

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2388
	return 0;
2389 2390
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2406 2407 2408 2409 2410 2411 2412
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2413
		if (pages != NULL) {
2414 2415 2416
			struct sg_page_iter sg_iter;
			int n;

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2434
void i915_vma_move_to_active(struct i915_vma *vma,
2435
			     struct drm_i915_gem_request *req)
2436
{
2437
	struct drm_i915_gem_object *obj = vma->obj;
2438
	struct intel_engine_cs *engine;
2439

2440
	engine = i915_gem_request_get_engine(req);
2441 2442

	/* Add a reference if we're newly entering the active list. */
2443
	if (obj->active == 0)
2444
		drm_gem_object_reference(&obj->base);
2445
	obj->active |= intel_engine_flag(engine);
2446

2447
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2448
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2449

2450
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2451 2452
}

2453 2454
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2455
{
2456 2457
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2458 2459

	i915_gem_request_assign(&obj->last_write_req, NULL);
2460
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2461 2462
}

2463
static void
2464
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2465
{
2466
	struct i915_vma *vma;
2467

2468 2469
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2470

2471
	list_del_init(&obj->engine_list[ring]);
2472 2473
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2474
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2475 2476 2477 2478 2479
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2480

2481 2482 2483 2484 2485 2486 2487
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2488 2489 2490
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2491
	}
2492

2493
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2494
	drm_gem_object_unreference(&obj->base);
2495 2496
}

2497
static int
2498
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2499
{
2500
	struct drm_i915_private *dev_priv = dev->dev_private;
2501
	struct intel_engine_cs *engine;
2502
	int ret;
2503

2504
	/* Carefully retire all requests without writing to the rings */
2505
	for_each_engine(engine, dev_priv) {
2506
		ret = intel_engine_idle(engine);
2507 2508
		if (ret)
			return ret;
2509 2510
	}
	i915_gem_retire_requests(dev);
2511 2512

	/* Finally reset hw state */
2513
	for_each_engine(engine, dev_priv)
2514
		intel_ring_init_seqno(engine, seqno);
2515

2516
	return 0;
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2545 2546
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2547
{
2548 2549 2550 2551
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2552
		int ret = i915_gem_init_seqno(dev, 0);
2553 2554
		if (ret)
			return ret;
2555

2556 2557
		dev_priv->next_seqno = 1;
	}
2558

2559
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2560
	return 0;
2561 2562
}

2563 2564 2565 2566 2567
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2568
void __i915_add_request(struct drm_i915_gem_request *request,
2569 2570
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2571
{
2572
	struct intel_engine_cs *engine;
2573
	struct drm_i915_private *dev_priv;
2574
	struct intel_ringbuffer *ringbuf;
2575
	u32 request_start;
2576 2577
	int ret;

2578
	if (WARN_ON(request == NULL))
2579
		return;
2580

2581
	engine = request->engine;
2582
	dev_priv = request->i915;
2583 2584
	ringbuf = request->ringbuf;

2585 2586 2587 2588 2589 2590 2591
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2592
	request_start = intel_ring_get_tail(ringbuf);
2593 2594 2595 2596 2597 2598 2599
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2600 2601
	if (flush_caches) {
		if (i915.enable_execlists)
2602
			ret = logical_ring_flush_all_caches(request);
2603
		else
2604
			ret = intel_ring_flush_all_caches(request);
2605 2606 2607
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2631 2632 2633 2634 2635
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2636
	request->postfix = intel_ring_get_tail(ringbuf);
2637

2638
	if (i915.enable_execlists)
2639
		ret = engine->emit_request(request);
2640
	else {
2641
		ret = engine->add_request(request);
2642 2643

		request->tail = intel_ring_get_tail(ringbuf);
2644
	}
2645 2646
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2647

2648
	i915_queue_hangcheck(engine->dev);
2649

2650 2651 2652 2653
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2654

2655 2656
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2657 2658
}

2659
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2660
				   const struct intel_context *ctx)
2661
{
2662
	unsigned long elapsed;
2663

2664 2665 2666
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2667 2668
		return true;

2669 2670
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2671
		if (!i915_gem_context_is_default(ctx)) {
2672
			DRM_DEBUG("context hanging too fast, banning!\n");
2673
			return true;
2674 2675 2676
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2677
			return true;
2678
		}
2679 2680 2681 2682 2683
	}

	return false;
}

2684
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2685
				  struct intel_context *ctx,
2686
				  const bool guilty)
2687
{
2688 2689 2690 2691
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2692

2693 2694 2695
	hs = &ctx->hang_stats;

	if (guilty) {
2696
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2697 2698 2699 2700
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2701 2702 2703
	}
}

2704 2705 2706 2707 2708 2709
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2710 2711 2712
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2713
	if (ctx) {
D
Dave Gordon 已提交
2714
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2715
			intel_lr_context_unpin(ctx, req->engine);
2716

2717 2718
		i915_gem_context_unreference(ctx);
	}
2719

2720
	kmem_cache_free(req->i915->requests, req);
2721 2722
}

2723
static inline int
2724
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2725 2726
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2727
{
2728
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2729
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2730
	struct drm_i915_gem_request *req;
2731 2732
	int ret;

2733 2734 2735
	if (!req_out)
		return -EINVAL;

2736
	*req_out = NULL;
2737

2738 2739 2740 2741 2742
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2743 2744 2745
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2746 2747
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2748 2749
		return -ENOMEM;

2750
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2751 2752
	if (ret)
		goto err;
2753

2754 2755
	kref_init(&req->ref);
	req->i915 = dev_priv;
2756
	req->engine = engine;
2757
	req->reset_counter = reset_counter;
2758 2759
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2760 2761

	if (i915.enable_execlists)
2762
		ret = intel_logical_ring_alloc_request_extras(req);
2763
	else
D
Daniel Vetter 已提交
2764
		ret = intel_ring_alloc_request_extras(req);
2765 2766
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2767
		goto err;
2768
	}
2769

2770 2771 2772 2773 2774 2775 2776
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
2787 2788
		intel_ring_reserved_space_cancel(req->ringbuf);
		i915_gem_request_unreference(req);
2789 2790
		return ret;
	}
2791

2792
	*req_out = req;
2793
	return 0;
2794 2795 2796 2797

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2798 2799
}

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2820
		ctx = to_i915(engine->dev)->kernel_context;
2821 2822 2823 2824
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2825
struct drm_i915_gem_request *
2826
i915_gem_find_active_request(struct intel_engine_cs *engine)
2827
{
2828 2829
	struct drm_i915_gem_request *request;

2830
	list_for_each_entry(request, &engine->request_list, list) {
2831
		if (i915_gem_request_completed(request, false))
2832
			continue;
2833

2834
		return request;
2835
	}
2836 2837 2838 2839

	return NULL;
}

2840
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2841
				       struct intel_engine_cs *engine)
2842 2843 2844 2845
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2846
	request = i915_gem_find_active_request(engine);
2847 2848 2849 2850

	if (request == NULL)
		return;

2851
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2852

2853
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2854

2855
	list_for_each_entry_continue(request, &engine->request_list, list)
2856
		i915_set_reset_status(dev_priv, request->ctx, false);
2857
}
2858

2859
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2860
					struct intel_engine_cs *engine)
2861
{
2862 2863
	struct intel_ringbuffer *buffer;

2864
	while (!list_empty(&engine->active_list)) {
2865
		struct drm_i915_gem_object *obj;
2866

2867
		obj = list_first_entry(&engine->active_list,
2868
				       struct drm_i915_gem_object,
2869
				       engine_list[engine->id]);
2870

2871
		i915_gem_object_retire__read(obj, engine->id);
2872
	}
2873

2874 2875 2876 2877 2878 2879
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2880
	if (i915.enable_execlists) {
2881 2882
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2883

2884
		spin_lock_bh(&engine->execlist_lock);
2885
		/* list_splice_tail_init checks for empty lists */
2886 2887
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2888
		spin_unlock_bh(&engine->execlist_lock);
2889

2890
		intel_execlists_retire_requests(engine);
2891 2892
	}

2893 2894 2895 2896 2897 2898 2899
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2900
	while (!list_empty(&engine->request_list)) {
2901 2902
		struct drm_i915_gem_request *request;

2903
		request = list_first_entry(&engine->request_list,
2904 2905 2906
					   struct drm_i915_gem_request,
					   list);

2907
		i915_gem_request_retire(request);
2908
	}
2909 2910 2911 2912 2913 2914 2915 2916

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2917
	list_for_each_entry(buffer, &engine->buffers, link) {
2918 2919 2920
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2921 2922

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2923 2924
}

2925
void i915_gem_reset(struct drm_device *dev)
2926
{
2927
	struct drm_i915_private *dev_priv = dev->dev_private;
2928
	struct intel_engine_cs *engine;
2929

2930 2931 2932 2933 2934
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2935
	for_each_engine(engine, dev_priv)
2936
		i915_gem_reset_engine_status(dev_priv, engine);
2937

2938
	for_each_engine(engine, dev_priv)
2939
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2940

2941 2942
	i915_gem_context_reset(dev);

2943
	i915_gem_restore_fences(dev);
2944 2945

	WARN_ON(i915_verify_lists(dev));
2946 2947 2948 2949 2950
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2951
void
2952
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2953
{
2954
	WARN_ON(i915_verify_lists(engine->dev));
2955

2956 2957 2958 2959
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2960
	 */
2961
	while (!list_empty(&engine->request_list)) {
2962 2963
		struct drm_i915_gem_request *request;

2964
		request = list_first_entry(&engine->request_list,
2965 2966 2967
					   struct drm_i915_gem_request,
					   list);

2968
		if (!i915_gem_request_completed(request, true))
2969 2970
			break;

2971
		i915_gem_request_retire(request);
2972
	}
2973

2974 2975 2976 2977
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2978
	while (!list_empty(&engine->active_list)) {
2979 2980
		struct drm_i915_gem_object *obj;

2981 2982
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2983
				       engine_list[engine->id]);
2984

2985
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2986 2987
			break;

2988
		i915_gem_object_retire__read(obj, engine->id);
2989 2990
	}

2991 2992 2993 2994
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2995
	}
2996

2997
	WARN_ON(i915_verify_lists(engine->dev));
2998 2999
}

3000
bool
3001 3002
i915_gem_retire_requests(struct drm_device *dev)
{
3003
	struct drm_i915_private *dev_priv = dev->dev_private;
3004
	struct intel_engine_cs *engine;
3005
	bool idle = true;
3006

3007
	for_each_engine(engine, dev_priv) {
3008 3009
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3010
		if (i915.enable_execlists) {
3011
			spin_lock_bh(&engine->execlist_lock);
3012
			idle &= list_empty(&engine->execlist_queue);
3013
			spin_unlock_bh(&engine->execlist_lock);
3014

3015
			intel_execlists_retire_requests(engine);
3016
		}
3017 3018 3019 3020 3021 3022 3023 3024
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3025 3026
}

3027
static void
3028 3029
i915_gem_retire_work_handler(struct work_struct *work)
{
3030 3031 3032
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3033
	bool idle;
3034

3035
	/* Come back later if the device is busy... */
3036 3037 3038 3039
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3040
	}
3041
	if (!idle)
3042 3043
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3044
}
3045

3046 3047 3048 3049 3050
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3051
	struct drm_device *dev = dev_priv->dev;
3052
	struct intel_engine_cs *engine;
3053

3054 3055
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3056
			return;
3057

3058
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3059
	 * Also locking seems to be fubar here, engine->request_list is protected
3060 3061
	 * by dev->struct_mutex. */

3062 3063 3064
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3065
		for_each_engine(engine, dev_priv)
3066
			i915_gem_batch_pool_fini(&engine->batch_pool);
3067

3068 3069
		mutex_unlock(&dev->struct_mutex);
	}
3070 3071
}

3072 3073 3074 3075 3076 3077 3078 3079
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3080
	int i;
3081 3082 3083

	if (!obj->active)
		return 0;
3084

3085
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3086
		struct drm_i915_gem_request *req;
3087

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3100 3101 3102 3103 3104
	}

	return 0;
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3132
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3133 3134
	int i, n = 0;
	int ret;
3135

3136 3137 3138
	if (args->flags != 0)
		return -EINVAL;

3139 3140 3141 3142
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3143
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3144 3145 3146 3147 3148
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3149 3150
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3151 3152 3153
	if (ret)
		goto out;

3154
	if (!obj->active)
3155
		goto out;
3156 3157

	/* Do this after OLR check to make sure we make forward progress polling
3158
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3159
	 */
3160
	if (args->timeout_ns == 0) {
3161 3162 3163 3164 3165
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3166

3167
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3168 3169 3170 3171 3172 3173
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3174 3175
	mutex_unlock(&dev->struct_mutex);

3176 3177
	for (i = 0; i < n; i++) {
		if (ret == 0)
3178
			ret = __i915_wait_request(req[i], true,
3179
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3180
						  to_rps_client(file));
3181 3182
		i915_gem_request_unreference__unlocked(req[i]);
	}
3183
	return ret;
3184 3185 3186 3187 3188 3189 3190

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3191 3192 3193
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3194 3195
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3196 3197 3198 3199
{
	struct intel_engine_cs *from;
	int ret;

3200
	from = i915_gem_request_get_engine(from_req);
3201 3202 3203
	if (to == from)
		return 0;

3204
	if (i915_gem_request_completed(from_req, true))
3205 3206 3207
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3208
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3209
		ret = __i915_wait_request(from_req,
3210 3211 3212
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3213 3214 3215
		if (ret)
			return ret;

3216
		i915_gem_object_retire_request(obj, from_req);
3217 3218
	} else {
		int idx = intel_ring_sync_index(from, to);
3219 3220 3221
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3222 3223 3224 3225

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3226
		if (*to_req == NULL) {
3227 3228 3229 3230 3231 3232 3233
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3234 3235
		}

3236 3237
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3252 3253 3254 3255 3256
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3257 3258 3259
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3260 3261 3262
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3263
 * rather than a particular GPU ring. Conceptually we serialise writes
3264
 * between engines inside the GPU. We only allow one engine to write
3265 3266 3267 3268 3269 3270 3271 3272 3273
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3274
 *
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3285 3286
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3287 3288
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3289 3290
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3291
{
3292
	const bool readonly = obj->base.pending_write_domain == 0;
3293
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3294
	int ret, i, n;
3295

3296
	if (!obj->active)
3297 3298
		return 0;

3299 3300
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3301

3302 3303 3304 3305 3306
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3307
		for (i = 0; i < I915_NUM_ENGINES; i++)
3308 3309 3310 3311
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3312
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3313 3314 3315
		if (ret)
			return ret;
	}
3316

3317
	return 0;
3318 3319
}

3320 3321 3322 3323 3324 3325 3326
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3327 3328 3329
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3341
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3342
{
3343
	struct drm_i915_gem_object *obj = vma->obj;
3344
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3345
	int ret;
3346

3347
	if (list_empty(&vma->obj_link))
3348 3349
		return 0;

3350 3351 3352 3353
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3354

B
Ben Widawsky 已提交
3355
	if (vma->pin_count)
3356
		return -EBUSY;
3357

3358 3359
	BUG_ON(obj->pages == NULL);

3360 3361 3362 3363 3364
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3365

3366
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3367
		i915_gem_object_finish_gtt(obj);
3368

3369 3370 3371 3372 3373
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3374

3375
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3376

3377
	vma->vm->unbind_vma(vma);
3378
	vma->bound = 0;
3379

3380
	list_del_init(&vma->vm_link);
3381
	if (vma->is_ggtt) {
3382 3383 3384 3385 3386 3387
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3388
		vma->ggtt_view.pages = NULL;
3389
	}
3390

B
Ben Widawsky 已提交
3391 3392 3393 3394
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3395
	 * no more VMAs exist. */
I
Imre Deak 已提交
3396
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3397
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3398

3399 3400 3401 3402 3403 3404
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3405
	return 0;
3406 3407
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3418
int i915_gpu_idle(struct drm_device *dev)
3419
{
3420
	struct drm_i915_private *dev_priv = dev->dev_private;
3421
	struct intel_engine_cs *engine;
3422
	int ret;
3423 3424

	/* Flush everything onto the inactive list. */
3425
	for_each_engine(engine, dev_priv) {
3426
		if (!i915.enable_execlists) {
3427 3428
			struct drm_i915_gem_request *req;

3429
			req = i915_gem_request_alloc(engine, NULL);
3430 3431
			if (IS_ERR(req))
				return PTR_ERR(req);
3432

3433
			ret = i915_switch_context(req);
3434
			i915_add_request_no_flush(req);
3435 3436
			if (ret)
				return ret;
3437
		}
3438

3439
		ret = intel_engine_idle(engine);
3440 3441 3442
		if (ret)
			return ret;
	}
3443

3444
	WARN_ON(i915_verify_lists(dev));
3445
	return 0;
3446 3447
}

3448
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3449 3450
				     unsigned long cache_level)
{
3451
	struct drm_mm_node *gtt_space = &vma->node;
3452 3453
	struct drm_mm_node *other;

3454 3455 3456 3457 3458 3459
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3460
	 */
3461
	if (vma->vm->mm.color_adjust == NULL)
3462 3463
		return true;

3464
	if (!drm_mm_node_allocated(gtt_space))
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3481
/**
3482 3483
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3484
 */
3485
static struct i915_vma *
3486 3487
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3488
			   const struct i915_ggtt_view *ggtt_view,
3489
			   unsigned alignment,
3490
			   uint64_t flags)
3491
{
3492
	struct drm_device *dev = obj->base.dev;
3493 3494
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3495
	u32 fence_alignment, unfenced_alignment;
3496 3497
	u32 search_flag, alloc_flag;
	u64 start, end;
3498
	u64 size, fence_size;
B
Ben Widawsky 已提交
3499
	struct i915_vma *vma;
3500
	int ret;
3501

3502 3503 3504 3505 3506
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3537

3538 3539 3540
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3541
		end = min_t(u64, end, ggtt->mappable_end);
3542
	if (flags & PIN_ZONE_4G)
3543
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3544

3545
	if (alignment == 0)
3546
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3547
						unfenced_alignment;
3548
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3549 3550 3551
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3552
		return ERR_PTR(-EINVAL);
3553 3554
	}

3555 3556 3557
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3558
	 */
3559
	if (size > end) {
3560
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3561 3562
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3563
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3564
			  end);
3565
		return ERR_PTR(-E2BIG);
3566 3567
	}

3568
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3569
	if (ret)
3570
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3571

3572 3573
	i915_gem_object_pin_pages(obj);

3574 3575 3576
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3577
	if (IS_ERR(vma))
3578
		goto err_unpin;
B
Ben Widawsky 已提交
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3598
	} else {
3599 3600 3601 3602 3603 3604 3605
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3606

3607
search_free:
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3621

3622 3623
			goto err_free_vma;
		}
3624
	}
3625
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3626
		ret = -EINVAL;
3627
		goto err_remove_node;
3628 3629
	}

3630
	trace_i915_vma_bind(vma, flags);
3631
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3632
	if (ret)
I
Imre Deak 已提交
3633
		goto err_remove_node;
3634

3635
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3636
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3637

3638
	return vma;
B
Ben Widawsky 已提交
3639

3640
err_remove_node:
3641
	drm_mm_remove_node(&vma->node);
3642
err_free_vma:
B
Ben Widawsky 已提交
3643
	i915_gem_vma_destroy(vma);
3644
	vma = ERR_PTR(ret);
3645
err_unpin:
B
Ben Widawsky 已提交
3646
	i915_gem_object_unpin_pages(obj);
3647
	return vma;
3648 3649
}

3650
bool
3651 3652
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3653 3654 3655 3656 3657
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3658
	if (obj->pages == NULL)
3659
		return false;
3660

3661 3662 3663 3664
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3665
	if (obj->stolen || obj->phys_handle)
3666
		return false;
3667

3668 3669 3670 3671 3672 3673 3674 3675
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3676 3677
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3678
		return false;
3679
	}
3680

C
Chris Wilson 已提交
3681
	trace_i915_gem_object_clflush(obj);
3682
	drm_clflush_sg(obj->pages);
3683
	obj->cache_dirty = false;
3684 3685

	return true;
3686 3687 3688 3689
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3690
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3691
{
C
Chris Wilson 已提交
3692 3693
	uint32_t old_write_domain;

3694
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3695 3696
		return;

3697
	/* No actual flushing is required for the GTT write domain.  Writes
3698 3699
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3700 3701 3702 3703
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3704
	 */
3705 3706
	wmb();

3707 3708
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3709

3710
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3711

C
Chris Wilson 已提交
3712
	trace_i915_gem_object_change_domain(obj,
3713
					    obj->base.read_domains,
C
Chris Wilson 已提交
3714
					    old_write_domain);
3715 3716 3717 3718
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3719
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3720
{
C
Chris Wilson 已提交
3721
	uint32_t old_write_domain;
3722

3723
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3724 3725
		return;

3726
	if (i915_gem_clflush_object(obj, obj->pin_display))
3727 3728
		i915_gem_chipset_flush(obj->base.dev);

3729 3730
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3731

3732
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3733

C
Chris Wilson 已提交
3734
	trace_i915_gem_object_change_domain(obj,
3735
					    obj->base.read_domains,
C
Chris Wilson 已提交
3736
					    old_write_domain);
3737 3738
}

3739 3740 3741 3742 3743 3744
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3745
int
3746
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3747
{
3748 3749 3750
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3751
	uint32_t old_write_domain, old_read_domains;
3752
	struct i915_vma *vma;
3753
	int ret;
3754

3755 3756 3757
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3758
	ret = i915_gem_object_wait_rendering(obj, !write);
3759 3760 3761
	if (ret)
		return ret;

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3774
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3775

3776 3777 3778 3779 3780 3781 3782
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3783 3784
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3785

3786 3787 3788
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3789 3790
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3791
	if (write) {
3792 3793 3794
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3795 3796
	}

C
Chris Wilson 已提交
3797 3798 3799 3800
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3801
	/* And bump the LRU for this access */
3802 3803
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3804
		list_move_tail(&vma->vm_link,
3805
			       &ggtt->base.inactive_list);
3806

3807 3808 3809
	return 0;
}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3823 3824 3825
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3826
	struct drm_device *dev = obj->base.dev;
3827
	struct i915_vma *vma, *next;
3828
	bool bound = false;
3829
	int ret = 0;
3830 3831

	if (obj->cache_level == cache_level)
3832
		goto out;
3833

3834 3835 3836 3837 3838
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3839
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3840 3841 3842 3843 3844 3845 3846 3847
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3848
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3849
			ret = i915_vma_unbind(vma);
3850 3851
			if (ret)
				return ret;
3852 3853
		} else
			bound = true;
3854 3855
	}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3868
		ret = i915_gem_object_wait_rendering(obj, false);
3869 3870 3871
		if (ret)
			return ret;

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3889 3890 3891
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3892 3893 3894 3895 3896 3897 3898 3899
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3900 3901
		}

3902
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3903 3904 3905 3906 3907 3908 3909
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3910 3911
	}

3912
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3913 3914 3915
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3916
out:
3917 3918 3919 3920
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3921 3922 3923 3924 3925
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3926 3927 3928 3929 3930
	}

	return 0;
}

B
Ben Widawsky 已提交
3931 3932
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3933
{
B
Ben Widawsky 已提交
3934
	struct drm_i915_gem_caching *args = data;
3935 3936
	struct drm_i915_gem_object *obj;

3937
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3938 3939
	if (&obj->base == NULL)
		return -ENOENT;
3940

3941 3942 3943 3944 3945 3946
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3947 3948 3949 3950
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3951 3952 3953 3954
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3955

3956 3957
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3958 3959
}

B
Ben Widawsky 已提交
3960 3961
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3962
{
3963
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3964
	struct drm_i915_gem_caching *args = data;
3965 3966 3967 3968
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3969 3970
	switch (args->caching) {
	case I915_CACHING_NONE:
3971 3972
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3973
	case I915_CACHING_CACHED:
3974 3975 3976 3977 3978 3979
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3980
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3981 3982
			return -ENODEV;

3983 3984
		level = I915_CACHE_LLC;
		break;
3985 3986 3987
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3988 3989 3990 3991
	default:
		return -EINVAL;
	}

3992 3993
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3994 3995
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3996
		goto rpm_put;
B
Ben Widawsky 已提交
3997

3998
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4009 4010 4011
rpm_put:
	intel_runtime_pm_put(dev_priv);

4012 4013 4014
	return ret;
}

4015
/*
4016 4017 4018
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4019 4020
 */
int
4021 4022
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4023
				     const struct i915_ggtt_view *view)
4024
{
4025
	u32 old_read_domains, old_write_domain;
4026 4027
	int ret;

4028 4029 4030
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4031
	obj->pin_display++;
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4042 4043
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4044
	if (ret)
4045
		goto err_unpin_display;
4046

4047 4048 4049 4050
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4051 4052 4053
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4054
	if (ret)
4055
		goto err_unpin_display;
4056

4057
	i915_gem_object_flush_cpu_write_domain(obj);
4058

4059
	old_write_domain = obj->base.write_domain;
4060
	old_read_domains = obj->base.read_domains;
4061 4062 4063 4064

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4065
	obj->base.write_domain = 0;
4066
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4067 4068 4069

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4070
					    old_write_domain);
4071 4072

	return 0;
4073 4074

err_unpin_display:
4075
	obj->pin_display--;
4076 4077 4078 4079
	return ret;
}

void
4080 4081
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4082
{
4083 4084 4085
	if (WARN_ON(obj->pin_display == 0))
		return;

4086 4087
	i915_gem_object_ggtt_unpin_view(obj, view);

4088
	obj->pin_display--;
4089 4090
}

4091 4092 4093 4094 4095 4096
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4097
int
4098
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4099
{
C
Chris Wilson 已提交
4100
	uint32_t old_write_domain, old_read_domains;
4101 4102
	int ret;

4103 4104 4105
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4106
	ret = i915_gem_object_wait_rendering(obj, !write);
4107 4108 4109
	if (ret)
		return ret;

4110
	i915_gem_object_flush_gtt_write_domain(obj);
4111

4112 4113
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4114

4115
	/* Flush the CPU cache if it's still invalid. */
4116
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4117
		i915_gem_clflush_object(obj, false);
4118

4119
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4120 4121 4122 4123 4124
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4125
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4126 4127 4128 4129 4130

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4131 4132
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4133
	}
4134

C
Chris Wilson 已提交
4135 4136 4137 4138
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4139 4140 4141
	return 0;
}

4142 4143 4144
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4145 4146 4147 4148
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4149 4150 4151
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4152
static int
4153
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4154
{
4155 4156
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4157
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4158
	struct drm_i915_gem_request *request, *target = NULL;
4159
	int ret;
4160

4161 4162 4163 4164
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4165 4166 4167
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4168

4169
	spin_lock(&file_priv->mm.lock);
4170
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4171 4172
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4173

4174 4175 4176 4177 4178 4179 4180
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4181
		target = request;
4182
	}
4183 4184
	if (target)
		i915_gem_request_reference(target);
4185
	spin_unlock(&file_priv->mm.lock);
4186

4187
	if (target == NULL)
4188
		return 0;
4189

4190
	ret = __i915_wait_request(target, true, NULL, NULL);
4191 4192
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4193

4194
	i915_gem_request_unreference__unlocked(target);
4195

4196 4197 4198
	return ret;
}

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4215 4216 4217 4218
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4219 4220 4221
	return false;
}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4240
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4241 4242 4243 4244

	obj->map_and_fenceable = mappable && fenceable;
}

4245 4246 4247 4248 4249 4250
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4251
{
4252
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4253
	struct i915_vma *vma;
4254
	unsigned bound;
4255 4256
	int ret;

4257 4258 4259
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4260
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4261
		return -EINVAL;
4262

4263 4264 4265
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4266 4267 4268 4269 4270 4271
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4272
	if (vma) {
B
Ben Widawsky 已提交
4273 4274 4275
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4276
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4277
			WARN(vma->pin_count,
4278
			     "bo is already pinned in %s with incorrect alignment:"
4279
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4280
			     " obj->map_and_fenceable=%d\n",
4281
			     ggtt_view ? "ggtt" : "ppgtt",
4282 4283
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4284
			     alignment,
4285
			     !!(flags & PIN_MAPPABLE),
4286
			     obj->map_and_fenceable);
4287
			ret = i915_vma_unbind(vma);
4288 4289
			if (ret)
				return ret;
4290 4291

			vma = NULL;
4292 4293 4294
		}
	}

4295
	bound = vma ? vma->bound : 0;
4296
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4297 4298
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4299 4300
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4301 4302
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4303 4304 4305
		if (ret)
			return ret;
	}
4306

4307 4308
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4309
		__i915_vma_set_map_and_fenceable(vma);
4310 4311
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4312

4313
	vma->pin_count++;
4314 4315 4316
	return 0;
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4334 4335 4336 4337
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4338
	BUG_ON(!view);
4339

4340
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4341
				      alignment, flags | PIN_GLOBAL);
4342 4343
}

4344
void
4345 4346
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4347
{
4348
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4349

4350
	WARN_ON(vma->pin_count == 0);
4351
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4352

4353
	--vma->pin_count;
4354 4355 4356 4357
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4358
		    struct drm_file *file)
4359 4360
{
	struct drm_i915_gem_busy *args = data;
4361
	struct drm_i915_gem_object *obj;
4362 4363
	int ret;

4364
	ret = i915_mutex_lock_interruptible(dev);
4365
	if (ret)
4366
		return ret;
4367

4368
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4369
	if (&obj->base == NULL) {
4370 4371
		ret = -ENOENT;
		goto unlock;
4372
	}
4373

4374 4375 4376 4377
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4378
	 */
4379
	ret = i915_gem_object_flush_active(obj);
4380 4381
	if (ret)
		goto unref;
4382

4383 4384 4385 4386
	args->busy = 0;
	if (obj->active) {
		int i;

4387
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4388 4389 4390 4391
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4392
				args->busy |= 1 << (16 + req->engine->exec_id);
4393 4394
		}
		if (obj->last_write_req)
4395
			args->busy |= obj->last_write_req->engine->exec_id;
4396
	}
4397

4398
unref:
4399
	drm_gem_object_unreference(&obj->base);
4400
unlock:
4401
	mutex_unlock(&dev->struct_mutex);
4402
	return ret;
4403 4404 4405 4406 4407 4408
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4409
	return i915_gem_ring_throttle(dev, file_priv);
4410 4411
}

4412 4413 4414 4415
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4416
	struct drm_i915_private *dev_priv = dev->dev_private;
4417
	struct drm_i915_gem_madvise *args = data;
4418
	struct drm_i915_gem_object *obj;
4419
	int ret;
4420 4421 4422 4423 4424 4425 4426 4427 4428

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4429 4430 4431 4432
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4433
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4434
	if (&obj->base == NULL) {
4435 4436
		ret = -ENOENT;
		goto unlock;
4437 4438
	}

B
Ben Widawsky 已提交
4439
	if (i915_gem_obj_is_pinned(obj)) {
4440 4441
		ret = -EINVAL;
		goto out;
4442 4443
	}

4444 4445 4446 4447 4448 4449 4450 4451 4452
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4453 4454
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4455

C
Chris Wilson 已提交
4456
	/* if the object is no longer attached, discard its backing storage */
4457
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4458 4459
		i915_gem_object_truncate(obj);

4460
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4461

4462
out:
4463
	drm_gem_object_unreference(&obj->base);
4464
unlock:
4465
	mutex_unlock(&dev->struct_mutex);
4466
	return ret;
4467 4468
}

4469 4470
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4471
{
4472 4473
	int i;

4474
	INIT_LIST_HEAD(&obj->global_list);
4475
	for (i = 0; i < I915_NUM_ENGINES; i++)
4476
		INIT_LIST_HEAD(&obj->engine_list[i]);
4477
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4478
	INIT_LIST_HEAD(&obj->vma_list);
4479
	INIT_LIST_HEAD(&obj->batch_pool_link);
4480

4481 4482
	obj->ops = ops;

4483 4484 4485 4486 4487 4488
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4489
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4490
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4491 4492 4493 4494
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4495 4496
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4497
{
4498
	struct drm_i915_gem_object *obj;
4499
	struct address_space *mapping;
D
Daniel Vetter 已提交
4500
	gfp_t mask;
4501

4502
	obj = i915_gem_object_alloc(dev);
4503 4504
	if (obj == NULL)
		return NULL;
4505

4506
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4507
		i915_gem_object_free(obj);
4508 4509
		return NULL;
	}
4510

4511 4512 4513 4514 4515 4516 4517
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4518
	mapping = file_inode(obj->base.filp)->i_mapping;
4519
	mapping_set_gfp_mask(mapping, mask);
4520

4521
	i915_gem_object_init(obj, &i915_gem_object_ops);
4522

4523 4524
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4525

4526 4527
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4543 4544
	trace_i915_gem_object_create(obj);

4545
	return obj;
4546 4547
}

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4572
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4573
{
4574
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4575
	struct drm_device *dev = obj->base.dev;
4576
	struct drm_i915_private *dev_priv = dev->dev_private;
4577
	struct i915_vma *vma, *next;
4578

4579 4580
	intel_runtime_pm_get(dev_priv);

4581 4582
	trace_i915_gem_object_destroy(obj);

4583
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4584 4585 4586 4587
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4588 4589
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4590

4591 4592
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4593

4594
			WARN_ON(i915_vma_unbind(vma));
4595

4596 4597
			dev_priv->mm.interruptible = was_interruptible;
		}
4598 4599
	}

B
Ben Widawsky 已提交
4600 4601 4602 4603 4604
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4605 4606
	WARN_ON(obj->frontbuffer_bits);

4607 4608 4609 4610 4611
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4612 4613
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4614
	if (discard_backing_storage(obj))
4615
		obj->madv = I915_MADV_DONTNEED;
4616
	i915_gem_object_put_pages(obj);
4617
	i915_gem_object_free_mmap_offset(obj);
4618

4619 4620
	BUG_ON(obj->pages);

4621 4622
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4623

4624 4625 4626
	if (obj->ops->release)
		obj->ops->release(obj);

4627 4628
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4629

4630
	kfree(obj->bit_17);
4631
	i915_gem_object_free(obj);
4632 4633

	intel_runtime_pm_put(dev_priv);
4634 4635
}

4636 4637
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4638 4639
{
	struct i915_vma *vma;
4640
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4641 4642
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4643
			return vma;
4644 4645 4646 4647 4648 4649 4650
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
4651 4652 4653
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4654
	struct i915_vma *vma;
4655

4656
	BUG_ON(!view);
4657

4658
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4659
		if (vma->vm == &ggtt->base &&
4660
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4661
			return vma;
4662 4663 4664
	return NULL;
}

B
Ben Widawsky 已提交
4665 4666 4667
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4668 4669 4670 4671 4672

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4673 4674
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4675

4676
	list_del(&vma->obj_link);
4677

4678
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4679 4680
}

4681
static void
4682
i915_gem_stop_engines(struct drm_device *dev)
4683 4684
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4685
	struct intel_engine_cs *engine;
4686

4687
	for_each_engine(engine, dev_priv)
4688
		dev_priv->gt.stop_engine(engine);
4689 4690
}

4691
int
4692
i915_gem_suspend(struct drm_device *dev)
4693
{
4694
	struct drm_i915_private *dev_priv = dev->dev_private;
4695
	int ret = 0;
4696

4697
	mutex_lock(&dev->struct_mutex);
4698
	ret = i915_gpu_idle(dev);
4699
	if (ret)
4700
		goto err;
4701

4702
	i915_gem_retire_requests(dev);
4703

4704
	i915_gem_stop_engines(dev);
4705 4706
	mutex_unlock(&dev->struct_mutex);

4707
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4708
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4709
	flush_delayed_work(&dev_priv->mm.idle_work);
4710

4711 4712 4713 4714 4715
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4716
	return 0;
4717 4718 4719 4720

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4721 4722
}

4723
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4724
{
4725
	struct intel_engine_cs *engine = req->engine;
4726
	struct drm_device *dev = engine->dev;
4727
	struct drm_i915_private *dev_priv = dev->dev_private;
4728
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4729
	int i, ret;
B
Ben Widawsky 已提交
4730

4731
	if (!HAS_L3_DPF(dev) || !remap_info)
4732
		return 0;
B
Ben Widawsky 已提交
4733

4734
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4735 4736
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4737

4738 4739 4740 4741 4742
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4743
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4744 4745 4746
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4747 4748
	}

4749
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4750

4751
	return ret;
B
Ben Widawsky 已提交
4752 4753
}

4754 4755
void i915_gem_init_swizzling(struct drm_device *dev)
{
4756
	struct drm_i915_private *dev_priv = dev->dev_private;
4757

4758
	if (INTEL_INFO(dev)->gen < 5 ||
4759 4760 4761 4762 4763 4764
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4765 4766 4767
	if (IS_GEN5(dev))
		return;

4768 4769
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4770
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4771
	else if (IS_GEN7(dev))
4772
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4773 4774
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4775 4776
	else
		BUG();
4777
}
D
Daniel Vetter 已提交
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4806
int i915_gem_init_engines(struct drm_device *dev)
4807
{
4808
	struct drm_i915_private *dev_priv = dev->dev_private;
4809
	int ret;
4810

4811
	ret = intel_init_render_ring_buffer(dev);
4812
	if (ret)
4813
		return ret;
4814 4815

	if (HAS_BSD(dev)) {
4816
		ret = intel_init_bsd_ring_buffer(dev);
4817 4818
		if (ret)
			goto cleanup_render_ring;
4819
	}
4820

4821
	if (HAS_BLT(dev)) {
4822 4823 4824 4825 4826
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4827 4828 4829 4830 4831 4832
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4833 4834 4835 4836 4837
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4838

4839 4840
	return 0;

B
Ben Widawsky 已提交
4841
cleanup_vebox_ring:
4842
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4843
cleanup_blt_ring:
4844
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4845
cleanup_bsd_ring:
4846
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4847
cleanup_render_ring:
4848
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4849 4850 4851 4852 4853 4854 4855

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4856
	struct drm_i915_private *dev_priv = dev->dev_private;
4857
	struct intel_engine_cs *engine;
4858
	int ret, j;
4859 4860 4861 4862

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4863 4864 4865
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4866
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4867
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4868

4869 4870 4871
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4872

4873
	if (HAS_PCH_NOP(dev)) {
4874 4875 4876 4877 4878 4879 4880 4881 4882
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4883 4884
	}

4885 4886
	i915_gem_init_swizzling(dev);

4887 4888 4889 4890 4891 4892 4893 4894
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4895
	BUG_ON(!dev_priv->kernel_context);
4896

4897 4898 4899 4900 4901 4902 4903
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4904
	for_each_engine(engine, dev_priv) {
4905
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4906
		if (ret)
4907
			goto out;
D
Daniel Vetter 已提交
4908
	}
4909

4910 4911
	intel_mocs_init_l3cc_table(dev);

4912
	/* We can't enable contexts until all firmware is loaded */
4913 4914 4915
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4916 4917 4918
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4919
		}
4920 4921
	}

4922 4923 4924 4925 4926 4927 4928 4929
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4930
	/* Now it is safe to go back round and do everything else: */
4931
	for_each_engine(engine, dev_priv) {
4932 4933
		struct drm_i915_gem_request *req;

4934
		req = i915_gem_request_alloc(engine, NULL);
4935 4936
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4937
			break;
4938 4939
		}

4940
		if (engine->id == RCS) {
4941 4942 4943 4944 4945
			for (j = 0; j < NUM_L3_SLICES(dev); j++) {
				ret = i915_gem_l3_remap(req, j);
				if (ret)
					goto err_request;
			}
4946
		}
4947

4948
		ret = i915_ppgtt_init_ring(req);
4949 4950
		if (ret)
			goto err_request;
4951

4952
		ret = i915_gem_context_enable(req);
4953 4954 4955 4956 4957 4958 4959
		if (ret)
			goto err_request;

err_request:
		i915_add_request_no_flush(req);
		if (ret) {
			DRM_ERROR("Failed to enable %s, error=%d\n",
4960
				  engine->name, ret);
4961
			i915_gem_cleanup_engines(dev);
4962
			break;
4963
		}
4964
	}
D
Daniel Vetter 已提交
4965

4966 4967
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4968
	return ret;
4969 4970
}

4971 4972 4973 4974 4975
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4976 4977 4978
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4979
	mutex_lock(&dev->struct_mutex);
4980

4981
	if (!i915.enable_execlists) {
4982
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4983 4984 4985
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4986
	} else {
4987
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4988 4989 4990
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4991 4992
	}

4993 4994 4995 4996 4997 4998 4999 5000
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5001
	ret = i915_gem_init_userptr(dev);
5002 5003
	if (ret)
		goto out_unlock;
5004

5005
	i915_gem_init_ggtt(dev);
5006

5007
	ret = i915_gem_context_init(dev);
5008 5009
	if (ret)
		goto out_unlock;
5010

5011
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5012
	if (ret)
5013
		goto out_unlock;
5014

5015
	ret = i915_gem_init_hw(dev);
5016 5017 5018 5019 5020 5021
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5022
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5023
		ret = 0;
5024
	}
5025 5026

out_unlock:
5027
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028
	mutex_unlock(&dev->struct_mutex);
5029

5030
	return ret;
5031 5032
}

5033
void
5034
i915_gem_cleanup_engines(struct drm_device *dev)
5035
{
5036
	struct drm_i915_private *dev_priv = dev->dev_private;
5037
	struct intel_engine_cs *engine;
5038

5039
	for_each_engine(engine, dev_priv)
5040
		dev_priv->gt.cleanup_engine(engine);
5041

5042 5043 5044 5045 5046 5047 5048
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5049 5050
}

5051
static void
5052
init_engine_lists(struct intel_engine_cs *engine)
5053
{
5054 5055
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5056 5057
}

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5082
void
5083
i915_gem_load_init(struct drm_device *dev)
5084
{
5085
	struct drm_i915_private *dev_priv = dev->dev_private;
5086 5087
	int i;

5088
	dev_priv->objects =
5089 5090 5091 5092
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5093 5094 5095 5096 5097
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5098 5099 5100 5101 5102
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5103

B
Ben Widawsky 已提交
5104
	INIT_LIST_HEAD(&dev_priv->vm_list);
5105
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5106 5107
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5108
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5109 5110
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5111
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5112
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5113 5114
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5115 5116
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5117
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5118

5119 5120
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5121 5122 5123 5124 5125 5126 5127 5128
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5129
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5130

5131
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5132

5133 5134
	dev_priv->mm.interruptible = true;

5135
	mutex_init(&dev_priv->fb_tracking.lock);
5136
}
5137

5138 5139 5140 5141 5142 5143 5144 5145 5146
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5147
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5148
{
5149
	struct drm_i915_file_private *file_priv = file->driver_priv;
5150 5151 5152 5153 5154

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5155
	spin_lock(&file_priv->mm.lock);
5156 5157 5158 5159 5160 5161 5162 5163 5164
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5165
	spin_unlock(&file_priv->mm.lock);
5166

5167
	if (!list_empty(&file_priv->rps.link)) {
5168
		spin_lock(&to_i915(dev)->rps.client_lock);
5169
		list_del(&file_priv->rps.link);
5170
		spin_unlock(&to_i915(dev)->rps.client_lock);
5171
	}
5172 5173 5174 5175 5176
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5177
	int ret;
5178 5179 5180 5181 5182 5183 5184 5185 5186

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5187
	file_priv->file = file;
5188
	INIT_LIST_HEAD(&file_priv->rps.link);
5189 5190 5191 5192

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5193 5194
	file_priv->bsd_ring = -1;

5195 5196 5197
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5198

5199
	return ret;
5200 5201
}

5202 5203
/**
 * i915_gem_track_fb - update frontbuffer tracking
5204 5205 5206
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5207 5208 5209 5210
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5228
/* All the new VM stuff */
5229 5230
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5231 5232 5233 5234
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5235
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5236

5237
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5238
		if (vma->is_ggtt &&
5239 5240 5241
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5242 5243
			return vma->node.start;
	}
5244

5245 5246
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5247 5248 5249
	return -1;
}

5250 5251
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5252
{
5253 5254
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5255 5256
	struct i915_vma *vma;

5257
	list_for_each_entry(vma, &o->vma_list, obj_link)
5258
		if (vma->vm == &ggtt->base &&
5259
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5260 5261
			return vma->node.start;

5262
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5263 5264 5265 5266 5267 5268 5269 5270
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5271
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5272
		if (vma->is_ggtt &&
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5283
				  const struct i915_ggtt_view *view)
5284
{
5285 5286
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5287 5288
	struct i915_vma *vma;

5289
	list_for_each_entry(vma, &o->vma_list, obj_link)
5290
		if (vma->vm == &ggtt->base &&
5291
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5292
		    drm_mm_node_allocated(&vma->node))
5293 5294 5295 5296 5297 5298 5299
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5300
	struct i915_vma *vma;
5301

5302
	list_for_each_entry(vma, &o->vma_list, obj_link)
5303
		if (drm_mm_node_allocated(&vma->node))
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5315
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5316 5317 5318

	BUG_ON(list_empty(&o->vma_list));

5319
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5320
		if (vma->is_ggtt &&
5321 5322
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5323 5324
		if (vma->vm == vm)
			return vma->node.size;
5325
	}
5326 5327 5328
	return 0;
}

5329
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5330 5331
{
	struct i915_vma *vma;
5332
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5333 5334
		if (vma->pin_count > 0)
			return true;
5335

5336
	return false;
5337
}
5338

5339 5340 5341 5342 5343 5344 5345
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5346
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5347 5348 5349 5350 5351 5352 5353
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5379
	obj->dirty = 1;		/* Backing store is now out of date */
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}