sched.c 216.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79
#include "sched_cpupri.h"
T
Tejun Heo 已提交
80
#include "workqueue_sched.h"
81

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145
	/* nests inside the rq lock: */
146
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
147 148 149
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

183
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
184

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

205
	raw_spin_lock(&rt_b->rt_runtime_lock);
206
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221
	}
222
	raw_spin_unlock(&rt_b->rt_runtime_lock);
223 224 225 226 227 228 229 230 231
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
238
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
	struct cgroup_subsys_state css;
249

250
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251 252 253 254 255
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
256 257 258 259 260 261
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

262
	struct rt_bandwidth rt_bandwidth;
263
#endif
264

265
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
266
	struct list_head list;
P
Peter Zijlstra 已提交
267 268 269 270

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
271 272
};

273
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
274

275
/* task_group_lock serializes add/remove of task groups and also changes to
276 277
 * a task group's cpu shares.
 */
278
static DEFINE_SPINLOCK(task_group_lock);
279

280 281
#ifdef CONFIG_FAIR_GROUP_SCHED

282 283 284 285 286 287 288
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

289 290
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

291
/*
292 293 294 295
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
296 297 298
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
299
#define MIN_SHARES	2
300
#define MAX_SHARES	(1UL << 18)
301

302 303 304
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
305
/* Default task group.
I
Ingo Molnar 已提交
306
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
307
 */
308
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
309 310

/* return group to which a task belongs */
311
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
312
{
313
	struct task_group *tg;
314

D
Dhaval Giani 已提交
315
#ifdef CONFIG_CGROUP_SCHED
316 317
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
318
#else
I
Ingo Molnar 已提交
319
	tg = &init_task_group;
320
#endif
321
	return tg;
S
Srivatsa Vaddagiri 已提交
322 323 324
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
325
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
326
{
327 328 329 330 331 332 333 334 335
	/*
	 * Strictly speaking this rcu_read_lock() is not needed since the
	 * task_group is tied to the cgroup, which in turn can never go away
	 * as long as there are tasks attached to it.
	 *
	 * However since task_group() uses task_subsys_state() which is an
	 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
	 */
	rcu_read_lock();
336
#ifdef CONFIG_FAIR_GROUP_SCHED
337 338
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
339
#endif
P
Peter Zijlstra 已提交
340

341
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
342 343
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
344
#endif
345
	rcu_read_unlock();
S
Srivatsa Vaddagiri 已提交
346 347 348 349
}

#else

P
Peter Zijlstra 已提交
350
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
351 352 353 354
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
355

D
Dhaval Giani 已提交
356
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
357

I
Ingo Molnar 已提交
358 359 360 361 362 363
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
364
	u64 min_vruntime;
I
Ingo Molnar 已提交
365 366 367

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
368 369 370 371 372 373

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
374 375
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
376
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
377

P
Peter Zijlstra 已提交
378
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
379

380
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
381 382
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
383 384
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
385 386 387 388 389 390
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
391 392
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
393 394 395

#ifdef CONFIG_SMP
	/*
396
	 * the part of load.weight contributed by tasks
397
	 */
398
	unsigned long task_weight;
399

400 401 402 403 404 405 406
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
407

408 409 410 411
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
412 413 414 415 416

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
417
#endif
I
Ingo Molnar 已提交
418 419
#endif
};
L
Linus Torvalds 已提交
420

I
Ingo Molnar 已提交
421 422 423
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
424
	unsigned long rt_nr_running;
425
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 427
	struct {
		int curr; /* highest queued rt task prio */
428
#ifdef CONFIG_SMP
429
		int next; /* next highest */
430
#endif
431
	} highest_prio;
P
Peter Zijlstra 已提交
432
#endif
P
Peter Zijlstra 已提交
433
#ifdef CONFIG_SMP
434
	unsigned long rt_nr_migratory;
435
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
436
	int overloaded;
437
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
438
#endif
P
Peter Zijlstra 已提交
439
	int rt_throttled;
P
Peter Zijlstra 已提交
440
	u64 rt_time;
P
Peter Zijlstra 已提交
441
	u64 rt_runtime;
I
Ingo Molnar 已提交
442
	/* Nests inside the rq lock: */
443
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
444

445
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
446 447
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
448 449 450 451
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
452 453
};

G
Gregory Haskins 已提交
454 455 456 457
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
458 459
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
460 461 462 463 464 465
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
466 467
	cpumask_var_t span;
	cpumask_var_t online;
468

I
Ingo Molnar 已提交
469
	/*
470 471 472
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
473
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
474
	atomic_t rto_count;
475 476 477
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
478 479
};

480 481 482 483
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
484 485 486 487
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
488 489 490 491 492 493 494
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
495
struct rq {
496
	/* runqueue lock: */
497
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
498 499 500 501 502 503

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
504 505
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
506
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
507
	u64 nohz_stamp;
508 509
	unsigned char in_nohz_recently;
#endif
510 511
	unsigned int skip_clock_update;

512 513
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
514 515 516 517
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
518 519
	struct rt_rq rt;

I
Ingo Molnar 已提交
520
#ifdef CONFIG_FAIR_GROUP_SCHED
521 522
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
523 524
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
525
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534 535
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

536
	struct task_struct *curr, *idle;
537
	unsigned long next_balance;
L
Linus Torvalds 已提交
538
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
539

540
	u64 clock;
I
Ingo Molnar 已提交
541

L
Linus Torvalds 已提交
542 543 544
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
545
	struct root_domain *rd;
L
Linus Torvalds 已提交
546 547
	struct sched_domain *sd;

548 549
	unsigned long cpu_power;

550
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
551
	/* For active balancing */
552
	int post_schedule;
L
Linus Torvalds 已提交
553 554
	int active_balance;
	int push_cpu;
555
	struct cpu_stop_work active_balance_work;
556 557
	/* cpu of this runqueue: */
	int cpu;
558
	int online;
L
Linus Torvalds 已提交
559

560
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
561

562 563
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
564 565
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
566 567
#endif

568 569 570 571
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
572
#ifdef CONFIG_SCHED_HRTICK
573 574 575 576
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
577 578 579
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
580 581 582
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
583 584
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
585 586

	/* sys_sched_yield() stats */
587
	unsigned int yld_count;
L
Linus Torvalds 已提交
588 589

	/* schedule() stats */
590 591 592
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
593 594

	/* try_to_wake_up() stats */
595 596
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
597 598

	/* BKL stats */
599
	unsigned int bkl_count;
L
Linus Torvalds 已提交
600 601 602
#endif
};

603
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
604

P
Peter Zijlstra 已提交
605 606
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
607
{
P
Peter Zijlstra 已提交
608
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
609 610 611 612 613 614 615

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
616 617
}

618 619 620 621 622 623 624 625 626
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

627
#define rcu_dereference_check_sched_domain(p) \
628 629 630 631
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
632 633
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
634
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
635 636 637 638
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
639
#define for_each_domain(cpu, __sd) \
640
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
641 642 643 644 645

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
646
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
647

I
Ingo Molnar 已提交
648
inline void update_rq_clock(struct rq *rq)
649
{
650 651
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
652 653
}

I
Ingo Molnar 已提交
654 655 656 657 658 659 660 661 662
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
663 664
/**
 * runqueue_is_locked
665
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
666 667 668 669 670
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
671
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
672
{
673
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
674 675
}

I
Ingo Molnar 已提交
676 677 678
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
679 680 681 682

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
683
enum {
P
Peter Zijlstra 已提交
684
#include "sched_features.h"
I
Ingo Molnar 已提交
685 686
};

P
Peter Zijlstra 已提交
687 688 689 690 691
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
692
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
693 694 695 696 697 698 699 700 701
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

702
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
703 704 705 706 707 708
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
709
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
710 711 712 713
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
714 715 716
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
717
	}
L
Li Zefan 已提交
718
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
719

L
Li Zefan 已提交
720
	return 0;
P
Peter Zijlstra 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
740
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

760
	*ppos += cnt;
P
Peter Zijlstra 已提交
761 762 763 764

	return cnt;
}

L
Li Zefan 已提交
765 766 767 768 769
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

770
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
771 772 773 774 775
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
790

791 792 793 794 795 796
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
797 798
/*
 * ratelimit for updating the group shares.
799
 * default: 0.25ms
P
Peter Zijlstra 已提交
800
 */
801
unsigned int sysctl_sched_shares_ratelimit = 250000;
802
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
803

804 805 806 807 808 809 810
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

811 812 813 814 815 816 817 818
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
819
/*
P
Peter Zijlstra 已提交
820
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
821 822
 * default: 1s
 */
P
Peter Zijlstra 已提交
823
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
824

825 826
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
827 828 829 830 831
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
832

833 834 835 836 837 838 839
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
840
	if (sysctl_sched_rt_runtime < 0)
841 842 843 844
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
845

L
Linus Torvalds 已提交
846
#ifndef prepare_arch_switch
847 848 849 850 851 852
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

853 854 855 856 857
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

858
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
859
static inline int task_running(struct rq *rq, struct task_struct *p)
860
{
861
	return task_current(rq, p);
862 863
}

864
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 866 867
{
}

868
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
869
{
870 871 872 873
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
874 875 876 877 878 879 880
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

881
	raw_spin_unlock_irq(&rq->lock);
882 883 884
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
885
static inline int task_running(struct rq *rq, struct task_struct *p)
886 887 888 889
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
890
	return task_current(rq, p);
891 892 893
#endif
}

894
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
895 896 897 898 899 900 901 902 903 904
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
905
	raw_spin_unlock_irq(&rq->lock);
906
#else
907
	raw_spin_unlock(&rq->lock);
908 909 910
#endif
}

911
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 913 914 915 916 917 918 919 920 921 922 923
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
924
#endif
925 926
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
927

928
/*
P
Peter Zijlstra 已提交
929 930
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
931 932 933
 */
static inline int task_is_waking(struct task_struct *p)
{
934
	return unlikely(p->state == TASK_WAKING);
935 936
}

937 938 939 940
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
941
static inline struct rq *__task_rq_lock(struct task_struct *p)
942 943
	__acquires(rq->lock)
{
944 945
	struct rq *rq;

946
	for (;;) {
947
		rq = task_rq(p);
948
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
949
		if (likely(rq == task_rq(p)))
950
			return rq;
951
		raw_spin_unlock(&rq->lock);
952 953 954
	}
}

L
Linus Torvalds 已提交
955 956
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
957
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
958 959
 * explicitly disabling preemption.
 */
960
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
961 962
	__acquires(rq->lock)
{
963
	struct rq *rq;
L
Linus Torvalds 已提交
964

965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
968
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
969
		if (likely(rq == task_rq(p)))
970
			return rq;
971
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
972 973 974
	}
}

A
Alexey Dobriyan 已提交
975
static void __task_rq_unlock(struct rq *rq)
976 977
	__releases(rq->lock)
{
978
	raw_spin_unlock(&rq->lock);
979 980
}

981
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
982 983
	__releases(rq->lock)
{
984
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
985 986 987
}

/*
988
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
989
 */
A
Alexey Dobriyan 已提交
990
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
991 992
	__acquires(rq->lock)
{
993
	struct rq *rq;
L
Linus Torvalds 已提交
994 995 996

	local_irq_disable();
	rq = this_rq();
997
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
998 999 1000 1001

	return rq;
}

P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1023
	if (!cpu_active(cpu_of(rq)))
1024
		return 0;
P
Peter Zijlstra 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1044
	raw_spin_lock(&rq->lock);
1045
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1046
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1048 1049 1050 1051

	return HRTIMER_NORESTART;
}

1052
#ifdef CONFIG_SMP
1053 1054 1055 1056
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1057
{
1058
	struct rq *rq = arg;
1059

1060
	raw_spin_lock(&rq->lock);
1061 1062
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1063
	raw_spin_unlock(&rq->lock);
1064 1065
}

1066 1067 1068 1069 1070 1071
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1072
{
1073 1074
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1075

1076
	hrtimer_set_expires(timer, time);
1077 1078 1079 1080

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1081
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 1083
		rq->hrtick_csd_pending = 1;
	}
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1098
		hrtick_clear(cpu_rq(cpu));
1099 1100 1101 1102 1103 1104
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1105
static __init void init_hrtick(void)
1106 1107 1108
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1109 1110 1111 1112 1113 1114 1115 1116
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1117
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118
			HRTIMER_MODE_REL_PINNED, 0);
1119
}
1120

A
Andrew Morton 已提交
1121
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1122 1123
{
}
1124
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1125

1126
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1127
{
1128 1129
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1130

1131 1132 1133 1134
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1135

1136 1137
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1138
}
A
Andrew Morton 已提交
1139
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1148 1149 1150
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1151
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152

I
Ingo Molnar 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1166
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1167 1168 1169
{
	int cpu;

1170
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1171

1172
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1173 1174
		return;

1175
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1192
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1193 1194
		return;
	resched_task(cpu_curr(cpu));
1195
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1196
}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1231
	set_tsk_need_resched(rq->idle);
1232 1233 1234 1235 1236 1237

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1249
#endif /* CONFIG_NO_HZ */
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1272
#else /* !CONFIG_SMP */
1273
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1274
{
1275
	assert_raw_spin_locked(&task_rq(p)->lock);
1276
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1277
}
1278 1279 1280 1281

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1282
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1292 1293 1294
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1295
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1296

1297 1298 1299
/*
 * delta *= weight / lw
 */
1300
static unsigned long
1301 1302 1303 1304 1305
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1306 1307 1308 1309 1310 1311 1312
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1313 1314 1315 1316 1317

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1318
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1319
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1320 1321
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1322
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323

1324
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 1326
}

1327
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 1329
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1330
	lw->inv_weight = 0;
1331 1332
}

1333
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 1335
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339 1340 1341 1342
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1343
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 1345 1346 1347
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1348 1349
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 1360 1361
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1362 1363
 */
static const int prio_to_weight[40] = {
1364 1365 1366 1367 1368 1369 1370 1371
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1372 1373
};

1374 1375 1376 1377 1378 1379 1380
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1381
static const u32 prio_to_wmult[40] = {
1382 1383 1384 1385 1386 1387 1388 1389
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1390
};
1391

1392 1393 1394 1395 1396 1397 1398 1399
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1400 1401
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1402 1403
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1404 1405
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1406 1407
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1408 1409
#endif

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1420
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1421
typedef int (*tg_visitor)(struct task_group *, void *);
1422 1423 1424 1425 1426

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1427
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1428 1429
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1430
	int ret;
1431 1432 1433 1434

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1435 1436 1437
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1438 1439 1440 1441 1442 1443 1444
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1445 1446 1447
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1448 1449 1450 1451 1452

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1453
out_unlock:
1454
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1455 1456

	return ret;
1457 1458
}

P
Peter Zijlstra 已提交
1459 1460 1461
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1462
}
P
Peter Zijlstra 已提交
1463 1464 1465
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1505 1506
static unsigned long power_of(int cpu)
{
1507
	return cpu_rq(cpu)->cpu_power;
1508 1509
}

P
Peter Zijlstra 已提交
1510 1511 1512 1513 1514
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1515
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1516

1517 1518
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1519 1520
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1521 1522 1523 1524 1525

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1526

1527
static __read_mostly unsigned long __percpu *update_shares_data;
1528

1529 1530 1531 1532 1533
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1534 1535 1536
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1537
				    unsigned long *usd_rq_weight)
1538
{
1539
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1540
	int boost = 0;
1541

1542
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1543 1544 1545 1546
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1547

1548
	/*
P
Peter Zijlstra 已提交
1549 1550 1551
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1552
	 */
1553
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1554
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1555

1556 1557 1558 1559
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1560

1561
		raw_spin_lock_irqsave(&rq->lock, flags);
1562
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1563
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1564
		__set_se_shares(tg->se[cpu], shares);
1565
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1566
	}
1567
}
1568 1569

/*
1570 1571 1572
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1573
 */
P
Peter Zijlstra 已提交
1574
static int tg_shares_up(struct task_group *tg, void *data)
1575
{
1576
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1577
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1578
	struct sched_domain *sd = data;
1579
	unsigned long flags;
1580
	int i;
1581

1582 1583 1584 1585
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1586
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1587

1588
	for_each_cpu(i, sched_domain_span(sd)) {
1589
		weight = tg->cfs_rq[i]->load.weight;
1590
		usd_rq_weight[i] = weight;
1591

1592
		rq_weight += weight;
1593 1594 1595 1596 1597 1598 1599 1600
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1601
		sum_weight += weight;
1602
		shares += tg->cfs_rq[i]->shares;
1603 1604
	}

1605 1606 1607
	if (!rq_weight)
		rq_weight = sum_weight;

1608 1609 1610 1611 1612
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1613

1614
	for_each_cpu(i, sched_domain_span(sd))
1615
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1616 1617

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1618 1619

	return 0;
1620 1621 1622
}

/*
1623 1624 1625
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1626
 */
P
Peter Zijlstra 已提交
1627
static int tg_load_down(struct task_group *tg, void *data)
1628
{
1629
	unsigned long load;
P
Peter Zijlstra 已提交
1630
	long cpu = (long)data;
1631

1632 1633 1634 1635 1636 1637 1638
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1639

1640
	tg->cfs_rq[cpu]->h_load = load;
1641

P
Peter Zijlstra 已提交
1642
	return 0;
1643 1644
}

1645
static void update_shares(struct sched_domain *sd)
1646
{
1647 1648 1649 1650 1651 1652 1653 1654
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1655 1656 1657

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1658
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1659
	}
1660 1661
}

P
Peter Zijlstra 已提交
1662
static void update_h_load(long cpu)
1663
{
1664 1665 1666
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1667
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1668 1669 1670 1671
}

#else

1672
static inline void update_shares(struct sched_domain *sd)
1673 1674 1675
{
}

1676 1677
#endif

1678 1679
#ifdef CONFIG_PREEMPT

1680 1681
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1682
/*
1683 1684 1685 1686 1687 1688
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1689
 */
1690 1691 1692 1693 1694
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1695
	raw_spin_unlock(&this_rq->lock);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 1711 1712 1713 1714 1715
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1716
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1717
		if (busiest < this_rq) {
1718 1719 1720 1721
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1722 1723
			ret = 1;
		} else
1724 1725
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1726 1727 1728 1729
	}
	return ret;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1739
		raw_spin_unlock(&this_rq->lock);
1740 1741 1742 1743 1744 1745
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1746 1747 1748
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1749
	raw_spin_unlock(&busiest->lock);
1750 1751
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1795 1796
#endif

V
Vegard Nossum 已提交
1797
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1798 1799
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1800
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1801 1802 1803
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1804
#endif
1805

1806
static void calc_load_account_idle(struct rq *this_rq);
1807
static void update_sysctl(void);
1808
static int get_update_sysctl_factor(void);
1809

P
Peter Zijlstra 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1823

1824
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1825 1826

#define sched_class_highest (&rt_sched_class)
1827 1828
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1829

1830 1831
#include "sched_stats.h"

1832
static void inc_nr_running(struct rq *rq)
1833 1834 1835 1836
{
	rq->nr_running++;
}

1837
static void dec_nr_running(struct rq *rq)
1838 1839 1840 1841
{
	rq->nr_running--;
}

1842 1843 1844
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
1845 1846
		p->se.load.weight = 0;
		p->se.load.inv_weight = WMULT_CONST;
I
Ingo Molnar 已提交
1847 1848
		return;
	}
1849

I
Ingo Molnar 已提交
1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1858

I
Ingo Molnar 已提交
1859 1860
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 1862
}

1863
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1864
{
1865
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1866
	sched_info_queued(p);
1867
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1868
	p->se.on_rq = 1;
1869 1870
}

1871
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1872
{
1873
	update_rq_clock(rq);
1874
	sched_info_dequeued(p);
1875
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1876
	p->se.on_rq = 0;
1877 1878
}

1879 1880 1881
/*
 * activate_task - move a task to the runqueue.
 */
1882
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1883 1884 1885 1886
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1887
	enqueue_task(rq, p, flags);
1888 1889 1890 1891 1892 1893
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1894
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1895 1896 1897 1898
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1899
	dequeue_task(rq, p, flags);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1910
/*
I
Ingo Molnar 已提交
1911
 * __normal_prio - return the priority that is based on the static prio
1912 1913 1914
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1915
	return p->static_prio;
1916 1917
}

1918 1919 1920 1921 1922 1923 1924
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1925
static inline int normal_prio(struct task_struct *p)
1926 1927 1928
{
	int prio;

1929
	if (task_has_rt_policy(p))
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1943
static int effective_prio(struct task_struct *p)
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1956 1957 1958 1959
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1960
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1961 1962 1963 1964
{
	return cpu_curr(task_cpu(p)) == p;
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1977
#ifdef CONFIG_SMP
1978 1979 1980
/*
 * Is this task likely cache-hot:
 */
1981
static int
1982 1983 1984 1985
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1986 1987 1988
	if (p->sched_class != &fair_sched_class)
		return 0;

1989 1990 1991
	/*
	 * Buddy candidates are cache hot:
	 */
1992
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
1993 1994
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1995 1996
		return 1;

1997 1998 1999 2000 2001
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2002 2003 2004 2005 2006
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2007
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2008
{
2009 2010 2011 2012 2013
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2014 2015
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2016 2017
#endif

2018
	trace_sched_migrate_task(p, new_cpu);
2019

2020 2021 2022 2023
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2024 2025

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2026 2027
}

2028
struct migration_arg {
2029
	struct task_struct *task;
L
Linus Torvalds 已提交
2030
	int dest_cpu;
2031
};
L
Linus Torvalds 已提交
2032

2033 2034
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2035 2036 2037 2038
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2039
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2040
{
2041
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2042 2043 2044

	/*
	 * If the task is not on a runqueue (and not running), then
2045
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2046
	 */
2047
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2048 2049 2050 2051 2052
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2053 2054 2055 2056 2057 2058 2059
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064 2065
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2066
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2067 2068
{
	unsigned long flags;
I
Ingo Molnar 已提交
2069
	int running, on_rq;
R
Roland McGrath 已提交
2070
	unsigned long ncsw;
2071
	struct rq *rq;
L
Linus Torvalds 已提交
2072

2073 2074 2075 2076 2077 2078 2079 2080
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2093 2094 2095
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2096
			cpu_relax();
R
Roland McGrath 已提交
2097
		}
2098

2099 2100 2101 2102 2103 2104
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2105
		trace_sched_wait_task(p);
2106 2107
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2108
		ncsw = 0;
2109
		if (!match_state || p->state == match_state)
2110
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2111
		task_rq_unlock(rq, &flags);
2112

R
Roland McGrath 已提交
2113 2114 2115 2116 2117 2118
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2129

2130 2131 2132 2133 2134
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2135
		 * So if it was still runnable (but just not actively
2136 2137 2138 2139 2140 2141 2142
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2143

2144 2145 2146 2147 2148 2149 2150
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2151 2152

	return ncsw;
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2168
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2178
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2179
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2180

T
Thomas Gleixner 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2202
#ifdef CONFIG_SMP
2203 2204 2205
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2222
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2223
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2239
/*
2240
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2241
 */
2242
static inline
2243
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2244
{
2245
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2258
		     !cpu_online(cpu)))
2259
		cpu = select_fallback_rq(task_cpu(p), p);
2260 2261

	return cpu;
2262
}
2263 2264 2265 2266 2267 2268

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2269 2270
#endif

T
Tejun Heo 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
				 bool is_sync, bool is_migrate, bool is_local,
				 unsigned long en_flags)
{
	schedstat_inc(p, se.statistics.nr_wakeups);
	if (is_sync)
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
	if (is_migrate)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
	if (is_local)
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	else
		schedstat_inc(p, se.statistics.nr_wakeups_remote);

	activate_task(rq, p, en_flags);
}

static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
					int wake_flags, bool success)
{
	trace_sched_wakeup(p, success);
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
T
Tejun Heo 已提交
2310 2311 2312
	/* if a worker is waking up, notify workqueue */
	if ((p->flags & PF_WQ_WORKER) && success)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2313 2314 2315
}

/**
L
Linus Torvalds 已提交
2316
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2317
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2318
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2319
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325 2326
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2327 2328
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2329
 */
P
Peter Zijlstra 已提交
2330 2331
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2332
{
2333
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2334
	unsigned long flags;
2335
	unsigned long en_flags = ENQUEUE_WAKEUP;
2336
	struct rq *rq;
L
Linus Torvalds 已提交
2337

P
Peter Zijlstra 已提交
2338
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2339

2340
	smp_wmb();
2341
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2342
	if (!(p->state & state))
L
Linus Torvalds 已提交
2343 2344
		goto out;

I
Ingo Molnar 已提交
2345
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2346 2347 2348
		goto out_running;

	cpu = task_cpu(p);
2349
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2355 2356 2357
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2358 2359
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2360
	 */
2361 2362 2363 2364 2365 2366
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2367
	p->state = TASK_WAKING;
2368

2369
	if (p->sched_class->task_waking) {
2370
		p->sched_class->task_waking(rq, p);
2371 2372
		en_flags |= ENQUEUE_WAKING;
	}
2373

2374 2375
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2376
		set_task_cpu(p, cpu);
2377
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2378

2379 2380
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2381

2382 2383 2384 2385 2386 2387 2388
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2389
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2390

2391 2392 2393 2394 2395 2396 2397
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2398
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2399 2400 2401 2402 2403
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2404
#endif /* CONFIG_SCHEDSTATS */
2405

L
Linus Torvalds 已提交
2406 2407
out_activate:
#endif /* CONFIG_SMP */
T
Tejun Heo 已提交
2408 2409
	ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
		      cpu == this_cpu, en_flags);
L
Linus Torvalds 已提交
2410 2411
	success = 1;
out_running:
T
Tejun Heo 已提交
2412
	ttwu_post_activation(p, rq, wake_flags, success);
L
Linus Torvalds 已提交
2413 2414
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2415
	put_cpu();
L
Linus Torvalds 已提交
2416 2417 2418 2419

	return success;
}

T
Tejun Heo 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
 * Put @p on the run-queue if it's not alredy there.  The caller must
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
 * the current task.  this_rq() stays locked over invocation.
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);
	bool success = false;

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

	if (!(p->state & TASK_NORMAL))
		return;

	if (!p->se.on_rq) {
		if (likely(!task_running(rq, p))) {
			schedstat_inc(rq, ttwu_count);
			schedstat_inc(rq, ttwu_local);
		}
		ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
		success = true;
	}
	ttwu_post_activation(p, rq, 0, success);
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2462
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2463
{
2464
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2465 2466 2467
}
EXPORT_SYMBOL(wake_up_process);

2468
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474 2475
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2476 2477 2478 2479 2480 2481 2482
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2483
	p->se.prev_sum_exec_runtime	= 0;
2484
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2485 2486

#ifdef CONFIG_SCHEDSTATS
2487
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2488
#endif
N
Nick Piggin 已提交
2489

P
Peter Zijlstra 已提交
2490
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2491
	p->se.on_rq = 0;
2492
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2493

2494 2495 2496
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2507
	/*
2508
	 * We mark the process as running here. This guarantees that
2509 2510 2511
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2512
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2513

2514 2515 2516 2517
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2518
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2519
			p->policy = SCHED_NORMAL;
2520 2521
			p->normal_prio = p->static_prio;
		}
2522

2523 2524
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2525
			p->normal_prio = p->static_prio;
2526 2527 2528
			set_load_weight(p);
		}

2529 2530 2531 2532 2533 2534
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2535

2536 2537 2538 2539 2540
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2541 2542
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2543

P
Peter Zijlstra 已提交
2544 2545 2546
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2547 2548
	set_task_cpu(p, cpu);

2549
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2550
	if (likely(sched_info_on()))
2551
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2552
#endif
2553
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2554 2555
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2556
#ifdef CONFIG_PREEMPT
2557
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2558
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2559
#endif
2560 2561
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2562
	put_cpu();
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2572
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2573 2574
{
	unsigned long flags;
I
Ingo Molnar 已提交
2575
	struct rq *rq;
2576
	int cpu __maybe_unused = get_cpu();
2577 2578

#ifdef CONFIG_SMP
2579 2580 2581
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2582 2583 2584 2585 2586
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2587 2588
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2589
	 */
2590
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2591
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2592

2593
	p->state = TASK_RUNNING;
2594 2595 2596 2597
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2598
	activate_task(rq, p, 0);
2599
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2600
	check_preempt_curr(rq, p, WF_FORK);
2601
#ifdef CONFIG_SMP
2602 2603
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2604
#endif
I
Ingo Molnar 已提交
2605
	task_rq_unlock(rq, &flags);
2606
	put_cpu();
L
Linus Torvalds 已提交
2607 2608
}

2609 2610 2611
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2612
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2613
 * @notifier: notifier struct to register
2614 2615 2616 2617 2618 2619 2620 2621 2622
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2623
 * @notifier: notifier struct to unregister
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2653
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2665
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2666

2667 2668 2669
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2670
 * @prev: the current task that is being switched out
2671 2672 2673 2674 2675 2676 2677 2678 2679
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2680 2681 2682
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2683
{
2684
	fire_sched_out_preempt_notifiers(prev, next);
2685 2686 2687 2688
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2689 2690
/**
 * finish_task_switch - clean up after a task-switch
2691
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2692 2693
 * @prev: the thread we just switched away from.
 *
2694 2695 2696 2697
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2698 2699
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2700
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2701 2702 2703
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2704
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2705 2706 2707
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2708
	long prev_state;
L
Linus Torvalds 已提交
2709 2710 2711 2712 2713

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2714
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2715 2716
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2717
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2723
	prev_state = prev->state;
2724
	finish_arch_switch(prev);
2725 2726 2727
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2728
	perf_event_task_sched_in(current);
2729 2730 2731
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2732
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2733

2734
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2735 2736
	if (mm)
		mmdrop(mm);
2737
	if (unlikely(prev_state == TASK_DEAD)) {
2738 2739 2740
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2741
		 */
2742
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2743
		put_task_struct(prev);
2744
	}
L
Linus Torvalds 已提交
2745 2746
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2762
		raw_spin_lock_irqsave(&rq->lock, flags);
2763 2764
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2765
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2766 2767 2768 2769 2770 2771

		rq->post_schedule = 0;
	}
}

#else
2772

2773 2774 2775 2776 2777 2778
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2779 2780
}

2781 2782
#endif

L
Linus Torvalds 已提交
2783 2784 2785 2786
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2787
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2788 2789
	__releases(rq->lock)
{
2790 2791
	struct rq *rq = this_rq();

2792
	finish_task_switch(rq, prev);
2793

2794 2795 2796 2797 2798
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2799

2800 2801 2802 2803
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2804
	if (current->set_child_tid)
2805
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2812
static inline void
2813
context_switch(struct rq *rq, struct task_struct *prev,
2814
	       struct task_struct *next)
L
Linus Torvalds 已提交
2815
{
I
Ingo Molnar 已提交
2816
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2817

2818
	prepare_task_switch(rq, prev, next);
2819
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2820 2821
	mm = next->mm;
	oldmm = prev->active_mm;
2822 2823 2824 2825 2826
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2827
	arch_start_context_switch(prev);
2828

2829
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2836
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2837 2838 2839
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2840 2841 2842 2843 2844 2845 2846
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2847
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2848
#endif
L
Linus Torvalds 已提交
2849 2850 2851 2852

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2853 2854 2855 2856 2857 2858 2859
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2877
}
L
Linus Torvalds 已提交
2878 2879

unsigned long nr_uninterruptible(void)
2880
{
L
Linus Torvalds 已提交
2881
	unsigned long i, sum = 0;
2882

2883
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2884
		sum += cpu_rq(i)->nr_uninterruptible;
2885 2886

	/*
L
Linus Torvalds 已提交
2887 2888
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2889
	 */
L
Linus Torvalds 已提交
2890 2891
	if (unlikely((long)sum < 0))
		sum = 0;
2892

L
Linus Torvalds 已提交
2893
	return sum;
2894 2895
}

L
Linus Torvalds 已提交
2896
unsigned long long nr_context_switches(void)
2897
{
2898 2899
	int i;
	unsigned long long sum = 0;
2900

2901
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2902
		sum += cpu_rq(i)->nr_switches;
2903

L
Linus Torvalds 已提交
2904 2905
	return sum;
}
2906

L
Linus Torvalds 已提交
2907 2908 2909
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2910

2911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2912
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913

L
Linus Torvalds 已提交
2914 2915
	return sum;
}
2916

2917 2918 2919 2920 2921
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2922

2923 2924 2925 2926 2927
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2928

2929

2930 2931 2932 2933 2934
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3004 3005
}

3006 3007
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3008
{
3009 3010 3011 3012
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3013 3014

/*
3015 3016
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3017
 */
3018
void calc_global_load(void)
3019
{
3020 3021
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3022

3023 3024
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3025

3026 3027
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3028

3029 3030 3031
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3032

3033 3034
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3035

3036
/*
3037 3038
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3039 3040 3041
 */
static void calc_load_account_active(struct rq *this_rq)
{
3042
	long delta;
3043

3044 3045
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3046

3047 3048 3049
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3050
		atomic_long_add(delta, &calc_load_tasks);
3051 3052

	this_rq->calc_load_update += LOAD_FREQ;
3053 3054 3055
}

/*
I
Ingo Molnar 已提交
3056 3057
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3058
 */
I
Ingo Molnar 已提交
3059
static void update_cpu_load(struct rq *this_rq)
3060
{
3061
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3062
	int i, scale;
3063

I
Ingo Molnar 已提交
3064
	this_rq->nr_load_updates++;
3065

I
Ingo Molnar 已提交
3066 3067 3068
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3069

I
Ingo Molnar 已提交
3070
		/* scale is effectively 1 << i now, and >> i divides by scale */
3071

I
Ingo Molnar 已提交
3072 3073
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3074 3075 3076 3077 3078 3079 3080
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3081 3082
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3083

3084
	calc_load_account_active(this_rq);
3085 3086
}

I
Ingo Molnar 已提交
3087
#ifdef CONFIG_SMP
3088

3089
/*
P
Peter Zijlstra 已提交
3090 3091
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3092
 */
P
Peter Zijlstra 已提交
3093
void sched_exec(void)
3094
{
P
Peter Zijlstra 已提交
3095
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3096
	unsigned long flags;
3097
	struct rq *rq;
3098
	int dest_cpu;
3099

L
Linus Torvalds 已提交
3100
	rq = task_rq_lock(p, &flags);
3101 3102 3103
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3104

3105
	/*
P
Peter Zijlstra 已提交
3106
	 * select_task_rq() can race against ->cpus_allowed
3107
	 */
3108
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3109 3110
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3111

L
Linus Torvalds 已提交
3112
		task_rq_unlock(rq, &flags);
3113
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3114 3115
		return;
	}
3116
unlock:
L
Linus Torvalds 已提交
3117 3118
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3119

L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125 3126
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3127
 * Return any ns on the sched_clock that have not yet been accounted in
3128
 * @p in case that task is currently running.
3129 3130
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3131
 */
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3146
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3147 3148
{
	unsigned long flags;
3149
	struct rq *rq;
3150
	u64 ns = 0;
3151

3152
	rq = task_rq_lock(p, &flags);
3153 3154
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3155

3156 3157
	return ns;
}
3158

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3196
	task_rq_unlock(rq, &flags);
3197

L
Linus Torvalds 已提交
3198 3199 3200 3201 3202 3203 3204
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3205
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3206
 */
3207 3208
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3209 3210 3211 3212
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3213
	/* Add user time to process. */
L
Linus Torvalds 已提交
3214
	p->utime = cputime_add(p->utime, cputime);
3215
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3216
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3217 3218 3219 3220 3221 3222 3223

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3224 3225

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3226 3227
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3228 3229
}

3230 3231 3232 3233
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3234
 * @cputime_scaled: cputime scaled by cpu frequency
3235
 */
3236 3237
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3238 3239 3240 3241 3242 3243
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3244
	/* Add guest time to process. */
3245
	p->utime = cputime_add(p->utime, cputime);
3246
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3247
	account_group_user_time(p, cputime);
3248 3249
	p->gtime = cputime_add(p->gtime, cputime);

3250
	/* Add guest time to cpustat. */
3251 3252 3253 3254 3255 3256 3257
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3258 3259
}

L
Linus Torvalds 已提交
3260 3261 3262 3263 3264
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3265
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3266 3267
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3268
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3269 3270 3271 3272
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3273
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3274
		account_guest_time(p, cputime, cputime_scaled);
3275 3276
		return;
	}
3277

3278
	/* Add system time to process. */
L
Linus Torvalds 已提交
3279
	p->stime = cputime_add(p->stime, cputime);
3280
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3281
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3282 3283 3284 3285 3286 3287 3288 3289

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3290 3291
		cpustat->system = cputime64_add(cpustat->system, tmp);

3292 3293
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3294 3295 3296 3297
	/* Account for system time used */
	acct_update_integrals(p);
}

3298
/*
L
Linus Torvalds 已提交
3299 3300
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3301
 */
3302
void account_steal_time(cputime_t cputime)
3303
{
3304 3305 3306 3307
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3308 3309
}

L
Linus Torvalds 已提交
3310
/*
3311 3312
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3313
 */
3314
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3315 3316
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3317
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3318
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3319

3320 3321 3322 3323
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3324 3325
}

3326 3327 3328 3329 3330 3331 3332 3333 3334
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3335
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3336 3337 3338
	struct rq *rq = this_rq();

	if (user_tick)
3339
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3340
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3341
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3342 3343
				    one_jiffy_scaled);
	else
3344
		account_idle_time(cputime_one_jiffy);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3364 3365
}

3366 3367
#endif

3368 3369 3370 3371
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3372
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3373
{
3374 3375
	*ut = p->utime;
	*st = p->stime;
3376 3377
}

3378
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3379
{
3380 3381 3382 3383 3384 3385
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3386 3387
}
#else
3388 3389

#ifndef nsecs_to_cputime
3390
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3391 3392
#endif

3393
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3394
{
3395
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3396 3397 3398 3399

	/*
	 * Use CFS's precise accounting:
	 */
3400
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3401 3402

	if (total) {
3403 3404 3405
		u64 temp;

		temp = (u64)(rtime * utime);
3406
		do_div(temp, total);
3407 3408 3409
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3410

3411 3412 3413
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3414
	p->prev_utime = max(p->prev_utime, utime);
3415
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3416

3417 3418
	*ut = p->prev_utime;
	*st = p->prev_stime;
3419 3420
}

3421 3422 3423 3424
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3425
{
3426 3427 3428
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3429

3430
	thread_group_cputime(p, &cputime);
3431

3432 3433
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3434

3435 3436
	if (total) {
		u64 temp;
3437

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3450 3451 3452
}
#endif

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3464
	struct task_struct *curr = rq->curr;
3465 3466

	sched_clock_tick();
I
Ingo Molnar 已提交
3467

3468
	raw_spin_lock(&rq->lock);
3469
	update_rq_clock(rq);
3470
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3471
	curr->sched_class->task_tick(rq, curr, 0);
3472
	raw_spin_unlock(&rq->lock);
3473

3474
	perf_event_task_tick(curr);
3475

3476
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3477 3478
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3479
#endif
L
Linus Torvalds 已提交
3480 3481
}

3482
notrace unsigned long get_parent_ip(unsigned long addr)
3483 3484 3485 3486 3487 3488 3489 3490
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3491

3492 3493 3494
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3495
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3496
{
3497
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3498 3499 3500
	/*
	 * Underflow?
	 */
3501 3502
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3503
#endif
L
Linus Torvalds 已提交
3504
	preempt_count() += val;
3505
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3506 3507 3508
	/*
	 * Spinlock count overflowing soon?
	 */
3509 3510
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3511 3512 3513
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3514 3515 3516
}
EXPORT_SYMBOL(add_preempt_count);

3517
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3518
{
3519
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3520 3521 3522
	/*
	 * Underflow?
	 */
3523
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3524
		return;
L
Linus Torvalds 已提交
3525 3526 3527
	/*
	 * Is the spinlock portion underflowing?
	 */
3528 3529 3530
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3531
#endif
3532

3533 3534
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3535 3536 3537 3538 3539 3540 3541
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3542
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3543
 */
I
Ingo Molnar 已提交
3544
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3545
{
3546 3547
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3548 3549
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3550

I
Ingo Molnar 已提交
3551
	debug_show_held_locks(prev);
3552
	print_modules();
I
Ingo Molnar 已提交
3553 3554
	if (irqs_disabled())
		print_irqtrace_events(prev);
3555 3556 3557 3558 3559

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3560
}
L
Linus Torvalds 已提交
3561

I
Ingo Molnar 已提交
3562 3563 3564 3565 3566
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3567
	/*
I
Ingo Molnar 已提交
3568
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3569 3570 3571
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3572
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3573 3574
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3575 3576
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3577
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3578 3579
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3580 3581
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3582 3583
	}
#endif
I
Ingo Molnar 已提交
3584 3585
}

P
Peter Zijlstra 已提交
3586
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3587
{
3588 3589 3590
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3591
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3592 3593
}

I
Ingo Molnar 已提交
3594 3595 3596 3597
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3598
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3599
{
3600
	const struct sched_class *class;
I
Ingo Molnar 已提交
3601
	struct task_struct *p;
L
Linus Torvalds 已提交
3602 3603

	/*
I
Ingo Molnar 已提交
3604 3605
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3606
	 */
I
Ingo Molnar 已提交
3607
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3608
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3609 3610
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3611 3612
	}

I
Ingo Molnar 已提交
3613 3614
	class = sched_class_highest;
	for ( ; ; ) {
3615
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3625

I
Ingo Molnar 已提交
3626 3627 3628
/*
 * schedule() is the main scheduler function.
 */
3629
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3630 3631
{
	struct task_struct *prev, *next;
3632
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3633
	struct rq *rq;
3634
	int cpu;
I
Ingo Molnar 已提交
3635

3636 3637
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3638 3639
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3640
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3641 3642 3643 3644 3645 3646 3647
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3648

3649
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3650
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3651

3652
	raw_spin_lock_irq(&rq->lock);
3653
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3654 3655

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3656
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3657
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
		} else {
			/*
			 * If a worker is going to sleep, notify and
			 * ask workqueue whether it wants to wake up a
			 * task to maintain concurrency.  If so, wake
			 * up the task.
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
3672
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
T
Tejun Heo 已提交
3673
		}
I
Ingo Molnar 已提交
3674
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3675 3676
	}

3677
	pre_schedule(rq, prev);
3678

I
Ingo Molnar 已提交
3679
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3680 3681
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3682
	put_prev_task(rq, prev);
3683
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3684 3685

	if (likely(prev != next)) {
3686
		sched_info_switch(prev, next);
3687
		perf_event_task_sched_out(prev, next);
3688

L
Linus Torvalds 已提交
3689 3690 3691 3692
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3693
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3694 3695 3696 3697 3698 3699
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3700
	} else
3701
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3702

3703
	post_schedule(rq);
L
Linus Torvalds 已提交
3704

3705 3706 3707
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3708
		goto need_resched_nonpreemptible;
3709
	}
P
Peter Zijlstra 已提交
3710

L
Linus Torvalds 已提交
3711
	preempt_enable_no_resched();
3712
	if (need_resched())
L
Linus Torvalds 已提交
3713 3714 3715 3716
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3717
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3737
		return 0;
3738 3739 3740 3741 3742 3743 3744 3745 3746
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3747
		return 0;
3748 3749 3750 3751 3752 3753

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3754
		return 0;
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3773

3774 3775 3776 3777
	return 1;
}
#endif

L
Linus Torvalds 已提交
3778 3779
#ifdef CONFIG_PREEMPT
/*
3780
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3781
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3782 3783 3784 3785 3786
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3787

L
Linus Torvalds 已提交
3788 3789
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3790
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3791
	 */
N
Nick Piggin 已提交
3792
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3793 3794
		return;

3795 3796 3797 3798
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3799

3800 3801 3802 3803 3804
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3805
	} while (need_resched());
L
Linus Torvalds 已提交
3806 3807 3808 3809
}
EXPORT_SYMBOL(preempt_schedule);

/*
3810
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3811 3812 3813 3814 3815 3816 3817
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3818

3819
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3820 3821
	BUG_ON(ti->preempt_count || !irqs_disabled());

3822 3823 3824 3825 3826 3827
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3828

3829 3830 3831 3832 3833
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3834
	} while (need_resched());
L
Linus Torvalds 已提交
3835 3836 3837 3838
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3839
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3840
			  void *key)
L
Linus Torvalds 已提交
3841
{
P
Peter Zijlstra 已提交
3842
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3843 3844 3845 3846
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3847 3848
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3849 3850 3851
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3852
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3853 3854
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3855
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3856
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3857
{
3858
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3859

3860
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3861 3862
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3863
		if (curr->func(curr, mode, wake_flags, key) &&
3864
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3874
 * @key: is directly passed to the wakeup function
3875 3876 3877
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3878
 */
3879
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3880
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3893
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3894 3895 3896
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3897
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3898

3899 3900 3901 3902 3903
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3904
/**
3905
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3906 3907 3908
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3909
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3917 3918 3919
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3920
 */
3921 3922
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3923 3924
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3925
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3931
		wake_flags = 0;
L
Linus Torvalds 已提交
3932 3933

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3934
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3935 3936
	spin_unlock_irqrestore(&q->lock, flags);
}
3937 3938 3939 3940 3941 3942 3943 3944 3945
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3946 3947
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3948 3949 3950 3951 3952 3953 3954 3955
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3956 3957 3958
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3959
 */
3960
void complete(struct completion *x)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3966
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3967 3968 3969 3970
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3971 3972 3973 3974 3975
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3976 3977 3978
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3979
 */
3980
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3986
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3987 3988 3989 3990
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3991 3992
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3993 3994 3995 3996
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3997
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3998
		do {
3999
			if (signal_pending_state(state, current)) {
4000 4001
				timeout = -ERESTARTSYS;
				break;
4002 4003
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4004 4005 4006
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4007
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4008
		__remove_wait_queue(&x->wait, &wait);
4009 4010
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4011 4012
	}
	x->done--;
4013
	return timeout ?: 1;
L
Linus Torvalds 已提交
4014 4015
}

4016 4017
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4018 4019 4020 4021
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4022
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4023
	spin_unlock_irq(&x->wait.lock);
4024 4025
	return timeout;
}
L
Linus Torvalds 已提交
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4037
void __sched wait_for_completion(struct completion *x)
4038 4039
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4040
}
4041
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4052
unsigned long __sched
4053
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4054
{
4055
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4056
}
4057
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4058

4059 4060 4061 4062 4063 4064 4065
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4066
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4067
{
4068 4069 4070 4071
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4072
}
4073
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4074

4075 4076 4077 4078 4079 4080 4081 4082
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4083
unsigned long __sched
4084 4085
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4086
{
4087
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4088
}
4089
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4090

4091 4092 4093 4094 4095 4096 4097
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
unsigned long __sched
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4138
	unsigned long flags;
4139 4140
	int ret = 1;

4141
	spin_lock_irqsave(&x->wait.lock, flags);
4142 4143 4144 4145
	if (!x->done)
		ret = 0;
	else
		x->done--;
4146
	spin_unlock_irqrestore(&x->wait.lock, flags);
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4161
	unsigned long flags;
4162 4163
	int ret = 1;

4164
	spin_lock_irqsave(&x->wait.lock, flags);
4165 4166
	if (!x->done)
		ret = 0;
4167
	spin_unlock_irqrestore(&x->wait.lock, flags);
4168 4169 4170 4171
	return ret;
}
EXPORT_SYMBOL(completion_done);

4172 4173
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4174
{
I
Ingo Molnar 已提交
4175 4176 4177 4178
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4179

4180
	__set_current_state(state);
L
Linus Torvalds 已提交
4181

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4196 4197 4198
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4199
long __sched
I
Ingo Molnar 已提交
4200
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4201
{
4202
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4203 4204 4205
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4206
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4207
{
4208
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4209 4210 4211
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4212
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4213
{
4214
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4215 4216 4217
}
EXPORT_SYMBOL(sleep_on_timeout);

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4230
void rt_mutex_setprio(struct task_struct *p, int prio)
4231 4232
{
	unsigned long flags;
4233
	int oldprio, on_rq, running;
4234
	struct rq *rq;
4235
	const struct sched_class *prev_class;
4236 4237 4238 4239 4240

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4241
	oldprio = p->prio;
4242
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4243
	on_rq = p->se.on_rq;
4244
	running = task_current(rq, p);
4245
	if (on_rq)
4246
		dequeue_task(rq, p, 0);
4247 4248
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4249 4250 4251 4252 4253 4254

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4255 4256
	p->prio = prio;

4257 4258
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4259
	if (on_rq) {
4260
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4261 4262

		check_class_changed(rq, p, prev_class, oldprio, running);
4263 4264 4265 4266 4267 4268
	}
	task_rq_unlock(rq, &flags);
}

#endif

4269
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4270
{
I
Ingo Molnar 已提交
4271
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4272
	unsigned long flags;
4273
	struct rq *rq;
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4286
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4287
	 */
4288
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4289 4290 4291
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4292
	on_rq = p->se.on_rq;
4293
	if (on_rq)
4294
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4295 4296

	p->static_prio = NICE_TO_PRIO(nice);
4297
	set_load_weight(p);
4298 4299 4300
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4301

I
Ingo Molnar 已提交
4302
	if (on_rq) {
4303
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4304
		/*
4305 4306
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4307
		 */
4308
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4316 4317 4318 4319 4320
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4321
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4322
{
4323 4324
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4325

4326
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4327 4328 4329
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4339
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4340
{
4341
	long nice, retval;
L
Linus Torvalds 已提交
4342 4343 4344 4345 4346 4347

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4348 4349
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4350 4351 4352
	if (increment > 40)
		increment = 40;

4353
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4359 4360 4361
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4380
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387 4388
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4389
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4390 4391 4392
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4393
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4408
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413 4414 4415 4416
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4417
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4418
{
4419
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4420 4421 4422
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4423 4424
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4425
{
I
Ingo Molnar 已提交
4426
	BUG_ON(p->se.on_rq);
4427

L
Linus Torvalds 已提交
4428 4429
	p->policy = policy;
	p->rt_priority = prio;
4430 4431 4432
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4433 4434 4435 4436
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4437
	set_load_weight(p);
L
Linus Torvalds 已提交
4438 4439
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4456 4457
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4458
{
4459
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4460
	unsigned long flags;
4461
	const struct sched_class *prev_class;
4462
	struct rq *rq;
4463
	int reset_on_fork;
L
Linus Torvalds 已提交
4464

4465 4466
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4467 4468
recheck:
	/* double check policy once rq lock held */
4469 4470
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4471
		policy = oldpolicy = p->policy;
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4482 4483
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4484 4485
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4486 4487
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4488
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4489
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4490
		return -EINVAL;
4491
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4492 4493
		return -EINVAL;

4494 4495 4496
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4497
	if (user && !capable(CAP_SYS_NICE)) {
4498
		if (rt_policy(policy)) {
4499 4500 4501 4502
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4503
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4515 4516 4517 4518 4519 4520
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4521

4522
		/* can't change other user's priorities */
4523
		if (!check_same_owner(p))
4524
			return -EPERM;
4525 4526 4527 4528

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4529
	}
L
Linus Torvalds 已提交
4530

4531
	if (user) {
4532
#ifdef CONFIG_RT_GROUP_SCHED
4533 4534 4535 4536
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4537 4538
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4539
			return -EPERM;
4540 4541
#endif

4542 4543 4544 4545 4546
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4547 4548 4549 4550
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4551
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4552 4553 4554 4555
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4556
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4557 4558 4559
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4560
		__task_rq_unlock(rq);
4561
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4562 4563
		goto recheck;
	}
I
Ingo Molnar 已提交
4564
	on_rq = p->se.on_rq;
4565
	running = task_current(rq, p);
4566
	if (on_rq)
4567
		deactivate_task(rq, p, 0);
4568 4569
	if (running)
		p->sched_class->put_prev_task(rq, p);
4570

4571 4572
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4573
	oldprio = p->prio;
4574
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4575
	__setscheduler(rq, p, policy, param->sched_priority);
4576

4577 4578
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4579 4580
	if (on_rq) {
		activate_task(rq, p, 0);
4581 4582

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4583
	}
4584
	__task_rq_unlock(rq);
4585
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4586

4587 4588
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4589 4590
	return 0;
}
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4605 4606
EXPORT_SYMBOL_GPL(sched_setscheduler);

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4624 4625
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4626 4627 4628
{
	struct sched_param lparam;
	struct task_struct *p;
4629
	int retval;
L
Linus Torvalds 已提交
4630 4631 4632 4633 4634

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4635 4636 4637

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4638
	p = find_process_by_pid(pid);
4639 4640 4641
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4642

L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4652 4653
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4654
{
4655 4656 4657 4658
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4659 4660 4661 4662 4663 4664 4665 4666
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4667
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672 4673 4674 4675
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4676
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4677
{
4678
	struct task_struct *p;
4679
	int retval;
L
Linus Torvalds 已提交
4680 4681

	if (pid < 0)
4682
		return -EINVAL;
L
Linus Torvalds 已提交
4683 4684

	retval = -ESRCH;
4685
	rcu_read_lock();
L
Linus Torvalds 已提交
4686 4687 4688 4689
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4690 4691
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4692
	}
4693
	rcu_read_unlock();
L
Linus Torvalds 已提交
4694 4695 4696 4697
	return retval;
}

/**
4698
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4699 4700 4701
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4702
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4703 4704
{
	struct sched_param lp;
4705
	struct task_struct *p;
4706
	int retval;
L
Linus Torvalds 已提交
4707 4708

	if (!param || pid < 0)
4709
		return -EINVAL;
L
Linus Torvalds 已提交
4710

4711
	rcu_read_lock();
L
Linus Torvalds 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4722
	rcu_read_unlock();
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4732
	rcu_read_unlock();
L
Linus Torvalds 已提交
4733 4734 4735
	return retval;
}

4736
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4737
{
4738
	cpumask_var_t cpus_allowed, new_mask;
4739 4740
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4741

4742
	get_online_cpus();
4743
	rcu_read_lock();
L
Linus Torvalds 已提交
4744 4745 4746

	p = find_process_by_pid(pid);
	if (!p) {
4747
		rcu_read_unlock();
4748
		put_online_cpus();
L
Linus Torvalds 已提交
4749 4750 4751
		return -ESRCH;
	}

4752
	/* Prevent p going away */
L
Linus Torvalds 已提交
4753
	get_task_struct(p);
4754
	rcu_read_unlock();
L
Linus Torvalds 已提交
4755

4756 4757 4758 4759 4760 4761 4762 4763
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4764
	retval = -EPERM;
4765
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4766 4767
		goto out_unlock;

4768 4769 4770 4771
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4772 4773
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4774
 again:
4775
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4776

P
Paul Menage 已提交
4777
	if (!retval) {
4778 4779
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4780 4781 4782 4783 4784
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4785
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4786 4787 4788
			goto again;
		}
	}
L
Linus Torvalds 已提交
4789
out_unlock:
4790 4791 4792 4793
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4794
	put_task_struct(p);
4795
	put_online_cpus();
L
Linus Torvalds 已提交
4796 4797 4798 4799
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4800
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4801
{
4802 4803 4804 4805 4806
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4816 4817
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4818
{
4819
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4820 4821
	int retval;

4822 4823
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4824

4825 4826 4827 4828 4829
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4830 4831
}

4832
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4833
{
4834
	struct task_struct *p;
4835 4836
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4837 4838
	int retval;

4839
	get_online_cpus();
4840
	rcu_read_lock();
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4847 4848 4849 4850
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4851
	rq = task_rq_lock(p, &flags);
4852
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4853
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4854 4855

out_unlock:
4856
	rcu_read_unlock();
4857
	put_online_cpus();
L
Linus Torvalds 已提交
4858

4859
	return retval;
L
Linus Torvalds 已提交
4860 4861 4862 4863 4864 4865 4866 4867
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4868 4869
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4870 4871
{
	int ret;
4872
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4873

A
Anton Blanchard 已提交
4874
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4875 4876
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4877 4878
		return -EINVAL;

4879 4880
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4881

4882 4883
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4884
		size_t retlen = min_t(size_t, len, cpumask_size());
4885 4886

		if (copy_to_user(user_mask_ptr, mask, retlen))
4887 4888
			ret = -EFAULT;
		else
4889
			ret = retlen;
4890 4891
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4892

4893
	return ret;
L
Linus Torvalds 已提交
4894 4895 4896 4897 4898
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4899 4900
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4901
 */
4902
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4903
{
4904
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4905

4906
	schedstat_inc(rq, yld_count);
4907
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4914
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4915
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4923 4924 4925 4926 4927
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4928
static void __cond_resched(void)
L
Linus Torvalds 已提交
4929
{
4930 4931 4932
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4933 4934
}

4935
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4936
{
P
Peter Zijlstra 已提交
4937
	if (should_resched()) {
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942
		__cond_resched();
		return 1;
	}
	return 0;
}
4943
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4944 4945

/*
4946
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4947 4948
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4949
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4950 4951 4952
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4953
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4954
{
P
Peter Zijlstra 已提交
4955
	int resched = should_resched();
J
Jan Kara 已提交
4956 4957
	int ret = 0;

4958 4959
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4960
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4961
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4962
		if (resched)
N
Nick Piggin 已提交
4963 4964 4965
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4966
		ret = 1;
L
Linus Torvalds 已提交
4967 4968
		spin_lock(lock);
	}
J
Jan Kara 已提交
4969
	return ret;
L
Linus Torvalds 已提交
4970
}
4971
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4972

4973
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4974 4975 4976
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4977
	if (should_resched()) {
4978
		local_bh_enable();
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4985
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4986 4987 4988 4989

/**
 * yield - yield the current processor to other threads.
 *
4990
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5001
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5002 5003 5004 5005
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5006
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5007

5008
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5009
	atomic_inc(&rq->nr_iowait);
5010
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5011
	schedule();
5012
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5013
	atomic_dec(&rq->nr_iowait);
5014
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5020
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5021 5022
	long ret;

5023
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5024
	atomic_inc(&rq->nr_iowait);
5025
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5026
	ret = schedule_timeout(timeout);
5027
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5028
	atomic_dec(&rq->nr_iowait);
5029
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5040
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5050
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5051
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5065
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5075
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5076
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5090
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5091
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5092
{
5093
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5094
	unsigned int time_slice;
5095 5096
	unsigned long flags;
	struct rq *rq;
5097
	int retval;
L
Linus Torvalds 已提交
5098 5099 5100
	struct timespec t;

	if (pid < 0)
5101
		return -EINVAL;
L
Linus Torvalds 已提交
5102 5103

	retval = -ESRCH;
5104
	rcu_read_lock();
L
Linus Torvalds 已提交
5105 5106 5107 5108 5109 5110 5111 5112
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5113 5114 5115
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5116

5117
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5118
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5119 5120
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5121

L
Linus Torvalds 已提交
5122
out_unlock:
5123
	rcu_read_unlock();
L
Linus Torvalds 已提交
5124 5125 5126
	return retval;
}

5127
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5128

5129
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5130 5131
{
	unsigned long free = 0;
5132
	unsigned state;
L
Linus Torvalds 已提交
5133 5134

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5135
	printk(KERN_INFO "%-13.13s %c", p->comm,
5136
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5137
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5138
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5139
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5140
	else
P
Peter Zijlstra 已提交
5141
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5142 5143
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5144
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5145
	else
P
Peter Zijlstra 已提交
5146
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5147 5148
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5149
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5150
#endif
P
Peter Zijlstra 已提交
5151
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5152 5153
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5154

5155
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5156 5157
}

I
Ingo Molnar 已提交
5158
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5159
{
5160
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5161

5162
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5163 5164
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5165
#else
P
Peter Zijlstra 已提交
5166 5167
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5176
		if (!state_filter || (p->state & state_filter))
5177
			sched_show_task(p);
L
Linus Torvalds 已提交
5178 5179
	} while_each_thread(g, p);

5180 5181
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5182 5183 5184
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5185
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5186 5187 5188
	/*
	 * Only show locks if all tasks are dumped:
	 */
5189
	if (!state_filter)
I
Ingo Molnar 已提交
5190
		debug_show_all_locks();
L
Linus Torvalds 已提交
5191 5192
}

I
Ingo Molnar 已提交
5193 5194
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5195
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5196 5197
}

5198 5199 5200 5201 5202 5203 5204 5205
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5206
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5207
{
5208
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5209 5210
	unsigned long flags;

5211
	raw_spin_lock_irqsave(&rq->lock, flags);
5212

I
Ingo Molnar 已提交
5213
	__sched_fork(idle);
5214
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5215 5216
	idle->se.exec_start = sched_clock();

5217
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5218
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5219 5220

	rq->curr = rq->idle = idle;
5221 5222 5223
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5224
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5225 5226

	/* Set the preempt count _outside_ the spinlocks! */
5227 5228 5229
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5230
	task_thread_info(idle)->preempt_count = 0;
5231
#endif
I
Ingo Molnar 已提交
5232 5233 5234 5235
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5236
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5244
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5245
 */
5246
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5247

I
Ingo Molnar 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5257
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5258
{
5259
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5274

5275 5276
	return factor;
}
I
Ingo Molnar 已提交
5277

5278 5279 5280
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5281

5282 5283 5284 5285 5286 5287 5288 5289
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5290

5291 5292 5293
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5294 5295
}

L
Linus Torvalds 已提交
5296 5297 5298 5299
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5300 5301 5302 5303 5304 5305
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5306
 *    it and puts it into the right queue.
5307 5308
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315 5316
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5317
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5318 5319
 * call is not atomic; no spinlocks may be held.
 */
5320
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5321 5322
{
	unsigned long flags;
5323
	struct rq *rq;
5324
	unsigned int dest_cpu;
5325
	int ret = 0;
L
Linus Torvalds 已提交
5326

P
Peter Zijlstra 已提交
5327 5328 5329 5330 5331 5332 5333
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5334
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5335 5336 5337 5338
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5339

5340
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5341 5342 5343 5344
		ret = -EINVAL;
		goto out;
	}

5345
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5346
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5347 5348 5349 5350
		ret = -EINVAL;
		goto out;
	}

5351
	if (p->sched_class->set_cpus_allowed)
5352
		p->sched_class->set_cpus_allowed(p, new_mask);
5353
	else {
5354 5355
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5356 5357
	}

L
Linus Torvalds 已提交
5358
	/* Can the task run on the task's current CPU? If so, we're done */
5359
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5360 5361
		goto out;

5362 5363 5364
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5365 5366
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5367
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5373

L
Linus Torvalds 已提交
5374 5375
	return ret;
}
5376
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5377 5378

/*
I
Ingo Molnar 已提交
5379
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5380 5381 5382 5383 5384 5385
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5386 5387
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5388
 */
5389
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5390
{
5391
	struct rq *rq_dest, *rq_src;
5392
	int ret = 0;
L
Linus Torvalds 已提交
5393

5394
	if (unlikely(!cpu_active(dest_cpu)))
5395
		return ret;
L
Linus Torvalds 已提交
5396 5397 5398 5399 5400 5401 5402

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5403
		goto done;
L
Linus Torvalds 已提交
5404
	/* Affinity changed (again). */
5405
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5406
		goto fail;
L
Linus Torvalds 已提交
5407

5408 5409 5410 5411 5412
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5413
		deactivate_task(rq_src, p, 0);
5414
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5415
		activate_task(rq_dest, p, 0);
5416
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5417
	}
L
Linus Torvalds 已提交
5418
done:
5419
	ret = 1;
L
Linus Torvalds 已提交
5420
fail:
L
Linus Torvalds 已提交
5421
	double_rq_unlock(rq_src, rq_dest);
5422
	return ret;
L
Linus Torvalds 已提交
5423 5424 5425
}

/*
5426 5427 5428
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5429
 */
5430
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5431
{
5432
	struct migration_arg *arg = data;
5433

5434 5435 5436 5437
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5438
	local_irq_disable();
5439
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5440
	local_irq_enable();
L
Linus Torvalds 已提交
5441
	return 0;
5442 5443
}

L
Linus Torvalds 已提交
5444
#ifdef CONFIG_HOTPLUG_CPU
5445
/*
5446
 * Figure out where task on dead CPU should go, use force if necessary.
5447
 */
5448
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5449
{
5450 5451 5452
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5453

5454
	local_irq_save(flags);
5455

5456 5457 5458 5459 5460
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5461 5462 5463 5464
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5465
	if (needs_cpu)
5466
		__migrate_task(p, dead_cpu, dest_cpu);
5467
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5477
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5478
{
5479
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5493
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5494

5495
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5496

5497 5498
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5499 5500
			continue;

5501 5502 5503
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5504

5505
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5506 5507
}

I
Ingo Molnar 已提交
5508 5509
/*
 * Schedules idle task to be the next runnable task on current CPU.
5510 5511
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5512 5513 5514
 */
void sched_idle_next(void)
{
5515
	int this_cpu = smp_processor_id();
5516
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5517 5518 5519 5520
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5521
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5522

5523 5524 5525
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5526
	 */
5527
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5528

I
Ingo Molnar 已提交
5529
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5530

5531
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5532

5533
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5534 5535
}

5536 5537
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5551
/* called under rq->lock with disabled interrupts */
5552
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5553
{
5554
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5555 5556

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5557
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5558 5559

	/* Cannot have done final schedule yet: would have vanished. */
5560
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5561

5562
	get_task_struct(p);
L
Linus Torvalds 已提交
5563 5564 5565

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5566
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5567 5568
	 * fine.
	 */
5569
	raw_spin_unlock_irq(&rq->lock);
5570
	move_task_off_dead_cpu(dead_cpu, p);
5571
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5572

5573
	put_task_struct(p);
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5579
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5580
	struct task_struct *next;
5581

I
Ingo Molnar 已提交
5582 5583 5584
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5585
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5586 5587
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5588
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5589
		migrate_dead(dead_cpu, next);
5590

L
Linus Torvalds 已提交
5591 5592
	}
}
5593 5594 5595 5596 5597 5598 5599

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5600
	rq->calc_load_active = 0;
5601
}
L
Linus Torvalds 已提交
5602 5603
#endif /* CONFIG_HOTPLUG_CPU */

5604 5605 5606
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5607 5608
	{
		.procname	= "sched_domain",
5609
		.mode		= 0555,
5610
	},
5611
	{}
5612 5613 5614
};

static struct ctl_table sd_ctl_root[] = {
5615 5616
	{
		.procname	= "kernel",
5617
		.mode		= 0555,
5618 5619
		.child		= sd_ctl_dir,
	},
5620
	{}
5621 5622 5623 5624 5625
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5626
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5627 5628 5629 5630

	return entry;
}

5631 5632
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5633
	struct ctl_table *entry;
5634

5635 5636 5637
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5638
	 * will always be set. In the lowest directory the names are
5639 5640 5641
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5642 5643
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5644 5645 5646
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5647 5648 5649 5650 5651

	kfree(*tablep);
	*tablep = NULL;
}

5652
static void
5653
set_table_entry(struct ctl_table *entry,
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5667
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5668

5669 5670 5671
	if (table == NULL)
		return NULL;

5672
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5673
		sizeof(long), 0644, proc_doulongvec_minmax);
5674
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5675
		sizeof(long), 0644, proc_doulongvec_minmax);
5676
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5677
		sizeof(int), 0644, proc_dointvec_minmax);
5678
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5679
		sizeof(int), 0644, proc_dointvec_minmax);
5680
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5681
		sizeof(int), 0644, proc_dointvec_minmax);
5682
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5683
		sizeof(int), 0644, proc_dointvec_minmax);
5684
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5685
		sizeof(int), 0644, proc_dointvec_minmax);
5686
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5687
		sizeof(int), 0644, proc_dointvec_minmax);
5688
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5689
		sizeof(int), 0644, proc_dointvec_minmax);
5690
	set_table_entry(&table[9], "cache_nice_tries",
5691 5692
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5693
	set_table_entry(&table[10], "flags", &sd->flags,
5694
		sizeof(int), 0644, proc_dointvec_minmax);
5695 5696 5697
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5698 5699 5700 5701

	return table;
}

5702
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5703 5704 5705 5706 5707 5708 5709 5710 5711
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5712 5713
	if (table == NULL)
		return NULL;
5714 5715 5716 5717 5718

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5719
		entry->mode = 0555;
5720 5721 5722 5723 5724 5725 5726 5727
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5728
static void register_sched_domain_sysctl(void)
5729
{
5730
	int i, cpu_num = num_possible_cpus();
5731 5732 5733
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5734 5735 5736
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5737 5738 5739
	if (entry == NULL)
		return;

5740
	for_each_possible_cpu(i) {
5741 5742
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5743
		entry->mode = 0555;
5744
		entry->child = sd_alloc_ctl_cpu_table(i);
5745
		entry++;
5746
	}
5747 5748

	WARN_ON(sd_sysctl_header);
5749 5750
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5751

5752
/* may be called multiple times per register */
5753 5754
static void unregister_sched_domain_sysctl(void)
{
5755 5756
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5757
	sd_sysctl_header = NULL;
5758 5759
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5760
}
5761
#else
5762 5763 5764 5765
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5766 5767 5768 5769
{
}
#endif

5770 5771 5772 5773 5774
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5775
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5795
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5796 5797 5798 5799
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5800 5801 5802 5803
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5804 5805
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5806
{
5807
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5808
	unsigned long flags;
5809
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5810 5811

	switch (action) {
5812

L
Linus Torvalds 已提交
5813
	case CPU_UP_PREPARE:
5814
	case CPU_UP_PREPARE_FROZEN:
5815
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5816
		break;
5817

L
Linus Torvalds 已提交
5818
	case CPU_ONLINE:
5819
	case CPU_ONLINE_FROZEN:
5820
		/* Update our root-domain */
5821
		raw_spin_lock_irqsave(&rq->lock, flags);
5822
		if (rq->rd) {
5823
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5824 5825

			set_rq_online(rq);
5826
		}
5827
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5828
		break;
5829

L
Linus Torvalds 已提交
5830 5831
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5832
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5833 5834
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5835
		raw_spin_lock_irq(&rq->lock);
5836
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5837 5838
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5839
		migrate_dead_tasks(cpu);
5840
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5841 5842
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5843
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5844
		break;
G
Gregory Haskins 已提交
5845

5846 5847
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5848
		/* Update our root-domain */
5849
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5850
		if (rq->rd) {
5851
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5852
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5853
		}
5854
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5855
		break;
L
Linus Torvalds 已提交
5856 5857 5858 5859 5860
#endif
	}
	return NOTIFY_OK;
}

5861 5862 5863
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5864
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5865
 */
5866
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5867
	.notifier_call = migration_call,
5868
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5869 5870
};

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5896
static int __init migration_init(void)
L
Linus Torvalds 已提交
5897 5898
{
	void *cpu = (void *)(long)smp_processor_id();
5899
	int err;
5900

5901
	/* Initialize migration for the boot CPU */
5902 5903
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5904 5905
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5906

5907 5908 5909 5910
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5911
	return 0;
L
Linus Torvalds 已提交
5912
}
5913
early_initcall(migration_init);
L
Linus Torvalds 已提交
5914 5915 5916
#endif

#ifdef CONFIG_SMP
5917

5918
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5919

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5930
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5931
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5932
{
I
Ingo Molnar 已提交
5933
	struct sched_group *group = sd->groups;
5934
	char str[256];
L
Linus Torvalds 已提交
5935

R
Rusty Russell 已提交
5936
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5937
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5938 5939 5940 5941

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5942
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5943
		if (sd->parent)
P
Peter Zijlstra 已提交
5944 5945
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5946
		return -1;
N
Nick Piggin 已提交
5947 5948
	}

P
Peter Zijlstra 已提交
5949
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5950

5951
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5952 5953
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5954
	}
5955
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5956 5957
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5958
	}
L
Linus Torvalds 已提交
5959

I
Ingo Molnar 已提交
5960
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5961
	do {
I
Ingo Molnar 已提交
5962
		if (!group) {
P
Peter Zijlstra 已提交
5963 5964
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5965 5966 5967
			break;
		}

5968
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5969 5970 5971
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5972 5973
			break;
		}
L
Linus Torvalds 已提交
5974

5975
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5976 5977
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5978 5979
			break;
		}
L
Linus Torvalds 已提交
5980

5981
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5982 5983
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5984 5985
			break;
		}
L
Linus Torvalds 已提交
5986

5987
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5988

R
Rusty Russell 已提交
5989
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5990

P
Peter Zijlstra 已提交
5991
		printk(KERN_CONT " %s", str);
5992
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5993 5994
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
5995
		}
L
Linus Torvalds 已提交
5996

I
Ingo Molnar 已提交
5997 5998
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5999
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6000

6001
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6002
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6003

6004 6005
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6006 6007
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6008 6009
	return 0;
}
L
Linus Torvalds 已提交
6010

I
Ingo Molnar 已提交
6011 6012
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6013
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6014
	int level = 0;
L
Linus Torvalds 已提交
6015

6016 6017 6018
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6019 6020 6021 6022
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6023

I
Ingo Molnar 已提交
6024 6025
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6026
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6027 6028 6029 6030
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6031
	for (;;) {
6032
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6033
			break;
L
Linus Torvalds 已提交
6034 6035
		level++;
		sd = sd->parent;
6036
		if (!sd)
I
Ingo Molnar 已提交
6037 6038
			break;
	}
6039
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6040
}
6041
#else /* !CONFIG_SCHED_DEBUG */
6042
# define sched_domain_debug(sd, cpu) do { } while (0)
6043
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6044

6045
static int sd_degenerate(struct sched_domain *sd)
6046
{
6047
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6048 6049 6050 6051 6052 6053
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6054 6055 6056
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6057 6058 6059 6060 6061
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6062
	if (sd->flags & (SD_WAKE_AFFINE))
6063 6064 6065 6066 6067
		return 0;

	return 1;
}

6068 6069
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6070 6071 6072 6073 6074 6075
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6076
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6077 6078 6079 6080 6081 6082 6083
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6084 6085 6086
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6087 6088
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6089 6090 6091 6092 6093 6094 6095
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6096 6097
static void free_rootdomain(struct root_domain *rd)
{
6098 6099
	synchronize_sched();

6100 6101
	cpupri_cleanup(&rd->cpupri);

6102 6103 6104 6105 6106 6107
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6108 6109
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6110
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6111 6112
	unsigned long flags;

6113
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6114 6115

	if (rq->rd) {
I
Ingo Molnar 已提交
6116
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6117

6118
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6119
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6120

6121
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6122

I
Ingo Molnar 已提交
6123 6124 6125 6126 6127 6128 6129
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6130 6131 6132 6133 6134
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6135
	cpumask_set_cpu(rq->cpu, rd->span);
6136
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6137
		set_rq_online(rq);
G
Gregory Haskins 已提交
6138

6139
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6140 6141 6142

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6143 6144
}

L
Li Zefan 已提交
6145
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6146
{
6147 6148
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6149 6150
	memset(rd, 0, sizeof(*rd));

6151 6152
	if (bootmem)
		gfp = GFP_NOWAIT;
6153

6154
	if (!alloc_cpumask_var(&rd->span, gfp))
6155
		goto out;
6156
	if (!alloc_cpumask_var(&rd->online, gfp))
6157
		goto free_span;
6158
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6159
		goto free_online;
6160

P
Pekka Enberg 已提交
6161
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6162
		goto free_rto_mask;
6163
	return 0;
6164

6165 6166
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6167 6168 6169 6170
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6171
out:
6172
	return -ENOMEM;
G
Gregory Haskins 已提交
6173 6174 6175 6176
}

static void init_defrootdomain(void)
{
6177 6178
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6179 6180 6181
	atomic_set(&def_root_domain.refcount, 1);
}

6182
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6183 6184 6185 6186 6187 6188 6189
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6190 6191 6192 6193
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6194 6195 6196 6197

	return rd;
}

L
Linus Torvalds 已提交
6198
/*
I
Ingo Molnar 已提交
6199
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6200 6201
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6202 6203
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6204
{
6205
	struct rq *rq = cpu_rq(cpu);
6206 6207
	struct sched_domain *tmp;

6208 6209 6210
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6211
	/* Remove the sched domains which do not contribute to scheduling. */
6212
	for (tmp = sd; tmp; ) {
6213 6214 6215
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6216

6217
		if (sd_parent_degenerate(tmp, parent)) {
6218
			tmp->parent = parent->parent;
6219 6220
			if (parent->parent)
				parent->parent->child = tmp;
6221 6222
		} else
			tmp = tmp->parent;
6223 6224
	}

6225
	if (sd && sd_degenerate(sd)) {
6226
		sd = sd->parent;
6227 6228 6229
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6230 6231 6232

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6233
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6234
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6235 6236 6237
}

/* cpus with isolated domains */
6238
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6239 6240 6241 6242

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6243
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6244
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6245 6246 6247
	return 1;
}

I
Ingo Molnar 已提交
6248
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6249 6250

/*
6251 6252
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6253 6254
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6255 6256 6257 6258 6259
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6260
static void
6261 6262 6263
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6264
					struct sched_group **sg,
6265 6266
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6267 6268 6269 6270
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6271
	cpumask_clear(covered);
6272

6273
	for_each_cpu(i, span) {
6274
		struct sched_group *sg;
6275
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6276 6277
		int j;

6278
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6279 6280
			continue;

6281
		cpumask_clear(sched_group_cpus(sg));
6282
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6283

6284
		for_each_cpu(j, span) {
6285
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6286 6287
				continue;

6288
			cpumask_set_cpu(j, covered);
6289
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6300
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6301

6302
#ifdef CONFIG_NUMA
6303

6304 6305 6306 6307 6308
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6309
 * Find the next node to include in a given scheduling domain. Simply
6310 6311 6312 6313
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6314
static int find_next_best_node(int node, nodemask_t *used_nodes)
6315 6316 6317 6318 6319
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6320
	for (i = 0; i < nr_node_ids; i++) {
6321
		/* Start at @node */
6322
		n = (node + i) % nr_node_ids;
6323 6324 6325 6326 6327

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6328
		if (node_isset(n, *used_nodes))
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6340
	node_set(best_node, *used_nodes);
6341 6342 6343 6344 6345 6346
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6347
 * @span: resulting cpumask
6348
 *
I
Ingo Molnar 已提交
6349
 * Given a node, construct a good cpumask for its sched_domain to span. It
6350 6351 6352
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6353
static void sched_domain_node_span(int node, struct cpumask *span)
6354
{
6355
	nodemask_t used_nodes;
6356
	int i;
6357

6358
	cpumask_clear(span);
6359
	nodes_clear(used_nodes);
6360

6361
	cpumask_or(span, span, cpumask_of_node(node));
6362
	node_set(node, used_nodes);
6363 6364

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6365
		int next_node = find_next_best_node(node, &used_nodes);
6366

6367
		cpumask_or(span, span, cpumask_of_node(next_node));
6368 6369
	}
}
6370
#endif /* CONFIG_NUMA */
6371

6372
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6373

6374 6375
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6376 6377 6378
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6423
/*
6424
 * SMT sched-domains:
6425
 */
L
Linus Torvalds 已提交
6426
#ifdef CONFIG_SCHED_SMT
6427
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6428
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6429

I
Ingo Molnar 已提交
6430
static int
6431 6432
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6433
{
6434
	if (sg)
6435
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6436 6437
	return cpu;
}
6438
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6439

6440 6441 6442
/*
 * multi-core sched-domains:
 */
6443
#ifdef CONFIG_SCHED_MC
6444 6445
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6446
#endif /* CONFIG_SCHED_MC */
6447 6448

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6449
static int
6450 6451
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6452
{
6453
	int group;
6454

6455
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6456
	group = cpumask_first(mask);
6457
	if (sg)
6458
		*sg = &per_cpu(sched_group_core, group).sg;
6459
	return group;
6460 6461
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6462
static int
6463 6464
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6465
{
6466
	if (sg)
6467
		*sg = &per_cpu(sched_group_core, cpu).sg;
6468 6469 6470 6471
	return cpu;
}
#endif

6472 6473
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6474

I
Ingo Molnar 已提交
6475
static int
6476 6477
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6478
{
6479
	int group;
6480
#ifdef CONFIG_SCHED_MC
6481
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6482
	group = cpumask_first(mask);
6483
#elif defined(CONFIG_SCHED_SMT)
6484
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6485
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6486
#else
6487
	group = cpu;
L
Linus Torvalds 已提交
6488
#endif
6489
	if (sg)
6490
		*sg = &per_cpu(sched_group_phys, group).sg;
6491
	return group;
L
Linus Torvalds 已提交
6492 6493 6494 6495
}

#ifdef CONFIG_NUMA
/*
6496 6497 6498
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6499
 */
6500
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6501
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6502

6503
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6504
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6505

6506 6507 6508
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6509
{
6510 6511
	int group;

6512
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6513
	group = cpumask_first(nodemask);
6514 6515

	if (sg)
6516
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6517
	return group;
L
Linus Torvalds 已提交
6518
}
6519

6520 6521 6522 6523 6524 6525 6526
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6527
	do {
6528
		for_each_cpu(j, sched_group_cpus(sg)) {
6529
			struct sched_domain *sd;
6530

6531
			sd = &per_cpu(phys_domains, j).sd;
6532
			if (j != group_first_cpu(sd->groups)) {
6533 6534 6535 6536 6537 6538
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6539

6540
			sg->cpu_power += sd->groups->cpu_power;
6541 6542 6543
		}
		sg = sg->next;
	} while (sg != group_head);
6544
}
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6566 6567
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6568 6569 6570 6571 6572 6573 6574 6575 6576
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6577
	sg->cpu_power = 0;
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6596 6597
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6598 6599
			return -ENOMEM;
		}
6600
		sg->cpu_power = 0;
6601 6602 6603 6604 6605 6606 6607 6608 6609
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6610
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6611

6612
#ifdef CONFIG_NUMA
6613
/* Free memory allocated for various sched_group structures */
6614 6615
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6616
{
6617
	int cpu, i;
6618

6619
	for_each_cpu(cpu, cpu_map) {
6620 6621 6622 6623 6624 6625
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6626
		for (i = 0; i < nr_node_ids; i++) {
6627 6628
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6629
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6630
			if (cpumask_empty(nodemask))
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6647
#else /* !CONFIG_NUMA */
6648 6649
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6650 6651
{
}
6652
#endif /* CONFIG_NUMA */
6653

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6668 6669
	long power;
	int weight;
6670 6671 6672

	WARN_ON(!sd || !sd->groups);

6673
	if (cpu != group_first_cpu(sd->groups))
6674 6675 6676 6677
		return;

	child = sd->child;

6678
	sd->groups->cpu_power = 0;
6679

6680 6681 6682 6683 6684
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6685 6686 6687
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6688
		 */
P
Peter Zijlstra 已提交
6689 6690
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6691
			power /= weight;
P
Peter Zijlstra 已提交
6692 6693
			power >>= SCHED_LOAD_SHIFT;
		}
6694
		sd->groups->cpu_power += power;
6695 6696 6697 6698
		return;
	}

	/*
6699
	 * Add cpu_power of each child group to this groups cpu_power.
6700 6701 6702
	 */
	group = child->groups;
	do {
6703
		sd->groups->cpu_power += group->cpu_power;
6704 6705 6706 6707
		group = group->next;
	} while (group != child->groups);
}

6708 6709 6710 6711 6712
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6713 6714 6715 6716 6717 6718
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6719
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6720

6721 6722 6723 6724 6725
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6726
	sd->level = SD_LV_##type;				\
6727
	SD_INIT_NAME(sd, type);					\
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6742 6743 6744 6745
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6746 6747 6748 6749 6750 6751
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6770
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6771 6772
	} else {
		/* turn on idle balance on this domain */
6773
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6774 6775 6776
	}
}

6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6797
#ifdef CONFIG_NUMA
6798 6799 6800 6801 6802 6803 6804
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6805
#endif
6806 6807 6808 6809
	case sa_none:
		break;
	}
}
6810

6811 6812 6813
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6814
#ifdef CONFIG_NUMA
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6825
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6826
		return sa_notcovered;
6827
	}
6828
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6829
#endif
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6842
		printk(KERN_WARNING "Cannot alloc root domain\n");
6843
		return sa_tmpmask;
G
Gregory Haskins 已提交
6844
	}
6845 6846
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6847

6848 6849 6850 6851
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6852
#ifdef CONFIG_NUMA
6853
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6854

6855 6856 6857 6858 6859
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6860
		set_domain_attribute(sd, attr);
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6875
#endif
6876 6877
	return sd;
}
L
Linus Torvalds 已提交
6878

6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6894

6895 6896 6897 6898 6899
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6900
#ifdef CONFIG_SCHED_MC
6901 6902 6903 6904 6905 6906 6907
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6908
#endif
6909 6910
	return sd;
}
6911

6912 6913 6914 6915 6916
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6917
#ifdef CONFIG_SCHED_SMT
6918 6919 6920 6921 6922 6923 6924
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6925
#endif
6926 6927
	return sd;
}
L
Linus Torvalds 已提交
6928

6929 6930 6931 6932
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6933
#ifdef CONFIG_SCHED_SMT
6934 6935 6936 6937 6938 6939 6940 6941
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6942
#endif
6943
#ifdef CONFIG_SCHED_MC
6944 6945 6946 6947 6948 6949 6950
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6951
#endif
6952 6953 6954 6955 6956 6957 6958
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6959
#ifdef CONFIG_NUMA
6960 6961 6962 6963 6964
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6965 6966
	default:
		break;
6967
	}
6968
}
6969

6970 6971 6972 6973 6974 6975 6976 6977 6978
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6979
	struct sched_domain *sd;
6980
	int i;
6981
#ifdef CONFIG_NUMA
6982
	d.sd_allnodes = 0;
6983
#endif
6984

6985 6986 6987 6988
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6989

L
Linus Torvalds 已提交
6990
	/*
6991
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6992
	 */
6993
	for_each_cpu(i, cpu_map) {
6994 6995
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6996

6997
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6998
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6999
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7000
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7001
	}
7002

7003
	for_each_cpu(i, cpu_map) {
7004
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7005
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7006
	}
7007

L
Linus Torvalds 已提交
7008
	/* Set up physical groups */
7009 7010
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7011

L
Linus Torvalds 已提交
7012 7013
#ifdef CONFIG_NUMA
	/* Set up node groups */
7014 7015
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7016

7017 7018
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7019
			goto error;
L
Linus Torvalds 已提交
7020 7021 7022
#endif

	/* Calculate CPU power for physical packages and nodes */
7023
#ifdef CONFIG_SCHED_SMT
7024
	for_each_cpu(i, cpu_map) {
7025
		sd = &per_cpu(cpu_domains, i).sd;
7026
		init_sched_groups_power(i, sd);
7027
	}
L
Linus Torvalds 已提交
7028
#endif
7029
#ifdef CONFIG_SCHED_MC
7030
	for_each_cpu(i, cpu_map) {
7031
		sd = &per_cpu(core_domains, i).sd;
7032
		init_sched_groups_power(i, sd);
7033 7034
	}
#endif
7035

7036
	for_each_cpu(i, cpu_map) {
7037
		sd = &per_cpu(phys_domains, i).sd;
7038
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7039 7040
	}

7041
#ifdef CONFIG_NUMA
7042
	for (i = 0; i < nr_node_ids; i++)
7043
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7044

7045
	if (d.sd_allnodes) {
7046
		struct sched_group *sg;
7047

7048
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7049
								d.tmpmask);
7050 7051
		init_numa_sched_groups_power(sg);
	}
7052 7053
#endif

L
Linus Torvalds 已提交
7054
	/* Attach the domains */
7055
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7056
#ifdef CONFIG_SCHED_SMT
7057
		sd = &per_cpu(cpu_domains, i).sd;
7058
#elif defined(CONFIG_SCHED_MC)
7059
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7060
#else
7061
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7062
#endif
7063
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7064
	}
7065

7066 7067 7068
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7069 7070

error:
7071 7072
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7073
}
P
Paul Jackson 已提交
7074

7075
static int build_sched_domains(const struct cpumask *cpu_map)
7076 7077 7078 7079
{
	return __build_sched_domains(cpu_map, NULL);
}

7080
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7081
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7082 7083
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7084 7085 7086

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7087 7088
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7089
 */
7090
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7091

7092 7093 7094 7095 7096 7097
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7098
{
7099
	return 0;
7100 7101
}

7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7127
/*
I
Ingo Molnar 已提交
7128
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7129 7130
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7131
 */
7132
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7133
{
7134 7135
	int err;

7136
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7137
	ndoms_cur = 1;
7138
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7139
	if (!doms_cur)
7140 7141
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7142
	dattr_cur = NULL;
7143
	err = build_sched_domains(doms_cur[0]);
7144
	register_sched_domain_sysctl();
7145 7146

	return err;
7147 7148
}

7149 7150
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7151
{
7152
	free_sched_groups(cpu_map, tmpmask);
7153
}
L
Linus Torvalds 已提交
7154

7155 7156 7157 7158
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7159
static void detach_destroy_domains(const struct cpumask *cpu_map)
7160
{
7161 7162
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7163 7164
	int i;

7165
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7166
		cpu_attach_domain(NULL, &def_root_domain, i);
7167
	synchronize_sched();
7168
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7169 7170
}

7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7187 7188
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7189
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7190 7191 7192
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7193
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7194 7195 7196
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7197 7198 7199
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7200 7201 7202 7203 7204 7205
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7206
 *
7207
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7208 7209
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7210
 *
P
Paul Jackson 已提交
7211 7212
 * Call with hotplug lock held
 */
7213
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7214
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7215
{
7216
	int i, j, n;
7217
	int new_topology;
P
Paul Jackson 已提交
7218

7219
	mutex_lock(&sched_domains_mutex);
7220

7221 7222 7223
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7224 7225 7226
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7227
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7228 7229 7230

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7231
		for (j = 0; j < n && !new_topology; j++) {
7232
			if (cpumask_equal(doms_cur[i], doms_new[j])
7233
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7234 7235 7236
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7237
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7238 7239 7240 7241
match1:
		;
	}

7242 7243
	if (doms_new == NULL) {
		ndoms_cur = 0;
7244
		doms_new = &fallback_doms;
7245
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7246
		WARN_ON_ONCE(dattr_new);
7247 7248
	}

P
Paul Jackson 已提交
7249 7250
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7251
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7252
			if (cpumask_equal(doms_new[i], doms_cur[j])
7253
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7254 7255 7256
				goto match2;
		}
		/* no match - add a new doms_new */
7257
		__build_sched_domains(doms_new[i],
7258
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7259 7260 7261 7262 7263
match2:
		;
	}

	/* Remember the new sched domains */
7264 7265
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7266
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7267
	doms_cur = doms_new;
7268
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7269
	ndoms_cur = ndoms_new;
7270 7271

	register_sched_domain_sysctl();
7272

7273
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7274 7275
}

7276
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7277
static void arch_reinit_sched_domains(void)
7278
{
7279
	get_online_cpus();
7280 7281 7282 7283

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7284
	rebuild_sched_domains();
7285
	put_online_cpus();
7286 7287 7288 7289
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7290
	unsigned int level = 0;
7291

7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7303 7304 7305
		return -EINVAL;

	if (smt)
7306
		sched_smt_power_savings = level;
7307
	else
7308
		sched_mc_power_savings = level;
7309

7310
	arch_reinit_sched_domains();
7311

7312
	return count;
7313 7314 7315
}

#ifdef CONFIG_SCHED_MC
7316
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7317
					   struct sysdev_class_attribute *attr,
7318
					   char *page)
7319 7320 7321
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7322
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7323
					    struct sysdev_class_attribute *attr,
7324
					    const char *buf, size_t count)
7325 7326 7327
{
	return sched_power_savings_store(buf, count, 0);
}
7328 7329 7330
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7331 7332 7333
#endif

#ifdef CONFIG_SCHED_SMT
7334
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7335
					    struct sysdev_class_attribute *attr,
7336
					    char *page)
7337 7338 7339
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7340
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7341
					     struct sysdev_class_attribute *attr,
7342
					     const char *buf, size_t count)
7343 7344 7345
{
	return sched_power_savings_store(buf, count, 1);
}
7346 7347
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7348 7349 7350
		   sched_smt_power_savings_store);
#endif

7351
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7367
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7368

L
Linus Torvalds 已提交
7369
/*
7370 7371 7372
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7373
 */
7374 7375
static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
				       unsigned long action, void *hcpu)
7376
{
7377
	switch (action & ~CPU_TASKS_FROZEN) {
7378
	case CPU_ONLINE:
7379
	case CPU_DOWN_FAILED:
7380
		cpuset_update_active_cpus();
7381
		return NOTIFY_OK;
7382 7383 7384 7385
	default:
		return NOTIFY_DONE;
	}
}
7386

7387 7388 7389 7390 7391 7392 7393
static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
					 unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7394 7395 7396 7397 7398 7399 7400
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7401
{
P
Peter Zijlstra 已提交
7402 7403
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7404 7405
	switch (action) {
	case CPU_DOWN_PREPARE:
7406
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7407
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7408 7409 7410
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7411
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7412
	case CPU_ONLINE:
7413
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7414
		enable_runtime(cpu_rq(cpu));
7415 7416
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7417 7418 7419 7420 7421 7422 7423
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7424 7425 7426
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7427
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7428

7429 7430 7431 7432 7433
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7434
	get_online_cpus();
7435
	mutex_lock(&sched_domains_mutex);
7436
	arch_init_sched_domains(cpu_active_mask);
7437 7438 7439
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7440
	mutex_unlock(&sched_domains_mutex);
7441
	put_online_cpus();
7442

7443 7444
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7445 7446 7447 7448

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7449
	init_hrtick();
7450 7451

	/* Move init over to a non-isolated CPU */
7452
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7453
		BUG();
I
Ingo Molnar 已提交
7454
	sched_init_granularity();
7455
	free_cpumask_var(non_isolated_cpus);
7456

7457
	init_sched_rt_class();
L
Linus Torvalds 已提交
7458 7459 7460 7461
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7462
	sched_init_granularity();
L
Linus Torvalds 已提交
7463 7464 7465
}
#endif /* CONFIG_SMP */

7466 7467
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7468 7469 7470 7471 7472 7473 7474
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7475
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7476 7477
{
	cfs_rq->tasks_timeline = RB_ROOT;
7478
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7479 7480 7481
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7482
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7483 7484
}

P
Peter Zijlstra 已提交
7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7498
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7499
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7500
#ifdef CONFIG_SMP
7501
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7502 7503
#endif
#endif
P
Peter Zijlstra 已提交
7504 7505 7506
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7507
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7508 7509 7510 7511
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7512
	rt_rq->rt_runtime = 0;
7513
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7514

7515
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7516
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7517 7518
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7519 7520
}

P
Peter Zijlstra 已提交
7521
#ifdef CONFIG_FAIR_GROUP_SCHED
7522 7523 7524
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7525
{
7526
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7527 7528 7529 7530 7531 7532 7533
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7534 7535 7536 7537
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7538 7539 7540 7541 7542
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7543 7544
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7545
	se->load.inv_weight = 0;
7546
	se->parent = parent;
P
Peter Zijlstra 已提交
7547
}
7548
#endif
P
Peter Zijlstra 已提交
7549

7550
#ifdef CONFIG_RT_GROUP_SCHED
7551 7552 7553
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7554
{
7555 7556
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7557 7558 7559
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7560
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7561 7562 7563 7564
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7565 7566 7567
	if (!rt_se)
		return;

7568 7569 7570 7571 7572
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7573
	rt_se->my_q = rt_rq;
7574
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7575 7576 7577 7578
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7579 7580
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7581
	int i, j;
7582 7583 7584 7585 7586 7587 7588
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7589
#endif
7590
#ifdef CONFIG_CPUMASK_OFFSTACK
7591
	alloc_size += num_possible_cpus() * cpumask_size();
7592 7593
#endif
	if (alloc_size) {
7594
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7595 7596 7597 7598 7599 7600 7601

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7602

7603
#endif /* CONFIG_FAIR_GROUP_SCHED */
7604 7605 7606 7607 7608
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7609 7610
		ptr += nr_cpu_ids * sizeof(void **);

7611
#endif /* CONFIG_RT_GROUP_SCHED */
7612 7613 7614 7615 7616 7617
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7618
	}
I
Ingo Molnar 已提交
7619

G
Gregory Haskins 已提交
7620 7621 7622 7623
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7624 7625 7626 7627 7628 7629
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7630
#endif /* CONFIG_RT_GROUP_SCHED */
7631

D
Dhaval Giani 已提交
7632
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7633
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7634 7635
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7636
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7637

7638 7639 7640 7641
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7642
	for_each_possible_cpu(i) {
7643
		struct rq *rq;
L
Linus Torvalds 已提交
7644 7645

		rq = cpu_rq(i);
7646
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7647
		rq->nr_running = 0;
7648 7649
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7650
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7651
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7652
#ifdef CONFIG_FAIR_GROUP_SCHED
7653
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7654
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7670
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7671 7672 7673 7674
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7675
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7676
#endif
D
Dhaval Giani 已提交
7677 7678 7679
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7680
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7681
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7682
#ifdef CONFIG_CGROUP_SCHED
7683
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7684
#endif
I
Ingo Molnar 已提交
7685
#endif
L
Linus Torvalds 已提交
7686

I
Ingo Molnar 已提交
7687 7688
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7689
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7690
		rq->sd = NULL;
G
Gregory Haskins 已提交
7691
		rq->rd = NULL;
7692
		rq->cpu_power = SCHED_LOAD_SCALE;
7693
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7694
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7695
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7696
		rq->push_cpu = 0;
7697
		rq->cpu = i;
7698
		rq->online = 0;
7699 7700
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7701
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7702
#endif
P
Peter Zijlstra 已提交
7703
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7704 7705 7706
		atomic_set(&rq->nr_iowait, 0);
	}

7707
	set_load_weight(&init_task);
7708

7709 7710 7711 7712
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7713
#ifdef CONFIG_SMP
7714
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7715 7716
#endif

7717
#ifdef CONFIG_RT_MUTEXES
7718
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7719 7720
#endif

L
Linus Torvalds 已提交
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7734 7735 7736

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7737 7738 7739 7740
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7741

7742
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7743
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7744
#ifdef CONFIG_SMP
7745
#ifdef CONFIG_NO_HZ
7746
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7747
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7748
#endif
R
Rusty Russell 已提交
7749 7750 7751
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7752
#endif /* SMP */
7753

7754
	perf_event_init();
7755

7756
	scheduler_running = 1;
L
Linus Torvalds 已提交
7757 7758 7759
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7760 7761
static inline int preempt_count_equals(int preempt_offset)
{
7762
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7763 7764 7765 7766

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7767
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7768
{
7769
#ifdef in_atomic
L
Linus Torvalds 已提交
7770 7771
	static unsigned long prev_jiffy;	/* ratelimiting */

7772 7773
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7774 7775 7776 7777 7778
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7779 7780 7781 7782 7783 7784 7785
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7786 7787 7788 7789 7790

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7791 7792 7793 7794 7795 7796
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7797 7798 7799
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7800

7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7811 7812
void normalize_rt_tasks(void)
{
7813
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7814
	unsigned long flags;
7815
	struct rq *rq;
L
Linus Torvalds 已提交
7816

7817
	read_lock_irqsave(&tasklist_lock, flags);
7818
	do_each_thread(g, p) {
7819 7820 7821 7822 7823 7824
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7825 7826
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7827 7828 7829
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7830
#endif
I
Ingo Molnar 已提交
7831 7832 7833 7834 7835 7836 7837 7838

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7839
			continue;
I
Ingo Molnar 已提交
7840
		}
L
Linus Torvalds 已提交
7841

7842
		raw_spin_lock(&p->pi_lock);
7843
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7844

7845
		normalize_task(rq, p);
7846

7847
		__task_rq_unlock(rq);
7848
		raw_spin_unlock(&p->pi_lock);
7849 7850
	} while_each_thread(g, p);

7851
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7852 7853 7854
}

#endif /* CONFIG_MAGIC_SYSRQ */
7855

7856
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7857
/*
7858
 * These functions are only useful for the IA64 MCA handling, or kdb.
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7873
struct task_struct *curr_task(int cpu)
7874 7875 7876 7877
{
	return cpu_curr(cpu);
}

7878 7879 7880
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7881 7882 7883 7884 7885 7886
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7887 7888
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7889 7890 7891 7892 7893 7894 7895
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7896
void set_curr_task(int cpu, struct task_struct *p)
7897 7898 7899 7900 7901
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7902

7903 7904
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7919 7920
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7921 7922
{
	struct cfs_rq *cfs_rq;
7923
	struct sched_entity *se;
7924
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7925 7926
	int i;

7927
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7928 7929
	if (!tg->cfs_rq)
		goto err;
7930
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7931 7932
	if (!tg->se)
		goto err;
7933 7934

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7935 7936

	for_each_possible_cpu(i) {
7937
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7938

7939 7940
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7941 7942 7943
		if (!cfs_rq)
			goto err;

7944 7945
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7946
		if (!se)
7947
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7948

7949
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7950 7951 7952 7953
	}

	return 1;

7954 7955
 err_free_rq:
	kfree(cfs_rq);
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7970
#else /* !CONFG_FAIR_GROUP_SCHED */
7971 7972 7973 7974
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7975 7976
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7988
#endif /* CONFIG_FAIR_GROUP_SCHED */
7989 7990

#ifdef CONFIG_RT_GROUP_SCHED
7991 7992 7993 7994
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7995 7996
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8008 8009
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8010 8011
{
	struct rt_rq *rt_rq;
8012
	struct sched_rt_entity *rt_se;
8013 8014 8015
	struct rq *rq;
	int i;

8016
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8017 8018
	if (!tg->rt_rq)
		goto err;
8019
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8020 8021 8022
	if (!tg->rt_se)
		goto err;

8023 8024
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8025 8026 8027 8028

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8029 8030
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8031 8032
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8033

8034 8035
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8036
		if (!rt_se)
8037
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8038

8039
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8040 8041
	}

8042 8043
	return 1;

8044 8045
 err_free_rq:
	kfree(rt_rq);
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8060
#else /* !CONFIG_RT_GROUP_SCHED */
8061 8062 8063 8064
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8065 8066
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8078
#endif /* CONFIG_RT_GROUP_SCHED */
8079

D
Dhaval Giani 已提交
8080
#ifdef CONFIG_CGROUP_SCHED
8081 8082 8083 8084 8085 8086 8087 8088
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8089
struct task_group *sched_create_group(struct task_group *parent)
8090 8091 8092 8093 8094 8095 8096 8097 8098
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8099
	if (!alloc_fair_sched_group(tg, parent))
8100 8101
		goto err;

8102
	if (!alloc_rt_sched_group(tg, parent))
8103 8104
		goto err;

8105
	spin_lock_irqsave(&task_group_lock, flags);
8106
	for_each_possible_cpu(i) {
8107 8108
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8109
	}
P
Peter Zijlstra 已提交
8110
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8111 8112 8113 8114 8115

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8116
	list_add_rcu(&tg->siblings, &parent->children);
8117
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8118

8119
	return tg;
S
Srivatsa Vaddagiri 已提交
8120 8121

err:
P
Peter Zijlstra 已提交
8122
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8123 8124 8125
	return ERR_PTR(-ENOMEM);
}

8126
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8127
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8128 8129
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8130
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8131 8132
}

8133
/* Destroy runqueue etc associated with a task group */
8134
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8135
{
8136
	unsigned long flags;
8137
	int i;
S
Srivatsa Vaddagiri 已提交
8138

8139
	spin_lock_irqsave(&task_group_lock, flags);
8140
	for_each_possible_cpu(i) {
8141 8142
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8143
	}
P
Peter Zijlstra 已提交
8144
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8145
	list_del_rcu(&tg->siblings);
8146
	spin_unlock_irqrestore(&task_group_lock, flags);
8147 8148

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8149
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8150 8151
}

8152
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8153 8154 8155
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8156 8157
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8158 8159 8160 8161 8162 8163 8164
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8165
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8166 8167
	on_rq = tsk->se.on_rq;

8168
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8169
		dequeue_task(rq, tsk, 0);
8170 8171
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8172

P
Peter Zijlstra 已提交
8173
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8174

P
Peter Zijlstra 已提交
8175 8176
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8177
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8178 8179
#endif

8180 8181 8182
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8183
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8184 8185 8186

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8187
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8188

8189
#ifdef CONFIG_FAIR_GROUP_SCHED
8190
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8191 8192 8193 8194 8195
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8196
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8197 8198 8199
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8200
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8201

8202
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8203
		enqueue_entity(cfs_rq, se, 0);
8204
}
8205

8206 8207 8208 8209 8210 8211
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8212
	raw_spin_lock_irqsave(&rq->lock, flags);
8213
	__set_se_shares(se, shares);
8214
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8215 8216
}

8217 8218
static DEFINE_MUTEX(shares_mutex);

8219
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8220 8221
{
	int i;
8222
	unsigned long flags;
8223

8224 8225 8226 8227 8228 8229
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8230 8231
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8232 8233
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8234

8235
	mutex_lock(&shares_mutex);
8236
	if (tg->shares == shares)
8237
		goto done;
S
Srivatsa Vaddagiri 已提交
8238

8239
	spin_lock_irqsave(&task_group_lock, flags);
8240 8241
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8242
	list_del_rcu(&tg->siblings);
8243
	spin_unlock_irqrestore(&task_group_lock, flags);
8244 8245 8246 8247 8248 8249 8250 8251

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8252
	tg->shares = shares;
8253 8254 8255 8256 8257
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8258
		set_se_shares(tg->se[i], shares);
8259
	}
S
Srivatsa Vaddagiri 已提交
8260

8261 8262 8263 8264
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8265
	spin_lock_irqsave(&task_group_lock, flags);
8266 8267
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8268
	list_add_rcu(&tg->siblings, &tg->parent->children);
8269
	spin_unlock_irqrestore(&task_group_lock, flags);
8270
done:
8271
	mutex_unlock(&shares_mutex);
8272
	return 0;
S
Srivatsa Vaddagiri 已提交
8273 8274
}

8275 8276 8277 8278
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8279
#endif
8280

8281
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8282
/*
P
Peter Zijlstra 已提交
8283
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8284
 */
P
Peter Zijlstra 已提交
8285 8286 8287 8288 8289
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8290
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8291

P
Peter Zijlstra 已提交
8292
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8293 8294
}

P
Peter Zijlstra 已提交
8295 8296
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8297
{
P
Peter Zijlstra 已提交
8298
	struct task_struct *g, *p;
8299

P
Peter Zijlstra 已提交
8300 8301 8302 8303
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8304

P
Peter Zijlstra 已提交
8305 8306
	return 0;
}
8307

P
Peter Zijlstra 已提交
8308 8309 8310 8311 8312
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8313

P
Peter Zijlstra 已提交
8314 8315 8316 8317 8318 8319
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8320

P
Peter Zijlstra 已提交
8321 8322
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8323

P
Peter Zijlstra 已提交
8324 8325 8326
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8327 8328
	}

8329 8330 8331 8332 8333
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8334

8335 8336 8337
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8338 8339
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8340

P
Peter Zijlstra 已提交
8341
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8342

8343 8344 8345 8346 8347
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8348

8349 8350 8351
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8352 8353 8354
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8355

P
Peter Zijlstra 已提交
8356 8357 8358 8359
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8360

P
Peter Zijlstra 已提交
8361
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8362
	}
P
Peter Zijlstra 已提交
8363

P
Peter Zijlstra 已提交
8364 8365 8366 8367
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8368 8369
}

P
Peter Zijlstra 已提交
8370
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8371
{
P
Peter Zijlstra 已提交
8372 8373 8374 8375 8376 8377 8378
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8379 8380
}

8381 8382
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8383
{
P
Peter Zijlstra 已提交
8384
	int i, err = 0;
P
Peter Zijlstra 已提交
8385 8386

	mutex_lock(&rt_constraints_mutex);
8387
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8388 8389
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8390
		goto unlock;
P
Peter Zijlstra 已提交
8391

8392
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8393 8394
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8395 8396 8397 8398

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8399
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8400
		rt_rq->rt_runtime = rt_runtime;
8401
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8402
	}
8403
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8404
 unlock:
8405
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8406 8407 8408
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8409 8410
}

8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8423 8424 8425 8426
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8427
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8428 8429
		return -1;

8430
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8431 8432 8433
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8434 8435 8436 8437 8438 8439 8440 8441

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8442 8443 8444
	if (rt_period == 0)
		return -EINVAL;

8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8459
	u64 runtime, period;
8460 8461
	int ret = 0;

8462 8463 8464
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8465 8466 8467 8468 8469 8470 8471 8472
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8473

8474
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8475
	read_lock(&tasklist_lock);
8476
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8477
	read_unlock(&tasklist_lock);
8478 8479 8480 8481
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8492
#else /* !CONFIG_RT_GROUP_SCHED */
8493 8494
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8495 8496 8497
	unsigned long flags;
	int i;

8498 8499 8500
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8501 8502 8503 8504 8505 8506 8507
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8508
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8509 8510 8511
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8512
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8513
		rt_rq->rt_runtime = global_rt_runtime();
8514
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8515
	}
8516
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8517

8518 8519
	return 0;
}
8520
#endif /* CONFIG_RT_GROUP_SCHED */
8521 8522

int sched_rt_handler(struct ctl_table *table, int write,
8523
		void __user *buffer, size_t *lenp,
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8534
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8551

8552
#ifdef CONFIG_CGROUP_SCHED
8553 8554

/* return corresponding task_group object of a cgroup */
8555
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8556
{
8557 8558
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8559 8560 8561
}

static struct cgroup_subsys_state *
8562
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8563
{
8564
	struct task_group *tg, *parent;
8565

8566
	if (!cgrp->parent) {
8567 8568 8569 8570
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8571 8572
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8573 8574 8575 8576 8577 8578
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8579 8580
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8581
{
8582
	struct task_group *tg = cgroup_tg(cgrp);
8583 8584 8585 8586

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8587
static int
8588
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8589
{
8590
#ifdef CONFIG_RT_GROUP_SCHED
8591
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8592 8593
		return -EINVAL;
#else
8594 8595 8596
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8597
#endif
8598 8599
	return 0;
}
8600

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8620 8621 8622 8623
	return 0;
}

static void
8624
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8625 8626
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8627 8628
{
	sched_move_task(tsk);
8629 8630 8631 8632 8633 8634 8635 8636
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8637 8638
}

8639
#ifdef CONFIG_FAIR_GROUP_SCHED
8640
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8641
				u64 shareval)
8642
{
8643
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8644 8645
}

8646
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8647
{
8648
	struct task_group *tg = cgroup_tg(cgrp);
8649 8650 8651

	return (u64) tg->shares;
}
8652
#endif /* CONFIG_FAIR_GROUP_SCHED */
8653

8654
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8655
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8656
				s64 val)
P
Peter Zijlstra 已提交
8657
{
8658
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8659 8660
}

8661
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8662
{
8663
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8664
}
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8676
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8677

8678
static struct cftype cpu_files[] = {
8679
#ifdef CONFIG_FAIR_GROUP_SCHED
8680 8681
	{
		.name = "shares",
8682 8683
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8684
	},
8685 8686
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8687
	{
P
Peter Zijlstra 已提交
8688
		.name = "rt_runtime_us",
8689 8690
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8691
	},
8692 8693
	{
		.name = "rt_period_us",
8694 8695
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8696
	},
8697
#endif
8698 8699 8700 8701
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8702
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8703 8704 8705
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8706 8707 8708 8709 8710 8711 8712
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8713 8714 8715
	.early_init	= 1,
};

8716
#endif	/* CONFIG_CGROUP_SCHED */
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8727
/* track cpu usage of a group of tasks and its child groups */
8728 8729 8730
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8731
	u64 __percpu *cpuusage;
8732
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8733
	struct cpuacct *parent;
8734 8735 8736 8737 8738
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8739
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8740
{
8741
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8754
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8755 8756
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8757
	int i;
8758 8759

	if (!ca)
8760
		goto out;
8761 8762

	ca->cpuusage = alloc_percpu(u64);
8763 8764 8765 8766 8767 8768
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8769

8770 8771 8772
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8773
	return &ca->css;
8774 8775 8776 8777 8778 8779 8780 8781 8782

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8783 8784 8785
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8786
static void
8787
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8788
{
8789
	struct cpuacct *ca = cgroup_ca(cgrp);
8790
	int i;
8791

8792 8793
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8794 8795 8796 8797
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8798 8799
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8800
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8801 8802 8803 8804 8805 8806
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8807
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8808
	data = *cpuusage;
8809
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8810 8811 8812 8813 8814 8815 8816 8817 8818
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8819
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8820 8821 8822 8823 8824

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8825
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8826
	*cpuusage = val;
8827
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8828 8829 8830 8831 8832
#else
	*cpuusage = val;
#endif
}

8833
/* return total cpu usage (in nanoseconds) of a group */
8834
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8835
{
8836
	struct cpuacct *ca = cgroup_ca(cgrp);
8837 8838 8839
	u64 totalcpuusage = 0;
	int i;

8840 8841
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8842 8843 8844 8845

	return totalcpuusage;
}

8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8858 8859
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8860 8861 8862 8863 8864

out:
	return err;
}

8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8899 8900 8901
static struct cftype files[] = {
	{
		.name = "usage",
8902 8903
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8904
	},
8905 8906 8907 8908
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8909 8910 8911 8912
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8913 8914
};

8915
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8916
{
8917
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8918 8919 8920 8921 8922 8923 8924 8925 8926 8927
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8928
	int cpu;
8929

L
Li Zefan 已提交
8930
	if (unlikely(!cpuacct_subsys.active))
8931 8932
		return;

8933
	cpu = task_cpu(tsk);
8934 8935 8936

	rcu_read_lock();

8937 8938
	ca = task_ca(tsk);

8939
	for (; ca; ca = ca->parent) {
8940
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8941 8942
		*cpuusage += cputime;
	}
8943 8944

	rcu_read_unlock();
8945 8946
}

8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8964 8965 8966 8967 8968 8969 8970
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8971
	int batch = CPUACCT_BATCH;
8972 8973 8974 8975 8976 8977 8978 8979

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8980
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8981 8982 8983 8984 8985
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8986 8987 8988 8989 8990 8991 8992 8993
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8994 8995 8996 8997 8998

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
8999
	barrier();
9000 9001 9002 9003 9004
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

9005
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9006

9007
static int synchronize_sched_expedited_cpu_stop(void *data)
9008
{
9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
9020
	smp_mb(); /* See above comment block. */
9021
	return 0;
9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
9036
	int snap, trycount = 0;
9037 9038

	smp_mb();  /* ensure prior mod happens before capturing snap. */
9039
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9040
	get_online_cpus();
9041 9042
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
9043
			     NULL) == -EAGAIN) {
9044 9045 9046 9047 9048 9049 9050
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
9051
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9052 9053 9054 9055 9056
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
9057
	atomic_inc(&synchronize_sched_expedited_count);
9058
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9059 9060 9061 9062 9063
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */