sched.c 213.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326
#ifdef CONFIG_FAIR_GROUP_SCHED
327 328
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
329
#endif
P
Peter Zijlstra 已提交
330

331
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
332 333
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
334
#endif
S
Srivatsa Vaddagiri 已提交
335 336 337 338
}

#else

P
Peter Zijlstra 已提交
339
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
340 341 342 343
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
344

D
Dhaval Giani 已提交
345
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
346

I
Ingo Molnar 已提交
347 348 349 350 351 352
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
353
	u64 min_vruntime;
I
Ingo Molnar 已提交
354 355 356

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
357 358 359 360 361 362

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
363 364
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
365
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
368

369
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
370 371
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
372 373
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
374 375 376 377 378 379
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
380 381
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
382 383 384

#ifdef CONFIG_SMP
	/*
385
	 * the part of load.weight contributed by tasks
386
	 */
387
	unsigned long task_weight;
388

389 390 391 392 393 394 395
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
396

397 398 399 400
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
401 402 403 404 405

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
406
#endif
I
Ingo Molnar 已提交
407 408
#endif
};
L
Linus Torvalds 已提交
409

I
Ingo Molnar 已提交
410 411 412
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
413
	unsigned long rt_nr_running;
414
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 416
	struct {
		int curr; /* highest queued rt task prio */
417
#ifdef CONFIG_SMP
418
		int next; /* next highest */
419
#endif
420
	} highest_prio;
P
Peter Zijlstra 已提交
421
#endif
P
Peter Zijlstra 已提交
422
#ifdef CONFIG_SMP
423
	unsigned long rt_nr_migratory;
424
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
425
	int overloaded;
426
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
427
#endif
P
Peter Zijlstra 已提交
428
	int rt_throttled;
P
Peter Zijlstra 已提交
429
	u64 rt_time;
P
Peter Zijlstra 已提交
430
	u64 rt_runtime;
I
Ingo Molnar 已提交
431
	/* Nests inside the rq lock: */
432
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
433

434
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
437 438 439 440
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
441 442
};

G
Gregory Haskins 已提交
443 444 445 446
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
447 448
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
449 450 451 452 453 454
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
455 456
	cpumask_var_t span;
	cpumask_var_t online;
457

I
Ingo Molnar 已提交
458
	/*
459 460 461
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
462
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
463
	atomic_t rto_count;
464 465 466
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
467 468
};

469 470 471 472
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
473 474 475 476
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
477 478 479 480 481 482 483
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
484
struct rq {
485
	/* runqueue lock: */
486
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
487 488 489 490 491 492

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
493 494
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
496
	u64 nohz_stamp;
497 498
	unsigned char in_nohz_recently;
#endif
499 500
	unsigned int skip_clock_update;

501 502
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
503 504 505 506
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
507 508
	struct rt_rq rt;

I
Ingo Molnar 已提交
509
#ifdef CONFIG_FAIR_GROUP_SCHED
510 511
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
512 513
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
514
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
515 516 517 518 519 520 521 522 523 524
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

525
	struct task_struct *curr, *idle;
526
	unsigned long next_balance;
L
Linus Torvalds 已提交
527
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
528

529
	u64 clock;
I
Ingo Molnar 已提交
530

L
Linus Torvalds 已提交
531 532 533
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
534
	struct root_domain *rd;
L
Linus Torvalds 已提交
535 536
	struct sched_domain *sd;

537
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
538
	/* For active balancing */
539
	int post_schedule;
L
Linus Torvalds 已提交
540 541
	int active_balance;
	int push_cpu;
542
	struct cpu_stop_work active_balance_work;
543 544
	/* cpu of this runqueue: */
	int cpu;
545
	int online;
L
Linus Torvalds 已提交
546

547
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
548

549 550
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
551 552
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
553 554
#endif

555 556 557 558
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
559
#ifdef CONFIG_SCHED_HRTICK
560 561 562 563
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
564 565 566
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
567 568 569
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
570 571
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
572 573

	/* sys_sched_yield() stats */
574
	unsigned int yld_count;
L
Linus Torvalds 已提交
575 576

	/* schedule() stats */
577 578 579
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
580 581

	/* try_to_wake_up() stats */
582 583
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
584 585

	/* BKL stats */
586
	unsigned int bkl_count;
L
Linus Torvalds 已提交
587 588 589
#endif
};

590
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
591

P
Peter Zijlstra 已提交
592 593
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
594
{
P
Peter Zijlstra 已提交
595
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
596 597 598 599 600 601 602

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
603 604
}

605 606 607 608 609 610 611 612 613
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

614
#define rcu_dereference_check_sched_domain(p) \
615 616 617 618
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
619 620
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
621
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
622 623 624 625
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
626
#define for_each_domain(cpu, __sd) \
627
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
628 629 630 631 632

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
633
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
634

I
Ingo Molnar 已提交
635
inline void update_rq_clock(struct rq *rq)
636
{
637 638
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
639 640
}

I
Ingo Molnar 已提交
641 642 643 644 645 646 647 648 649
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
650 651
/**
 * runqueue_is_locked
652
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
653 654 655 656 657
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
658
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
659
{
660
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
661 662
}

I
Ingo Molnar 已提交
663 664 665
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
666 667 668 669

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
670
enum {
P
Peter Zijlstra 已提交
671
#include "sched_features.h"
I
Ingo Molnar 已提交
672 673
};

P
Peter Zijlstra 已提交
674 675 676 677 678
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
679
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
680 681 682 683 684 685 686 687 688
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

689
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
690 691 692 693 694 695
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
696
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
697 698 699 700
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
701 702 703
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
704
	}
L
Li Zefan 已提交
705
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
706

L
Li Zefan 已提交
707
	return 0;
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
727
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

747
	*ppos += cnt;
P
Peter Zijlstra 已提交
748 749 750 751

	return cnt;
}

L
Li Zefan 已提交
752 753 754 755 756
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

757
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
758 759 760 761 762
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
777

778 779 780 781 782 783
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
784 785
/*
 * ratelimit for updating the group shares.
786
 * default: 0.25ms
P
Peter Zijlstra 已提交
787
 */
788
unsigned int sysctl_sched_shares_ratelimit = 250000;
789
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
790

791 792 793 794 795 796 797
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

798 799 800 801 802 803 804 805
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
806
/*
P
Peter Zijlstra 已提交
807
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
808 809
 * default: 1s
 */
P
Peter Zijlstra 已提交
810
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
811

812 813
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
814 815 816 817 818
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
819

820 821 822 823 824 825 826
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
827
	if (sysctl_sched_rt_runtime < 0)
828 829 830 831
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
832

L
Linus Torvalds 已提交
833
#ifndef prepare_arch_switch
834 835 836 837 838 839
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

840 841 842 843 844
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

845
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
846
static inline int task_running(struct rq *rq, struct task_struct *p)
847
{
848
	return task_current(rq, p);
849 850
}

851
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
852 853 854
{
}

855
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
856
{
857 858 859 860
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
861 862 863 864 865 866 867
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

868
	raw_spin_unlock_irq(&rq->lock);
869 870 871
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
872
static inline int task_running(struct rq *rq, struct task_struct *p)
873 874 875 876
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
877
	return task_current(rq, p);
878 879 880
#endif
}

881
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 883 884 885 886 887 888 889 890 891
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
892
	raw_spin_unlock_irq(&rq->lock);
893
#else
894
	raw_spin_unlock(&rq->lock);
895 896 897
#endif
}

898
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
899 900 901 902 903 904 905 906 907 908 909 910
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
911
#endif
912 913
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
914

915
/*
P
Peter Zijlstra 已提交
916 917
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
918 919 920
 */
static inline int task_is_waking(struct task_struct *p)
{
921
	return unlikely(p->state == TASK_WAKING);
922 923
}

924 925 926 927
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
928
static inline struct rq *__task_rq_lock(struct task_struct *p)
929 930
	__acquires(rq->lock)
{
931 932
	struct rq *rq;

933
	for (;;) {
934
		rq = task_rq(p);
935
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
936
		if (likely(rq == task_rq(p)))
937
			return rq;
938
		raw_spin_unlock(&rq->lock);
939 940 941
	}
}

L
Linus Torvalds 已提交
942 943
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
944
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
945 946
 * explicitly disabling preemption.
 */
947
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
948 949
	__acquires(rq->lock)
{
950
	struct rq *rq;
L
Linus Torvalds 已提交
951

952 953 954
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
955
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
956
		if (likely(rq == task_rq(p)))
957
			return rq;
958
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
959 960 961
	}
}

962 963 964 965 966
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
967
	raw_spin_unlock_wait(&rq->lock);
968 969
}

A
Alexey Dobriyan 已提交
970
static void __task_rq_unlock(struct rq *rq)
971 972
	__releases(rq->lock)
{
973
	raw_spin_unlock(&rq->lock);
974 975
}

976
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
977 978
	__releases(rq->lock)
{
979
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
980 981 982
}

/*
983
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
984
 */
A
Alexey Dobriyan 已提交
985
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
986 987
	__acquires(rq->lock)
{
988
	struct rq *rq;
L
Linus Torvalds 已提交
989 990 991

	local_irq_disable();
	rq = this_rq();
992
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
993 994 995 996

	return rq;
}

P
Peter Zijlstra 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1018
	if (!cpu_active(cpu_of(rq)))
1019
		return 0;
P
Peter Zijlstra 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1039
	raw_spin_lock(&rq->lock);
1040
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1041
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1043 1044 1045 1046

	return HRTIMER_NORESTART;
}

1047
#ifdef CONFIG_SMP
1048 1049 1050 1051
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1052
{
1053
	struct rq *rq = arg;
1054

1055
	raw_spin_lock(&rq->lock);
1056 1057
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1058
	raw_spin_unlock(&rq->lock);
1059 1060
}

1061 1062 1063 1064 1065 1066
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1067
{
1068 1069
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070

1071
	hrtimer_set_expires(timer, time);
1072 1073 1074 1075

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1076
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 1078
		rq->hrtick_csd_pending = 1;
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1093
		hrtick_clear(cpu_rq(cpu));
1094 1095 1096 1097 1098 1099
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1100
static __init void init_hrtick(void)
1101 1102 1103
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1104 1105 1106 1107 1108 1109 1110 1111
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1112
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113
			HRTIMER_MODE_REL_PINNED, 0);
1114
}
1115

A
Andrew Morton 已提交
1116
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1117 1118
{
}
1119
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1120

1121
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1122
{
1123 1124
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1125

1126 1127 1128 1129
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1130

1131 1132
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1133
}
A
Andrew Morton 已提交
1134
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141 1142
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1143 1144 1145
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1146
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1147

I
Ingo Molnar 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1161
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1162 1163 1164
{
	int cpu;

1165
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1166

1167
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1168 1169
		return;

1170
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1187
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1188 1189
		return;
	resched_task(cpu_curr(cpu));
1190
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1191
}
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1226
	set_tsk_need_resched(rq->idle);
1227 1228 1229 1230 1231 1232

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1244
#endif /* CONFIG_NO_HZ */
1245

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1267
#else /* !CONFIG_SMP */
1268
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1269
{
1270
	assert_raw_spin_locked(&task_rq(p)->lock);
1271
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1272
}
1273 1274 1275 1276

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1343 1344
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

1387 1388 1389 1390 1391 1392 1393 1394
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1395 1396
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1397 1398
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1399 1400
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1401 1402
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1403 1404
#endif

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1415
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1416
typedef int (*tg_visitor)(struct task_group *, void *);
1417 1418 1419 1420 1421

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1422
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1423 1424
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1425
	int ret;
1426 1427 1428 1429

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1430 1431 1432
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1433 1434 1435 1436 1437 1438 1439
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1440 1441 1442
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1443 1444 1445 1446 1447

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1448
out_unlock:
1449
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1450 1451

	return ret;
1452 1453
}

P
Peter Zijlstra 已提交
1454 1455 1456
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1457
}
P
Peter Zijlstra 已提交
1458 1459 1460
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1500 1501
static struct sched_group *group_of(int cpu)
{
1502
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1520 1521 1522 1523 1524
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1525
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1526

1527 1528
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1529 1530
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1531 1532 1533 1534 1535

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1536

1537
static __read_mostly unsigned long __percpu *update_shares_data;
1538

1539 1540 1541 1542 1543
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1544 1545 1546
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1547
				    unsigned long *usd_rq_weight)
1548
{
1549
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1550
	int boost = 0;
1551

1552
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1553 1554 1555 1556
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1557

1558
	/*
P
Peter Zijlstra 已提交
1559 1560 1561
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1562
	 */
1563
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1564
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1565

1566 1567 1568 1569
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1570

1571
		raw_spin_lock_irqsave(&rq->lock, flags);
1572
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1573
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1574
		__set_se_shares(tg->se[cpu], shares);
1575
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1576
	}
1577
}
1578 1579

/*
1580 1581 1582
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1583
 */
P
Peter Zijlstra 已提交
1584
static int tg_shares_up(struct task_group *tg, void *data)
1585
{
1586
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1587
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1588
	struct sched_domain *sd = data;
1589
	unsigned long flags;
1590
	int i;
1591

1592 1593 1594 1595
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1596
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1597

1598
	for_each_cpu(i, sched_domain_span(sd)) {
1599
		weight = tg->cfs_rq[i]->load.weight;
1600
		usd_rq_weight[i] = weight;
1601

1602
		rq_weight += weight;
1603 1604 1605 1606 1607 1608 1609 1610
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1611
		sum_weight += weight;
1612
		shares += tg->cfs_rq[i]->shares;
1613 1614
	}

1615 1616 1617
	if (!rq_weight)
		rq_weight = sum_weight;

1618 1619 1620 1621 1622
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1623

1624
	for_each_cpu(i, sched_domain_span(sd))
1625
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1626 1627

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1628 1629

	return 0;
1630 1631 1632
}

/*
1633 1634 1635
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1636
 */
P
Peter Zijlstra 已提交
1637
static int tg_load_down(struct task_group *tg, void *data)
1638
{
1639
	unsigned long load;
P
Peter Zijlstra 已提交
1640
	long cpu = (long)data;
1641

1642 1643 1644 1645 1646 1647 1648
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1649

1650
	tg->cfs_rq[cpu]->h_load = load;
1651

P
Peter Zijlstra 已提交
1652
	return 0;
1653 1654
}

1655
static void update_shares(struct sched_domain *sd)
1656
{
1657 1658 1659 1660 1661 1662 1663 1664
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1665 1666 1667

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1668
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1669
	}
1670 1671
}

P
Peter Zijlstra 已提交
1672
static void update_h_load(long cpu)
1673
{
1674 1675 1676
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1677
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1678 1679 1680 1681
}

#else

1682
static inline void update_shares(struct sched_domain *sd)
1683 1684 1685
{
}

1686 1687
#endif

1688 1689
#ifdef CONFIG_PREEMPT

1690 1691
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1692
/*
1693 1694 1695 1696 1697 1698
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1699
 */
1700 1701 1702 1703 1704
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1705
	raw_spin_unlock(&this_rq->lock);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1720 1721 1722 1723 1724 1725
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1726
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1727
		if (busiest < this_rq) {
1728 1729 1730 1731
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1732 1733
			ret = 1;
		} else
1734 1735
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1736 1737 1738 1739
	}
	return ret;
}

1740 1741 1742 1743 1744 1745 1746 1747 1748
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1749
		raw_spin_unlock(&this_rq->lock);
1750 1751 1752 1753 1754 1755
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1756 1757 1758
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1759
	raw_spin_unlock(&busiest->lock);
1760 1761
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1805 1806
#endif

V
Vegard Nossum 已提交
1807
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1808 1809
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1810
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1811 1812 1813
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1814
#endif
1815

1816
static void calc_load_account_idle(struct rq *this_rq);
1817
static void update_sysctl(void);
1818
static int get_update_sysctl_factor(void);
1819

P
Peter Zijlstra 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1833

1834
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1835 1836

#define sched_class_highest (&rt_sched_class)
1837 1838
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1839

1840 1841
#include "sched_stats.h"

1842
static void inc_nr_running(struct rq *rq)
1843 1844 1845 1846
{
	rq->nr_running++;
}

1847
static void dec_nr_running(struct rq *rq)
1848 1849 1850 1851
{
	rq->nr_running--;
}

1852 1853 1854
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1855 1856 1857 1858
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1859

I
Ingo Molnar 已提交
1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1871 1872
}

1873
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1874
{
1875
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1876
	sched_info_queued(p);
1877
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1878
	p->se.on_rq = 1;
1879 1880
}

1881
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1882
{
1883
	update_rq_clock(rq);
1884
	sched_info_dequeued(p);
1885
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1886
	p->se.on_rq = 0;
1887 1888
}

1889 1890 1891
/*
 * activate_task - move a task to the runqueue.
 */
1892
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1893 1894 1895 1896
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1897
	enqueue_task(rq, p, flags);
1898 1899 1900 1901 1902 1903
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1904
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1905 1906 1907 1908
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1909
	dequeue_task(rq, p, flags);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1920
/*
I
Ingo Molnar 已提交
1921
 * __normal_prio - return the priority that is based on the static prio
1922 1923 1924
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1925
	return p->static_prio;
1926 1927
}

1928 1929 1930 1931 1932 1933 1934
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1935
static inline int normal_prio(struct task_struct *p)
1936 1937 1938
{
	int prio;

1939
	if (task_has_rt_policy(p))
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1953
static int effective_prio(struct task_struct *p)
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1966 1967 1968 1969
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1970
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1971 1972 1973 1974
{
	return cpu_curr(task_cpu(p)) == p;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1987
#ifdef CONFIG_SMP
1988 1989 1990
/*
 * Is this task likely cache-hot:
 */
1991
static int
1992 1993 1994 1995
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1996 1997 1998
	if (p->sched_class != &fair_sched_class)
		return 0;

1999 2000 2001
	/*
	 * Buddy candidates are cache hot:
	 */
2002
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2003 2004
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2005 2006
		return 1;

2007 2008 2009 2010 2011
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2012 2013 2014 2015 2016
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2017
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2018
{
2019 2020 2021 2022 2023
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2024 2025
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2026 2027
#endif

2028
	trace_sched_migrate_task(p, new_cpu);
2029

2030 2031 2032 2033
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2034 2035

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2036 2037
}

2038
struct migration_arg {
2039
	struct task_struct *task;
L
Linus Torvalds 已提交
2040
	int dest_cpu;
2041
};
L
Linus Torvalds 已提交
2042

2043 2044
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2045 2046 2047 2048
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2049
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2050
{
2051
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2052 2053 2054

	/*
	 * If the task is not on a runqueue (and not running), then
2055
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2056
	 */
2057
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2103 2104 2105
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2106 2107 2108 2109 2110 2111 2112
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2119
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2120 2121
{
	unsigned long flags;
I
Ingo Molnar 已提交
2122
	int running, on_rq;
R
Roland McGrath 已提交
2123
	unsigned long ncsw;
2124
	struct rq *rq;
L
Linus Torvalds 已提交
2125

2126 2127 2128 2129 2130 2131 2132 2133
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2146 2147 2148
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2149
			cpu_relax();
R
Roland McGrath 已提交
2150
		}
2151

2152 2153 2154 2155 2156 2157
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2158
		trace_sched_wait_task(rq, p);
2159 2160
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2161
		ncsw = 0;
2162
		if (!match_state || p->state == match_state)
2163
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2164
		task_rq_unlock(rq, &flags);
2165

R
Roland McGrath 已提交
2166 2167 2168 2169 2170 2171
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2182

2183 2184 2185 2186 2187
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2188
		 * So if it was still runnable (but just not actively
2189 2190 2191 2192 2193 2194 2195
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2196

2197 2198 2199 2200 2201 2202 2203
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2204 2205

	return ncsw;
L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2221
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2231
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2232
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2233

T
Thomas Gleixner 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2255
#ifdef CONFIG_SMP
2256 2257 2258
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2275
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2276
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2292
/*
2293
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2294
 */
2295
static inline
2296
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2297
{
2298
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2311
		     !cpu_online(cpu)))
2312
		cpu = select_fallback_rq(task_cpu(p), p);
2313 2314

	return cpu;
2315
}
2316 2317 2318 2319 2320 2321

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2322 2323
#endif

L
Linus Torvalds 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2338 2339
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2340
{
2341
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2342
	unsigned long flags;
2343
	unsigned long en_flags = ENQUEUE_WAKEUP;
2344
	struct rq *rq;
L
Linus Torvalds 已提交
2345

P
Peter Zijlstra 已提交
2346
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2347

2348
	smp_wmb();
2349
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2350
	if (!(p->state & state))
L
Linus Torvalds 已提交
2351 2352
		goto out;

I
Ingo Molnar 已提交
2353
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2354 2355 2356
		goto out_running;

	cpu = task_cpu(p);
2357
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2363 2364 2365
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2366 2367
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2368
	 */
2369 2370 2371 2372 2373 2374
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2375
	p->state = TASK_WAKING;
2376

2377
	if (p->sched_class->task_waking) {
2378
		p->sched_class->task_waking(rq, p);
2379 2380
		en_flags |= ENQUEUE_WAKING;
	}
2381

2382 2383
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2384
		set_task_cpu(p, cpu);
2385
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2386

2387 2388
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2389

2390 2391 2392 2393 2394 2395 2396
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2397
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2398

2399 2400 2401 2402 2403 2404 2405
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2406
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2407 2408 2409 2410 2411
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2412
#endif /* CONFIG_SCHEDSTATS */
2413

L
Linus Torvalds 已提交
2414 2415
out_activate:
#endif /* CONFIG_SMP */
2416
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2417
	if (wake_flags & WF_SYNC)
2418
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2419
	if (orig_cpu != cpu)
2420
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2421
	if (cpu == this_cpu)
2422
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2423
	else
2424
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2425
	activate_task(rq, p, en_flags);
L
Linus Torvalds 已提交
2426 2427 2428
	success = 1;

out_running:
2429
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2430
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2431

L
Linus Torvalds 已提交
2432
	p->state = TASK_RUNNING;
2433
#ifdef CONFIG_SMP
2434 2435
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2447
#endif
L
Linus Torvalds 已提交
2448 2449
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2450
	put_cpu();
L
Linus Torvalds 已提交
2451 2452 2453 2454

	return success;
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2466
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2467
{
2468
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2469 2470 2471
}
EXPORT_SYMBOL(wake_up_process);

2472
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2473 2474 2475 2476 2477 2478 2479
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2480 2481 2482 2483 2484 2485 2486
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2487
	p->se.prev_sum_exec_runtime	= 0;
2488
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2489 2490

#ifdef CONFIG_SCHEDSTATS
2491
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2492
#endif
N
Nick Piggin 已提交
2493

P
Peter Zijlstra 已提交
2494
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2495
	p->se.on_rq = 0;
2496
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2497

2498 2499 2500
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2511
	/*
2512
	 * We mark the process as running here. This guarantees that
2513 2514 2515
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2516
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2517

2518 2519 2520 2521
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2522
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2523
			p->policy = SCHED_NORMAL;
2524 2525
			p->normal_prio = p->static_prio;
		}
2526

2527 2528
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2529
			p->normal_prio = p->static_prio;
2530 2531 2532
			set_load_weight(p);
		}

2533 2534 2535 2536 2537 2538
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2539

2540 2541 2542 2543 2544
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2545 2546
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2547

P
Peter Zijlstra 已提交
2548 2549 2550
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2551 2552
	set_task_cpu(p, cpu);

2553
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2554
	if (likely(sched_info_on()))
2555
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2556
#endif
2557
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2558 2559
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2560
#ifdef CONFIG_PREEMPT
2561
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2562
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2563
#endif
2564 2565
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2566
	put_cpu();
L
Linus Torvalds 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2576
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2577 2578
{
	unsigned long flags;
I
Ingo Molnar 已提交
2579
	struct rq *rq;
2580
	int cpu __maybe_unused = get_cpu();
2581 2582

#ifdef CONFIG_SMP
2583 2584 2585
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2586 2587 2588 2589 2590
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2591 2592
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2593
	 */
2594
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2595
	set_task_cpu(p, cpu);
2596

2597
	p->state = TASK_RUNNING;
2598 2599 2600 2601
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2602
	activate_task(rq, p, 0);
2603
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2604
	check_preempt_curr(rq, p, WF_FORK);
2605
#ifdef CONFIG_SMP
2606 2607
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2608
#endif
I
Ingo Molnar 已提交
2609
	task_rq_unlock(rq, &flags);
2610
	put_cpu();
L
Linus Torvalds 已提交
2611 2612
}

2613 2614 2615
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2616
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2617
 * @notifier: notifier struct to register
2618 2619 2620 2621 2622 2623 2624 2625 2626
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2627
 * @notifier: notifier struct to unregister
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2657
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2669
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2670

2671 2672 2673
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2674
 * @prev: the current task that is being switched out
2675 2676 2677 2678 2679 2680 2681 2682 2683
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2684 2685 2686
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2687
{
2688
	fire_sched_out_preempt_notifiers(prev, next);
2689 2690 2691 2692
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2693 2694
/**
 * finish_task_switch - clean up after a task-switch
2695
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2696 2697
 * @prev: the thread we just switched away from.
 *
2698 2699 2700 2701
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2702 2703
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2704
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2705 2706 2707
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2708
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2709 2710 2711
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2712
	long prev_state;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2718
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2719 2720
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2721
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2722 2723 2724 2725 2726
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2727
	prev_state = prev->state;
2728
	finish_arch_switch(prev);
2729 2730 2731
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2732
	perf_event_task_sched_in(current);
2733 2734 2735
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2736
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2737

2738
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2739 2740
	if (mm)
		mmdrop(mm);
2741
	if (unlikely(prev_state == TASK_DEAD)) {
2742 2743 2744
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2745
		 */
2746
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2747
		put_task_struct(prev);
2748
	}
L
Linus Torvalds 已提交
2749 2750
}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2766
		raw_spin_lock_irqsave(&rq->lock, flags);
2767 2768
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2769
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2770 2771 2772 2773 2774 2775

		rq->post_schedule = 0;
	}
}

#else
2776

2777 2778 2779 2780 2781 2782
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2783 2784
}

2785 2786
#endif

L
Linus Torvalds 已提交
2787 2788 2789 2790
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2791
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2792 2793
	__releases(rq->lock)
{
2794 2795
	struct rq *rq = this_rq();

2796
	finish_task_switch(rq, prev);
2797

2798 2799 2800 2801 2802
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2803

2804 2805 2806 2807
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2808
	if (current->set_child_tid)
2809
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814 2815
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2816
static inline void
2817
context_switch(struct rq *rq, struct task_struct *prev,
2818
	       struct task_struct *next)
L
Linus Torvalds 已提交
2819
{
I
Ingo Molnar 已提交
2820
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2821

2822
	prepare_task_switch(rq, prev, next);
2823
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2824 2825
	mm = next->mm;
	oldmm = prev->active_mm;
2826 2827 2828 2829 2830
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2831
	arch_start_context_switch(prev);
2832

2833
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838 2839
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2840
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2841 2842 2843
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2844 2845 2846 2847 2848 2849 2850
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2851
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2852
#endif
L
Linus Torvalds 已提交
2853 2854 2855 2856

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2857 2858 2859 2860 2861 2862 2863
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2881
}
L
Linus Torvalds 已提交
2882 2883

unsigned long nr_uninterruptible(void)
2884
{
L
Linus Torvalds 已提交
2885
	unsigned long i, sum = 0;
2886

2887
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2888
		sum += cpu_rq(i)->nr_uninterruptible;
2889 2890

	/*
L
Linus Torvalds 已提交
2891 2892
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2893
	 */
L
Linus Torvalds 已提交
2894 2895
	if (unlikely((long)sum < 0))
		sum = 0;
2896

L
Linus Torvalds 已提交
2897
	return sum;
2898 2899
}

L
Linus Torvalds 已提交
2900
unsigned long long nr_context_switches(void)
2901
{
2902 2903
	int i;
	unsigned long long sum = 0;
2904

2905
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2906
		sum += cpu_rq(i)->nr_switches;
2907

L
Linus Torvalds 已提交
2908 2909
	return sum;
}
2910

L
Linus Torvalds 已提交
2911 2912 2913
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2914

2915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2916
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2917

L
Linus Torvalds 已提交
2918 2919
	return sum;
}
2920

2921 2922 2923 2924 2925
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2926

2927 2928 2929 2930 2931
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2932

2933

2934 2935 2936 2937 2938
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3008 3009
}

3010 3011
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3012
{
3013 3014 3015 3016
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3017 3018

/*
3019 3020
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3021
 */
3022
void calc_global_load(void)
3023
{
3024 3025
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3026

3027 3028
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3029

3030 3031
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3032

3033 3034 3035
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3036

3037 3038
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3039

3040
/*
3041 3042
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3043 3044 3045
 */
static void calc_load_account_active(struct rq *this_rq)
{
3046
	long delta;
3047

3048 3049
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3050

3051 3052 3053
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3054
		atomic_long_add(delta, &calc_load_tasks);
3055 3056

	this_rq->calc_load_update += LOAD_FREQ;
3057 3058 3059
}

/*
I
Ingo Molnar 已提交
3060 3061
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3062
 */
I
Ingo Molnar 已提交
3063
static void update_cpu_load(struct rq *this_rq)
3064
{
3065
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3066
	int i, scale;
3067

I
Ingo Molnar 已提交
3068
	this_rq->nr_load_updates++;
3069

I
Ingo Molnar 已提交
3070 3071 3072
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3073

I
Ingo Molnar 已提交
3074
		/* scale is effectively 1 << i now, and >> i divides by scale */
3075

I
Ingo Molnar 已提交
3076 3077
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3078 3079 3080 3081 3082 3083 3084
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3085 3086
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3087

3088
	calc_load_account_active(this_rq);
3089 3090
}

I
Ingo Molnar 已提交
3091
#ifdef CONFIG_SMP
3092

3093
/*
P
Peter Zijlstra 已提交
3094 3095
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3096
 */
P
Peter Zijlstra 已提交
3097
void sched_exec(void)
3098
{
P
Peter Zijlstra 已提交
3099
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3100
	unsigned long flags;
3101
	struct rq *rq;
3102
	int dest_cpu;
3103

L
Linus Torvalds 已提交
3104
	rq = task_rq_lock(p, &flags);
3105 3106 3107 3108
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;

3109
	/*
P
Peter Zijlstra 已提交
3110
	 * select_task_rq() can race against ->cpus_allowed
3111
	 */
3112
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3113 3114
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
I
Ingo Molnar 已提交
3115

L
Linus Torvalds 已提交
3116
		task_rq_unlock(rq, &flags);
3117
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3118 3119
		return;
	}
3120
unlock:
L
Linus Torvalds 已提交
3121 3122
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3123

L
Linus Torvalds 已提交
3124 3125 3126 3127 3128 3129 3130
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3131
 * Return any ns on the sched_clock that have not yet been accounted in
3132
 * @p in case that task is currently running.
3133 3134
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3135
 */
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3150
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3151 3152
{
	unsigned long flags;
3153
	struct rq *rq;
3154
	u64 ns = 0;
3155

3156
	rq = task_rq_lock(p, &flags);
3157 3158
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3159

3160 3161
	return ns;
}
3162

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3200
	task_rq_unlock(rq, &flags);
3201

L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207 3208
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3209
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3210
 */
3211 3212
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3213 3214 3215 3216
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3217
	/* Add user time to process. */
L
Linus Torvalds 已提交
3218
	p->utime = cputime_add(p->utime, cputime);
3219
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3220
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226 3227

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3228 3229

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3230 3231
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3232 3233
}

3234 3235 3236 3237
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3238
 * @cputime_scaled: cputime scaled by cpu frequency
3239
 */
3240 3241
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3242 3243 3244 3245 3246 3247
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3248
	/* Add guest time to process. */
3249
	p->utime = cputime_add(p->utime, cputime);
3250
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3251
	account_group_user_time(p, cputime);
3252 3253
	p->gtime = cputime_add(p->gtime, cputime);

3254
	/* Add guest time to cpustat. */
3255 3256 3257 3258 3259 3260 3261
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3262 3263
}

L
Linus Torvalds 已提交
3264 3265 3266 3267 3268
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3269
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3270 3271
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3272
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3273 3274 3275 3276
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3277
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3278
		account_guest_time(p, cputime, cputime_scaled);
3279 3280
		return;
	}
3281

3282
	/* Add system time to process. */
L
Linus Torvalds 已提交
3283
	p->stime = cputime_add(p->stime, cputime);
3284
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3285
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290 3291 3292 3293

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3294 3295
		cpustat->system = cputime64_add(cpustat->system, tmp);

3296 3297
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3298 3299 3300 3301
	/* Account for system time used */
	acct_update_integrals(p);
}

3302
/*
L
Linus Torvalds 已提交
3303 3304
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3305
 */
3306
void account_steal_time(cputime_t cputime)
3307
{
3308 3309 3310 3311
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3312 3313
}

L
Linus Torvalds 已提交
3314
/*
3315 3316
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3317
 */
3318
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3319 3320
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3321
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3322
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3323

3324 3325 3326 3327
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3328 3329
}

3330 3331 3332 3333 3334 3335 3336 3337 3338
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3339
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3340 3341 3342
	struct rq *rq = this_rq();

	if (user_tick)
3343
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3344
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3345
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3346 3347
				    one_jiffy_scaled);
	else
3348
		account_idle_time(cputime_one_jiffy);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3368 3369
}

3370 3371
#endif

3372 3373 3374 3375
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3376
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3377
{
3378 3379
	*ut = p->utime;
	*st = p->stime;
3380 3381
}

3382
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3383
{
3384 3385 3386 3387 3388 3389
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3390 3391
}
#else
3392 3393

#ifndef nsecs_to_cputime
3394
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3395 3396
#endif

3397
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3398
{
3399
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3400 3401 3402 3403

	/*
	 * Use CFS's precise accounting:
	 */
3404
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3405 3406

	if (total) {
3407 3408 3409
		u64 temp;

		temp = (u64)(rtime * utime);
3410
		do_div(temp, total);
3411 3412 3413
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3414

3415 3416 3417
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3418
	p->prev_utime = max(p->prev_utime, utime);
3419
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3420

3421 3422
	*ut = p->prev_utime;
	*st = p->prev_stime;
3423 3424
}

3425 3426 3427 3428
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3429
{
3430 3431 3432
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3433

3434
	thread_group_cputime(p, &cputime);
3435

3436 3437
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3438

3439 3440
	if (total) {
		u64 temp;
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3454 3455 3456
}
#endif

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3468
	struct task_struct *curr = rq->curr;
3469 3470

	sched_clock_tick();
I
Ingo Molnar 已提交
3471

3472
	raw_spin_lock(&rq->lock);
3473
	update_rq_clock(rq);
3474
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3475
	curr->sched_class->task_tick(rq, curr, 0);
3476
	raw_spin_unlock(&rq->lock);
3477

3478
	perf_event_task_tick(curr);
3479

3480
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3481 3482
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3483
#endif
L
Linus Torvalds 已提交
3484 3485
}

3486
notrace unsigned long get_parent_ip(unsigned long addr)
3487 3488 3489 3490 3491 3492 3493 3494
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3495

3496 3497 3498
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3499
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3500
{
3501
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3502 3503 3504
	/*
	 * Underflow?
	 */
3505 3506
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3507
#endif
L
Linus Torvalds 已提交
3508
	preempt_count() += val;
3509
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3510 3511 3512
	/*
	 * Spinlock count overflowing soon?
	 */
3513 3514
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3515 3516 3517
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3518 3519 3520
}
EXPORT_SYMBOL(add_preempt_count);

3521
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3522
{
3523
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3524 3525 3526
	/*
	 * Underflow?
	 */
3527
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3528
		return;
L
Linus Torvalds 已提交
3529 3530 3531
	/*
	 * Is the spinlock portion underflowing?
	 */
3532 3533 3534
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3535
#endif
3536

3537 3538
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544 3545
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3546
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3547
 */
I
Ingo Molnar 已提交
3548
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3549
{
3550 3551
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3552 3553
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3554

I
Ingo Molnar 已提交
3555
	debug_show_held_locks(prev);
3556
	print_modules();
I
Ingo Molnar 已提交
3557 3558
	if (irqs_disabled())
		print_irqtrace_events(prev);
3559 3560 3561 3562 3563

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3564
}
L
Linus Torvalds 已提交
3565

I
Ingo Molnar 已提交
3566 3567 3568 3569 3570
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3571
	/*
I
Ingo Molnar 已提交
3572
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3573 3574 3575
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3576
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3577 3578
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3579 3580
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3581
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3582 3583
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3584 3585
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3586 3587
	}
#endif
I
Ingo Molnar 已提交
3588 3589
}

P
Peter Zijlstra 已提交
3590
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3591
{
3592 3593 3594
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3595
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3596 3597
}

I
Ingo Molnar 已提交
3598 3599 3600 3601
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3602
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3603
{
3604
	const struct sched_class *class;
I
Ingo Molnar 已提交
3605
	struct task_struct *p;
L
Linus Torvalds 已提交
3606 3607

	/*
I
Ingo Molnar 已提交
3608 3609
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3610
	 */
I
Ingo Molnar 已提交
3611
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3612
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3613 3614
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3615 3616
	}

I
Ingo Molnar 已提交
3617 3618
	class = sched_class_highest;
	for ( ; ; ) {
3619
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3629

I
Ingo Molnar 已提交
3630 3631 3632
/*
 * schedule() is the main scheduler function.
 */
3633
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3634 3635
{
	struct task_struct *prev, *next;
3636
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3637
	struct rq *rq;
3638
	int cpu;
I
Ingo Molnar 已提交
3639

3640 3641
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3642 3643
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3644
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3645 3646 3647 3648 3649 3650 3651
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3652

3653
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3654
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3655

3656
	raw_spin_lock_irq(&rq->lock);
3657
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3658 3659

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3660
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3661
			prev->state = TASK_RUNNING;
3662
		else
3663
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
I
Ingo Molnar 已提交
3664
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3665 3666
	}

3667
	pre_schedule(rq, prev);
3668

I
Ingo Molnar 已提交
3669
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3670 3671
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3672
	put_prev_task(rq, prev);
3673
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3674 3675

	if (likely(prev != next)) {
3676
		sched_info_switch(prev, next);
3677
		perf_event_task_sched_out(prev, next);
3678

L
Linus Torvalds 已提交
3679 3680 3681 3682
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3683
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3684 3685 3686 3687 3688 3689
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3690
	} else
3691
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3692

3693
	post_schedule(rq);
L
Linus Torvalds 已提交
3694

3695 3696 3697
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3698
		goto need_resched_nonpreemptible;
3699
	}
P
Peter Zijlstra 已提交
3700

L
Linus Torvalds 已提交
3701
	preempt_enable_no_resched();
3702
	if (need_resched())
L
Linus Torvalds 已提交
3703 3704 3705 3706
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3707
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3768 3769
#ifdef CONFIG_PREEMPT
/*
3770
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3771
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3772 3773 3774 3775 3776
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3777

L
Linus Torvalds 已提交
3778 3779
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3780
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3781
	 */
N
Nick Piggin 已提交
3782
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3783 3784
		return;

3785 3786 3787 3788
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3789

3790 3791 3792 3793 3794
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3795
	} while (need_resched());
L
Linus Torvalds 已提交
3796 3797 3798 3799
}
EXPORT_SYMBOL(preempt_schedule);

/*
3800
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3808

3809
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3810 3811
	BUG_ON(ti->preempt_count || !irqs_disabled());

3812 3813 3814 3815 3816 3817
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3818

3819 3820 3821 3822 3823
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3824
	} while (need_resched());
L
Linus Torvalds 已提交
3825 3826 3827 3828
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3829
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3830
			  void *key)
L
Linus Torvalds 已提交
3831
{
P
Peter Zijlstra 已提交
3832
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3833 3834 3835 3836
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3837 3838
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3839 3840 3841
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3842
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3843 3844
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3845
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3846
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3847
{
3848
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3849

3850
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3851 3852
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3853
		if (curr->func(curr, mode, wake_flags, key) &&
3854
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3864
 * @key: is directly passed to the wakeup function
3865 3866 3867
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3868
 */
3869
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3870
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3883
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3884 3885 3886 3887
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3888 3889 3890 3891 3892
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3893
/**
3894
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3895 3896 3897
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3898
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904 3905
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3906 3907 3908
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3909
 */
3910 3911
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3912 3913
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3914
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3915 3916 3917 3918 3919

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3920
		wake_flags = 0;
L
Linus Torvalds 已提交
3921 3922

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3923
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3924 3925
	spin_unlock_irqrestore(&q->lock, flags);
}
3926 3927 3928 3929 3930 3931 3932 3933 3934
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3935 3936
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3937 3938 3939 3940 3941 3942 3943 3944
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3945 3946 3947
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3948
 */
3949
void complete(struct completion *x)
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3955
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3956 3957 3958 3959
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3960 3961 3962 3963 3964
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3965 3966 3967
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3968
 */
3969
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3975
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3976 3977 3978 3979
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3980 3981
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3982 3983 3984 3985 3986 3987 3988
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3989
			if (signal_pending_state(state, current)) {
3990 3991
				timeout = -ERESTARTSYS;
				break;
3992 3993
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3994 3995 3996
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3997
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3998
		__remove_wait_queue(&x->wait, &wait);
3999 4000
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4001 4002
	}
	x->done--;
4003
	return timeout ?: 1;
L
Linus Torvalds 已提交
4004 4005
}

4006 4007
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4008 4009 4010 4011
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4012
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4013
	spin_unlock_irq(&x->wait.lock);
4014 4015
	return timeout;
}
L
Linus Torvalds 已提交
4016

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4027
void __sched wait_for_completion(struct completion *x)
4028 4029
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4030
}
4031
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4042
unsigned long __sched
4043
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4044
{
4045
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4046
}
4047
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4048

4049 4050 4051 4052 4053 4054 4055
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4056
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4057
{
4058 4059 4060 4061
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4062
}
4063
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4064

4065 4066 4067 4068 4069 4070 4071 4072
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4073
unsigned long __sched
4074 4075
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4076
{
4077
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4078
}
4079
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4080

4081 4082 4083 4084 4085 4086 4087
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4111
	unsigned long flags;
4112 4113
	int ret = 1;

4114
	spin_lock_irqsave(&x->wait.lock, flags);
4115 4116 4117 4118
	if (!x->done)
		ret = 0;
	else
		x->done--;
4119
	spin_unlock_irqrestore(&x->wait.lock, flags);
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4134
	unsigned long flags;
4135 4136
	int ret = 1;

4137
	spin_lock_irqsave(&x->wait.lock, flags);
4138 4139
	if (!x->done)
		ret = 0;
4140
	spin_unlock_irqrestore(&x->wait.lock, flags);
4141 4142 4143 4144
	return ret;
}
EXPORT_SYMBOL(completion_done);

4145 4146
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4147
{
I
Ingo Molnar 已提交
4148 4149 4150 4151
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4152

4153
	__set_current_state(state);
L
Linus Torvalds 已提交
4154

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4169 4170 4171
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4172
long __sched
I
Ingo Molnar 已提交
4173
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4174
{
4175
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4176 4177 4178
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4179
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4180
{
4181
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4182 4183 4184
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4185
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4186
{
4187
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4188 4189 4190
}
EXPORT_SYMBOL(sleep_on_timeout);

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4203
void rt_mutex_setprio(struct task_struct *p, int prio)
4204 4205
{
	unsigned long flags;
4206
	int oldprio, on_rq, running;
4207
	struct rq *rq;
4208
	const struct sched_class *prev_class;
4209 4210 4211 4212 4213

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4214
	oldprio = p->prio;
4215
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4216
	on_rq = p->se.on_rq;
4217
	running = task_current(rq, p);
4218
	if (on_rq)
4219
		dequeue_task(rq, p, 0);
4220 4221
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4222 4223 4224 4225 4226 4227

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4228 4229
	p->prio = prio;

4230 4231
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4232
	if (on_rq) {
4233
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4234 4235

		check_class_changed(rq, p, prev_class, oldprio, running);
4236 4237 4238 4239 4240 4241
	}
	task_rq_unlock(rq, &flags);
}

#endif

4242
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4243
{
I
Ingo Molnar 已提交
4244
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4245
	unsigned long flags;
4246
	struct rq *rq;
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4259
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4260
	 */
4261
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4262 4263 4264
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4265
	on_rq = p->se.on_rq;
4266
	if (on_rq)
4267
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4268 4269

	p->static_prio = NICE_TO_PRIO(nice);
4270
	set_load_weight(p);
4271 4272 4273
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4274

I
Ingo Molnar 已提交
4275
	if (on_rq) {
4276
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4277
		/*
4278 4279
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4280
		 */
4281
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4282 4283 4284 4285 4286 4287 4288
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4289 4290 4291 4292 4293
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4294
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4295
{
4296 4297
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4298

4299
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4300 4301 4302
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4312
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4313
{
4314
	long nice, retval;
L
Linus Torvalds 已提交
4315 4316 4317 4318 4319 4320

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4321 4322
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4323 4324 4325
	if (increment > 40)
		increment = 40;

4326
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4332 4333 4334
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4353
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360 4361
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4362
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4363 4364 4365
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4366
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4381
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4390
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4391
{
4392
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4393 4394 4395
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4396 4397
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4398
{
I
Ingo Molnar 已提交
4399
	BUG_ON(p->se.on_rq);
4400

L
Linus Torvalds 已提交
4401 4402
	p->policy = policy;
	p->rt_priority = prio;
4403 4404 4405
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4406 4407 4408 4409
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4410
	set_load_weight(p);
L
Linus Torvalds 已提交
4411 4412
}

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4429 4430
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4431
{
4432
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4433
	unsigned long flags;
4434
	const struct sched_class *prev_class;
4435
	struct rq *rq;
4436
	int reset_on_fork;
L
Linus Torvalds 已提交
4437

4438 4439
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4440 4441
recheck:
	/* double check policy once rq lock held */
4442 4443
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4444
		policy = oldpolicy = p->policy;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4455 4456
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4457 4458
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4459 4460
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4461
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4462
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4463
		return -EINVAL;
4464
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4465 4466
		return -EINVAL;

4467 4468 4469
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4470
	if (user && !capable(CAP_SYS_NICE)) {
4471
		if (rt_policy(policy)) {
4472 4473 4474 4475
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4476
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4488 4489 4490 4491 4492 4493
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4494

4495
		/* can't change other user's priorities */
4496
		if (!check_same_owner(p))
4497
			return -EPERM;
4498 4499 4500 4501

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4502
	}
L
Linus Torvalds 已提交
4503

4504
	if (user) {
4505
#ifdef CONFIG_RT_GROUP_SCHED
4506 4507 4508 4509
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4510 4511
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4512
			return -EPERM;
4513 4514
#endif

4515 4516 4517 4518 4519
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4520 4521 4522 4523
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4524
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4525 4526 4527 4528
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4529
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4530 4531 4532
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4533
		__task_rq_unlock(rq);
4534
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4535 4536
		goto recheck;
	}
I
Ingo Molnar 已提交
4537
	on_rq = p->se.on_rq;
4538
	running = task_current(rq, p);
4539
	if (on_rq)
4540
		deactivate_task(rq, p, 0);
4541 4542
	if (running)
		p->sched_class->put_prev_task(rq, p);
4543

4544 4545
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4546
	oldprio = p->prio;
4547
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4548
	__setscheduler(rq, p, policy, param->sched_priority);
4549

4550 4551
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4552 4553
	if (on_rq) {
		activate_task(rq, p, 0);
4554 4555

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4556
	}
4557
	__task_rq_unlock(rq);
4558
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4559

4560 4561
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4562 4563
	return 0;
}
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4578 4579
EXPORT_SYMBOL_GPL(sched_setscheduler);

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4597 4598
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4599 4600 4601
{
	struct sched_param lparam;
	struct task_struct *p;
4602
	int retval;
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4608 4609 4610

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4611
	p = find_process_by_pid(pid);
4612 4613 4614
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4615

L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4625 4626
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4627
{
4628 4629 4630 4631
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637 4638 4639
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4640
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4641 4642 4643 4644 4645 4646 4647 4648
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4649
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4650
{
4651
	struct task_struct *p;
4652
	int retval;
L
Linus Torvalds 已提交
4653 4654

	if (pid < 0)
4655
		return -EINVAL;
L
Linus Torvalds 已提交
4656 4657

	retval = -ESRCH;
4658
	rcu_read_lock();
L
Linus Torvalds 已提交
4659 4660 4661 4662
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4663 4664
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4665
	}
4666
	rcu_read_unlock();
L
Linus Torvalds 已提交
4667 4668 4669 4670
	return retval;
}

/**
4671
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4672 4673 4674
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4675
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4676 4677
{
	struct sched_param lp;
4678
	struct task_struct *p;
4679
	int retval;
L
Linus Torvalds 已提交
4680 4681

	if (!param || pid < 0)
4682
		return -EINVAL;
L
Linus Torvalds 已提交
4683

4684
	rcu_read_lock();
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4695
	rcu_read_unlock();
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4705
	rcu_read_unlock();
L
Linus Torvalds 已提交
4706 4707 4708
	return retval;
}

4709
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4710
{
4711
	cpumask_var_t cpus_allowed, new_mask;
4712 4713
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4714

4715
	get_online_cpus();
4716
	rcu_read_lock();
L
Linus Torvalds 已提交
4717 4718 4719

	p = find_process_by_pid(pid);
	if (!p) {
4720
		rcu_read_unlock();
4721
		put_online_cpus();
L
Linus Torvalds 已提交
4722 4723 4724
		return -ESRCH;
	}

4725
	/* Prevent p going away */
L
Linus Torvalds 已提交
4726
	get_task_struct(p);
4727
	rcu_read_unlock();
L
Linus Torvalds 已提交
4728

4729 4730 4731 4732 4733 4734 4735 4736
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4737
	retval = -EPERM;
4738
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4739 4740
		goto out_unlock;

4741 4742 4743 4744
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4745 4746
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4747
 again:
4748
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4749

P
Paul Menage 已提交
4750
	if (!retval) {
4751 4752
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4753 4754 4755 4756 4757
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4758
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4759 4760 4761
			goto again;
		}
	}
L
Linus Torvalds 已提交
4762
out_unlock:
4763 4764 4765 4766
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4767
	put_task_struct(p);
4768
	put_online_cpus();
L
Linus Torvalds 已提交
4769 4770 4771 4772
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4773
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4774
{
4775 4776 4777 4778 4779
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4789 4790
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4791
{
4792
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4793 4794
	int retval;

4795 4796
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4797

4798 4799 4800 4801 4802
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4803 4804
}

4805
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4806
{
4807
	struct task_struct *p;
4808 4809
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4810 4811
	int retval;

4812
	get_online_cpus();
4813
	rcu_read_lock();
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4820 4821 4822 4823
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4824
	rq = task_rq_lock(p, &flags);
4825
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4826
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4827 4828

out_unlock:
4829
	rcu_read_unlock();
4830
	put_online_cpus();
L
Linus Torvalds 已提交
4831

4832
	return retval;
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837 4838 4839 4840
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4841 4842
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4843 4844
{
	int ret;
4845
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4846

A
Anton Blanchard 已提交
4847
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4848 4849
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4850 4851
		return -EINVAL;

4852 4853
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4854

4855 4856
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4857
		size_t retlen = min_t(size_t, len, cpumask_size());
4858 4859

		if (copy_to_user(user_mask_ptr, mask, retlen))
4860 4861
			ret = -EFAULT;
		else
4862
			ret = retlen;
4863 4864
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4865

4866
	return ret;
L
Linus Torvalds 已提交
4867 4868 4869 4870 4871
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4872 4873
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4874
 */
4875
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4876
{
4877
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4878

4879
	schedstat_inc(rq, yld_count);
4880
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4881 4882 4883 4884 4885 4886

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4887
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4888
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4896 4897 4898 4899 4900
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4901
static void __cond_resched(void)
L
Linus Torvalds 已提交
4902
{
4903 4904 4905
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4906 4907
}

4908
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4909
{
P
Peter Zijlstra 已提交
4910
	if (should_resched()) {
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915
		__cond_resched();
		return 1;
	}
	return 0;
}
4916
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4917 4918

/*
4919
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4920 4921
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4922
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4923 4924 4925
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4926
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4927
{
P
Peter Zijlstra 已提交
4928
	int resched = should_resched();
J
Jan Kara 已提交
4929 4930
	int ret = 0;

4931 4932
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4933
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4934
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4935
		if (resched)
N
Nick Piggin 已提交
4936 4937 4938
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4939
		ret = 1;
L
Linus Torvalds 已提交
4940 4941
		spin_lock(lock);
	}
J
Jan Kara 已提交
4942
	return ret;
L
Linus Torvalds 已提交
4943
}
4944
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4945

4946
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4947 4948 4949
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4950
	if (should_resched()) {
4951
		local_bh_enable();
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4958
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4959 4960 4961 4962

/**
 * yield - yield the current processor to other threads.
 *
4963
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4974
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4975 4976 4977 4978
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4979
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4980

4981
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4982
	atomic_inc(&rq->nr_iowait);
4983
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4984
	schedule();
4985
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4986
	atomic_dec(&rq->nr_iowait);
4987
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4993
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4994 4995
	long ret;

4996
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4997
	atomic_inc(&rq->nr_iowait);
4998
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4999
	ret = schedule_timeout(timeout);
5000
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5001
	atomic_dec(&rq->nr_iowait);
5002
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5013
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5023
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5024
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5038
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5048
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5049
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5063
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5064
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5065
{
5066
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5067
	unsigned int time_slice;
5068 5069
	unsigned long flags;
	struct rq *rq;
5070
	int retval;
L
Linus Torvalds 已提交
5071 5072 5073
	struct timespec t;

	if (pid < 0)
5074
		return -EINVAL;
L
Linus Torvalds 已提交
5075 5076

	retval = -ESRCH;
5077
	rcu_read_lock();
L
Linus Torvalds 已提交
5078 5079 5080 5081 5082 5083 5084 5085
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5086 5087 5088
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5089

5090
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5091
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5092 5093
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5094

L
Linus Torvalds 已提交
5095
out_unlock:
5096
	rcu_read_unlock();
L
Linus Torvalds 已提交
5097 5098 5099
	return retval;
}

5100
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5101

5102
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5103 5104
{
	unsigned long free = 0;
5105
	unsigned state;
L
Linus Torvalds 已提交
5106 5107

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5108
	printk(KERN_INFO "%-13.13s %c", p->comm,
5109
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5110
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5111
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5112
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5113
	else
P
Peter Zijlstra 已提交
5114
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5115 5116
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5117
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5118
	else
P
Peter Zijlstra 已提交
5119
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5120 5121
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5122
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5123
#endif
P
Peter Zijlstra 已提交
5124
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5125 5126
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5127

5128
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5129 5130
}

I
Ingo Molnar 已提交
5131
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5132
{
5133
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5134

5135
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5136 5137
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5138
#else
P
Peter Zijlstra 已提交
5139 5140
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5141 5142 5143 5144 5145 5146 5147 5148
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5149
		if (!state_filter || (p->state & state_filter))
5150
			sched_show_task(p);
L
Linus Torvalds 已提交
5151 5152
	} while_each_thread(g, p);

5153 5154
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5155 5156 5157
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5158
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5159 5160 5161
	/*
	 * Only show locks if all tasks are dumped:
	 */
5162
	if (!state_filter)
I
Ingo Molnar 已提交
5163
		debug_show_all_locks();
L
Linus Torvalds 已提交
5164 5165
}

I
Ingo Molnar 已提交
5166 5167
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5168
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5169 5170
}

5171 5172 5173 5174 5175 5176 5177 5178
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5179
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5180
{
5181
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5182 5183
	unsigned long flags;

5184
	raw_spin_lock_irqsave(&rq->lock, flags);
5185

I
Ingo Molnar 已提交
5186
	__sched_fork(idle);
5187
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5188 5189
	idle->se.exec_start = sched_clock();

5190
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5191
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5192 5193

	rq->curr = rq->idle = idle;
5194 5195 5196
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5197
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5198 5199

	/* Set the preempt count _outside_ the spinlocks! */
5200 5201 5202
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5203
	task_thread_info(idle)->preempt_count = 0;
5204
#endif
I
Ingo Molnar 已提交
5205 5206 5207 5208
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5209
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214 5215 5216
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5217
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5218
 */
5219
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5220

I
Ingo Molnar 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5230
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5231
{
5232
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5247

5248 5249
	return factor;
}
I
Ingo Molnar 已提交
5250

5251 5252 5253
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5254

5255 5256 5257 5258 5259 5260 5261 5262
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5263

5264 5265 5266
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5267 5268
}

L
Linus Torvalds 已提交
5269 5270 5271 5272
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5273 5274 5275 5276 5277 5278
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5279
 *    it and puts it into the right queue.
5280 5281
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5282 5283 5284 5285 5286 5287 5288 5289
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5290
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5291 5292
 * call is not atomic; no spinlocks may be held.
 */
5293
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5294 5295
{
	unsigned long flags;
5296
	struct rq *rq;
5297
	unsigned int dest_cpu;
5298
	int ret = 0;
L
Linus Torvalds 已提交
5299

P
Peter Zijlstra 已提交
5300 5301 5302 5303 5304 5305 5306
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5307
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5308 5309 5310 5311
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5312

5313
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5314 5315 5316 5317
		ret = -EINVAL;
		goto out;
	}

5318
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5319
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5320 5321 5322 5323
		ret = -EINVAL;
		goto out;
	}

5324
	if (p->sched_class->set_cpus_allowed)
5325
		p->sched_class->set_cpus_allowed(p, new_mask);
5326
	else {
5327 5328
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5329 5330
	}

L
Linus Torvalds 已提交
5331
	/* Can the task run on the task's current CPU? If so, we're done */
5332
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5333 5334
		goto out;

5335 5336 5337
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5338 5339
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5340
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5346

L
Linus Torvalds 已提交
5347 5348
	return ret;
}
5349
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5350 5351

/*
I
Ingo Molnar 已提交
5352
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357 5358
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5359 5360
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5361
 */
5362
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5363
{
5364
	struct rq *rq_dest, *rq_src;
5365
	int ret = 0;
L
Linus Torvalds 已提交
5366

5367
	if (unlikely(!cpu_active(dest_cpu)))
5368
		return ret;
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373 5374 5375

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5376
		goto done;
L
Linus Torvalds 已提交
5377
	/* Affinity changed (again). */
5378
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5379
		goto fail;
L
Linus Torvalds 已提交
5380

5381 5382 5383 5384 5385
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5386
		deactivate_task(rq_src, p, 0);
5387
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5388
		activate_task(rq_dest, p, 0);
5389
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5390
	}
L
Linus Torvalds 已提交
5391
done:
5392
	ret = 1;
L
Linus Torvalds 已提交
5393
fail:
L
Linus Torvalds 已提交
5394
	double_rq_unlock(rq_src, rq_dest);
5395
	return ret;
L
Linus Torvalds 已提交
5396 5397 5398
}

/*
5399 5400 5401
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5402
 */
5403
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5404
{
5405
	struct migration_arg *arg = data;
L
Linus Torvalds 已提交
5406

5407 5408 5409 5410 5411 5412 5413
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
	local_irq_enable();
L
Linus Torvalds 已提交
5414 5415 5416 5417
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5418
/*
5419
 * Figure out where task on dead CPU should go, use force if necessary.
5420
 */
5421
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5422
{
5423 5424 5425
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5426

5427 5428 5429 5430 5431 5432 5433
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5434 5435 5436 5437
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5438
	if (needs_cpu)
5439
		__migrate_task(p, dead_cpu, dest_cpu);
5440
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5441 5442 5443 5444 5445 5446 5447 5448 5449
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5450
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5451
{
5452
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5466
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5467

5468
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5469

5470 5471
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5472 5473
			continue;

5474 5475 5476
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5477

5478
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5479 5480
}

I
Ingo Molnar 已提交
5481 5482
/*
 * Schedules idle task to be the next runnable task on current CPU.
5483 5484
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5485 5486 5487
 */
void sched_idle_next(void)
{
5488
	int this_cpu = smp_processor_id();
5489
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5490 5491 5492 5493
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5494
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5495

5496 5497 5498
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5499
	 */
5500
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5501

I
Ingo Molnar 已提交
5502
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5503

5504
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5505

5506
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5507 5508
}

5509 5510
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5524
/* called under rq->lock with disabled interrupts */
5525
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5526
{
5527
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5528 5529

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5530
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5531 5532

	/* Cannot have done final schedule yet: would have vanished. */
5533
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5534

5535
	get_task_struct(p);
L
Linus Torvalds 已提交
5536 5537 5538

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5539
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5540 5541
	 * fine.
	 */
5542
	raw_spin_unlock_irq(&rq->lock);
5543
	move_task_off_dead_cpu(dead_cpu, p);
5544
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5545

5546
	put_task_struct(p);
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5552
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5553
	struct task_struct *next;
5554

I
Ingo Molnar 已提交
5555 5556 5557
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5558
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5559 5560
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5561
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5562
		migrate_dead(dead_cpu, next);
5563

L
Linus Torvalds 已提交
5564 5565
	}
}
5566 5567 5568 5569 5570 5571 5572

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5573
	rq->calc_load_active = 0;
5574
}
L
Linus Torvalds 已提交
5575 5576
#endif /* CONFIG_HOTPLUG_CPU */

5577 5578 5579
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5580 5581
	{
		.procname	= "sched_domain",
5582
		.mode		= 0555,
5583
	},
5584
	{}
5585 5586 5587
};

static struct ctl_table sd_ctl_root[] = {
5588 5589
	{
		.procname	= "kernel",
5590
		.mode		= 0555,
5591 5592
		.child		= sd_ctl_dir,
	},
5593
	{}
5594 5595 5596 5597 5598
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5599
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5600 5601 5602 5603

	return entry;
}

5604 5605
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5606
	struct ctl_table *entry;
5607

5608 5609 5610
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5611
	 * will always be set. In the lowest directory the names are
5612 5613 5614
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5615 5616
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5617 5618 5619
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5620 5621 5622 5623 5624

	kfree(*tablep);
	*tablep = NULL;
}

5625
static void
5626
set_table_entry(struct ctl_table *entry,
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5640
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5641

5642 5643 5644
	if (table == NULL)
		return NULL;

5645
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5646
		sizeof(long), 0644, proc_doulongvec_minmax);
5647
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5648
		sizeof(long), 0644, proc_doulongvec_minmax);
5649
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5650
		sizeof(int), 0644, proc_dointvec_minmax);
5651
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5652
		sizeof(int), 0644, proc_dointvec_minmax);
5653
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5654
		sizeof(int), 0644, proc_dointvec_minmax);
5655
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5656
		sizeof(int), 0644, proc_dointvec_minmax);
5657
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5658
		sizeof(int), 0644, proc_dointvec_minmax);
5659
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5660
		sizeof(int), 0644, proc_dointvec_minmax);
5661
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5662
		sizeof(int), 0644, proc_dointvec_minmax);
5663
	set_table_entry(&table[9], "cache_nice_tries",
5664 5665
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5666
	set_table_entry(&table[10], "flags", &sd->flags,
5667
		sizeof(int), 0644, proc_dointvec_minmax);
5668 5669 5670
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5671 5672 5673 5674

	return table;
}

5675
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5676 5677 5678 5679 5680 5681 5682 5683 5684
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5685 5686
	if (table == NULL)
		return NULL;
5687 5688 5689 5690 5691

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5692
		entry->mode = 0555;
5693 5694 5695 5696 5697 5698 5699 5700
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5701
static void register_sched_domain_sysctl(void)
5702
{
5703
	int i, cpu_num = num_possible_cpus();
5704 5705 5706
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5707 5708 5709
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5710 5711 5712
	if (entry == NULL)
		return;

5713
	for_each_possible_cpu(i) {
5714 5715
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5716
		entry->mode = 0555;
5717
		entry->child = sd_alloc_ctl_cpu_table(i);
5718
		entry++;
5719
	}
5720 5721

	WARN_ON(sd_sysctl_header);
5722 5723
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5724

5725
/* may be called multiple times per register */
5726 5727
static void unregister_sched_domain_sysctl(void)
{
5728 5729
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5730
	sd_sysctl_header = NULL;
5731 5732
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5733
}
5734
#else
5735 5736 5737 5738
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5739 5740 5741 5742
{
}
#endif

5743 5744 5745 5746 5747
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5748
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5768
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5769 5770 5771 5772
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5773 5774 5775 5776
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5777 5778
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5779
{
5780
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5781
	unsigned long flags;
5782
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5783 5784

	switch (action) {
5785

L
Linus Torvalds 已提交
5786
	case CPU_UP_PREPARE:
5787
	case CPU_UP_PREPARE_FROZEN:
5788
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5789
		break;
5790

L
Linus Torvalds 已提交
5791
	case CPU_ONLINE:
5792
	case CPU_ONLINE_FROZEN:
5793
		/* Update our root-domain */
5794
		raw_spin_lock_irqsave(&rq->lock, flags);
5795
		if (rq->rd) {
5796
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5797 5798

			set_rq_online(rq);
5799
		}
5800
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5801
		break;
5802

L
Linus Torvalds 已提交
5803 5804
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5805
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5806 5807
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5808
		raw_spin_lock_irq(&rq->lock);
5809
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5810 5811
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5812
		migrate_dead_tasks(cpu);
5813
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5814 5815
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5816
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5817
		break;
G
Gregory Haskins 已提交
5818

5819 5820
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5821
		/* Update our root-domain */
5822
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5823
		if (rq->rd) {
5824
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5825
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5826
		}
5827
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5828
		break;
L
Linus Torvalds 已提交
5829 5830 5831 5832 5833
#endif
	}
	return NOTIFY_OK;
}

5834 5835 5836
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5837
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5838
 */
5839
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5840 5841 5842 5843
	.notifier_call = migration_call,
	.priority = 10
};

5844
static int __init migration_init(void)
L
Linus Torvalds 已提交
5845 5846
{
	void *cpu = (void *)(long)smp_processor_id();
5847
	int err;
5848 5849

	/* Start one for the boot CPU: */
5850 5851
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5852 5853
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5854

5855
	return 0;
L
Linus Torvalds 已提交
5856
}
5857
early_initcall(migration_init);
L
Linus Torvalds 已提交
5858 5859 5860
#endif

#ifdef CONFIG_SMP
5861

5862
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5863

5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5874
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5875
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5876
{
I
Ingo Molnar 已提交
5877
	struct sched_group *group = sd->groups;
5878
	char str[256];
L
Linus Torvalds 已提交
5879

R
Rusty Russell 已提交
5880
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5881
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5882 5883 5884 5885

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5886
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5887
		if (sd->parent)
P
Peter Zijlstra 已提交
5888 5889
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5890
		return -1;
N
Nick Piggin 已提交
5891 5892
	}

P
Peter Zijlstra 已提交
5893
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5894

5895
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5896 5897
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5898
	}
5899
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5900 5901
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5902
	}
L
Linus Torvalds 已提交
5903

I
Ingo Molnar 已提交
5904
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5905
	do {
I
Ingo Molnar 已提交
5906
		if (!group) {
P
Peter Zijlstra 已提交
5907 5908
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5909 5910 5911
			break;
		}

5912
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5913 5914 5915
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5916 5917
			break;
		}
L
Linus Torvalds 已提交
5918

5919
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5920 5921
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5922 5923
			break;
		}
L
Linus Torvalds 已提交
5924

5925
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5926 5927
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5928 5929
			break;
		}
L
Linus Torvalds 已提交
5930

5931
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5932

R
Rusty Russell 已提交
5933
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5934

P
Peter Zijlstra 已提交
5935
		printk(KERN_CONT " %s", str);
5936
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5937 5938
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
5939
		}
L
Linus Torvalds 已提交
5940

I
Ingo Molnar 已提交
5941 5942
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5943
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5944

5945
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5946
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5947

5948 5949
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5950 5951
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5952 5953
	return 0;
}
L
Linus Torvalds 已提交
5954

I
Ingo Molnar 已提交
5955 5956
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
5957
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
5958
	int level = 0;
L
Linus Torvalds 已提交
5959

5960 5961 5962
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5963 5964 5965 5966
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5967

I
Ingo Molnar 已提交
5968 5969
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

5970
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5971 5972 5973 5974
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
5975
	for (;;) {
5976
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
5977
			break;
L
Linus Torvalds 已提交
5978 5979
		level++;
		sd = sd->parent;
5980
		if (!sd)
I
Ingo Molnar 已提交
5981 5982
			break;
	}
5983
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
5984
}
5985
#else /* !CONFIG_SCHED_DEBUG */
5986
# define sched_domain_debug(sd, cpu) do { } while (0)
5987
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5988

5989
static int sd_degenerate(struct sched_domain *sd)
5990
{
5991
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5992 5993 5994 5995 5996 5997
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5998 5999 6000
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6001 6002 6003 6004 6005
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6006
	if (sd->flags & (SD_WAKE_AFFINE))
6007 6008 6009 6010 6011
		return 0;

	return 1;
}

6012 6013
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6014 6015 6016 6017 6018 6019
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6020
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6021 6022 6023 6024 6025 6026 6027
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6028 6029 6030
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6031 6032
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6033 6034 6035 6036 6037 6038 6039
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6040 6041
static void free_rootdomain(struct root_domain *rd)
{
6042 6043
	synchronize_sched();

6044 6045
	cpupri_cleanup(&rd->cpupri);

6046 6047 6048 6049 6050 6051
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6052 6053
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6054
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6055 6056
	unsigned long flags;

6057
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6058 6059

	if (rq->rd) {
I
Ingo Molnar 已提交
6060
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6061

6062
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6063
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6064

6065
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6066

I
Ingo Molnar 已提交
6067 6068 6069 6070 6071 6072 6073
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6074 6075 6076 6077 6078
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6079
	cpumask_set_cpu(rq->cpu, rd->span);
6080
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6081
		set_rq_online(rq);
G
Gregory Haskins 已提交
6082

6083
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6084 6085 6086

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6087 6088
}

L
Li Zefan 已提交
6089
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6090
{
6091 6092
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6093 6094
	memset(rd, 0, sizeof(*rd));

6095 6096
	if (bootmem)
		gfp = GFP_NOWAIT;
6097

6098
	if (!alloc_cpumask_var(&rd->span, gfp))
6099
		goto out;
6100
	if (!alloc_cpumask_var(&rd->online, gfp))
6101
		goto free_span;
6102
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6103
		goto free_online;
6104

P
Pekka Enberg 已提交
6105
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6106
		goto free_rto_mask;
6107
	return 0;
6108

6109 6110
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6111 6112 6113 6114
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6115
out:
6116
	return -ENOMEM;
G
Gregory Haskins 已提交
6117 6118 6119 6120
}

static void init_defrootdomain(void)
{
6121 6122
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6123 6124 6125
	atomic_set(&def_root_domain.refcount, 1);
}

6126
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6127 6128 6129 6130 6131 6132 6133
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6134 6135 6136 6137
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6138 6139 6140 6141

	return rd;
}

L
Linus Torvalds 已提交
6142
/*
I
Ingo Molnar 已提交
6143
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6144 6145
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6146 6147
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6148
{
6149
	struct rq *rq = cpu_rq(cpu);
6150 6151
	struct sched_domain *tmp;

6152 6153 6154
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6155
	/* Remove the sched domains which do not contribute to scheduling. */
6156
	for (tmp = sd; tmp; ) {
6157 6158 6159
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6160

6161
		if (sd_parent_degenerate(tmp, parent)) {
6162
			tmp->parent = parent->parent;
6163 6164
			if (parent->parent)
				parent->parent->child = tmp;
6165 6166
		} else
			tmp = tmp->parent;
6167 6168
	}

6169
	if (sd && sd_degenerate(sd)) {
6170
		sd = sd->parent;
6171 6172 6173
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6174 6175 6176

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6177
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6178
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6179 6180 6181
}

/* cpus with isolated domains */
6182
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6183 6184 6185 6186

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6187
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6188
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6189 6190 6191
	return 1;
}

I
Ingo Molnar 已提交
6192
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6193 6194

/*
6195 6196
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6197 6198
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6199 6200 6201 6202 6203
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6204
static void
6205 6206 6207
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6208
					struct sched_group **sg,
6209 6210
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6211 6212 6213 6214
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6215
	cpumask_clear(covered);
6216

6217
	for_each_cpu(i, span) {
6218
		struct sched_group *sg;
6219
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6220 6221
		int j;

6222
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6223 6224
			continue;

6225
		cpumask_clear(sched_group_cpus(sg));
6226
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6227

6228
		for_each_cpu(j, span) {
6229
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6230 6231
				continue;

6232
			cpumask_set_cpu(j, covered);
6233
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6244
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6245

6246
#ifdef CONFIG_NUMA
6247

6248 6249 6250 6251 6252
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6253
 * Find the next node to include in a given scheduling domain. Simply
6254 6255 6256 6257
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6258
static int find_next_best_node(int node, nodemask_t *used_nodes)
6259 6260 6261 6262 6263
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6264
	for (i = 0; i < nr_node_ids; i++) {
6265
		/* Start at @node */
6266
		n = (node + i) % nr_node_ids;
6267 6268 6269 6270 6271

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6272
		if (node_isset(n, *used_nodes))
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6284
	node_set(best_node, *used_nodes);
6285 6286 6287 6288 6289 6290
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6291
 * @span: resulting cpumask
6292
 *
I
Ingo Molnar 已提交
6293
 * Given a node, construct a good cpumask for its sched_domain to span. It
6294 6295 6296
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6297
static void sched_domain_node_span(int node, struct cpumask *span)
6298
{
6299
	nodemask_t used_nodes;
6300
	int i;
6301

6302
	cpumask_clear(span);
6303
	nodes_clear(used_nodes);
6304

6305
	cpumask_or(span, span, cpumask_of_node(node));
6306
	node_set(node, used_nodes);
6307 6308

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6309
		int next_node = find_next_best_node(node, &used_nodes);
6310

6311
		cpumask_or(span, span, cpumask_of_node(next_node));
6312 6313
	}
}
6314
#endif /* CONFIG_NUMA */
6315

6316
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6317

6318 6319
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6320 6321 6322
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6367
/*
6368
 * SMT sched-domains:
6369
 */
L
Linus Torvalds 已提交
6370
#ifdef CONFIG_SCHED_SMT
6371
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6372
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6373

I
Ingo Molnar 已提交
6374
static int
6375 6376
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6377
{
6378
	if (sg)
6379
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6380 6381
	return cpu;
}
6382
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6383

6384 6385 6386
/*
 * multi-core sched-domains:
 */
6387
#ifdef CONFIG_SCHED_MC
6388 6389
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6390
#endif /* CONFIG_SCHED_MC */
6391 6392

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6393
static int
6394 6395
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6396
{
6397
	int group;
6398

6399
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6400
	group = cpumask_first(mask);
6401
	if (sg)
6402
		*sg = &per_cpu(sched_group_core, group).sg;
6403
	return group;
6404 6405
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6406
static int
6407 6408
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6409
{
6410
	if (sg)
6411
		*sg = &per_cpu(sched_group_core, cpu).sg;
6412 6413 6414 6415
	return cpu;
}
#endif

6416 6417
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6418

I
Ingo Molnar 已提交
6419
static int
6420 6421
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6422
{
6423
	int group;
6424
#ifdef CONFIG_SCHED_MC
6425
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6426
	group = cpumask_first(mask);
6427
#elif defined(CONFIG_SCHED_SMT)
6428
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6429
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6430
#else
6431
	group = cpu;
L
Linus Torvalds 已提交
6432
#endif
6433
	if (sg)
6434
		*sg = &per_cpu(sched_group_phys, group).sg;
6435
	return group;
L
Linus Torvalds 已提交
6436 6437 6438 6439
}

#ifdef CONFIG_NUMA
/*
6440 6441 6442
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6443
 */
6444
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6445
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6446

6447
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6448
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6449

6450 6451 6452
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6453
{
6454 6455
	int group;

6456
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6457
	group = cpumask_first(nodemask);
6458 6459

	if (sg)
6460
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6461
	return group;
L
Linus Torvalds 已提交
6462
}
6463

6464 6465 6466 6467 6468 6469 6470
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6471
	do {
6472
		for_each_cpu(j, sched_group_cpus(sg)) {
6473
			struct sched_domain *sd;
6474

6475
			sd = &per_cpu(phys_domains, j).sd;
6476
			if (j != group_first_cpu(sd->groups)) {
6477 6478 6479 6480 6481 6482
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6483

6484
			sg->cpu_power += sd->groups->cpu_power;
6485 6486 6487
		}
		sg = sg->next;
	} while (sg != group_head);
6488
}
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6510 6511
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6512 6513 6514 6515 6516 6517 6518 6519 6520
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6521
	sg->cpu_power = 0;
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6540 6541
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6542 6543
			return -ENOMEM;
		}
6544
		sg->cpu_power = 0;
6545 6546 6547 6548 6549 6550 6551 6552 6553
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6554
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6555

6556
#ifdef CONFIG_NUMA
6557
/* Free memory allocated for various sched_group structures */
6558 6559
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6560
{
6561
	int cpu, i;
6562

6563
	for_each_cpu(cpu, cpu_map) {
6564 6565 6566 6567 6568 6569
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6570
		for (i = 0; i < nr_node_ids; i++) {
6571 6572
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6573
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6574
			if (cpumask_empty(nodemask))
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6591
#else /* !CONFIG_NUMA */
6592 6593
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6594 6595
{
}
6596
#endif /* CONFIG_NUMA */
6597

6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6612 6613
	long power;
	int weight;
6614 6615 6616

	WARN_ON(!sd || !sd->groups);

6617
	if (cpu != group_first_cpu(sd->groups))
6618 6619 6620 6621
		return;

	child = sd->child;

6622
	sd->groups->cpu_power = 0;
6623

6624 6625 6626 6627 6628
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6629 6630 6631
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6632
		 */
P
Peter Zijlstra 已提交
6633 6634
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6635
			power /= weight;
P
Peter Zijlstra 已提交
6636 6637
			power >>= SCHED_LOAD_SHIFT;
		}
6638
		sd->groups->cpu_power += power;
6639 6640 6641 6642
		return;
	}

	/*
6643
	 * Add cpu_power of each child group to this groups cpu_power.
6644 6645 6646
	 */
	group = child->groups;
	do {
6647
		sd->groups->cpu_power += group->cpu_power;
6648 6649 6650 6651
		group = group->next;
	} while (group != child->groups);
}

6652 6653 6654 6655 6656
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6657 6658 6659 6660 6661 6662
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6663
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6664

6665 6666 6667 6668 6669
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6670
	sd->level = SD_LV_##type;				\
6671
	SD_INIT_NAME(sd, type);					\
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6686 6687 6688 6689
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6690 6691 6692 6693 6694 6695
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6714
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6715 6716
	} else {
		/* turn on idle balance on this domain */
6717
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6718 6719 6720
	}
}

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6741
#ifdef CONFIG_NUMA
6742 6743 6744 6745 6746 6747 6748
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6749
#endif
6750 6751 6752 6753
	case sa_none:
		break;
	}
}
6754

6755 6756 6757
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6758
#ifdef CONFIG_NUMA
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6769
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6770
		return sa_notcovered;
6771
	}
6772
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6773
#endif
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6786
		printk(KERN_WARNING "Cannot alloc root domain\n");
6787
		return sa_tmpmask;
G
Gregory Haskins 已提交
6788
	}
6789 6790
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6791

6792 6793 6794 6795
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6796
#ifdef CONFIG_NUMA
6797
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6798

6799 6800 6801 6802 6803
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6804
		set_domain_attribute(sd, attr);
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6819
#endif
6820 6821
	return sd;
}
L
Linus Torvalds 已提交
6822

6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6838

6839 6840 6841 6842 6843
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6844
#ifdef CONFIG_SCHED_MC
6845 6846 6847 6848 6849 6850 6851
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6852
#endif
6853 6854
	return sd;
}
6855

6856 6857 6858 6859 6860
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6861
#ifdef CONFIG_SCHED_SMT
6862 6863 6864 6865 6866 6867 6868
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6869
#endif
6870 6871
	return sd;
}
L
Linus Torvalds 已提交
6872

6873 6874 6875 6876
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6877
#ifdef CONFIG_SCHED_SMT
6878 6879 6880 6881 6882 6883 6884 6885
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6886
#endif
6887
#ifdef CONFIG_SCHED_MC
6888 6889 6890 6891 6892 6893 6894
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6895
#endif
6896 6897 6898 6899 6900 6901 6902
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6903
#ifdef CONFIG_NUMA
6904 6905 6906 6907 6908
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6909 6910
	default:
		break;
6911
	}
6912
}
6913

6914 6915 6916 6917 6918 6919 6920 6921 6922
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6923
	struct sched_domain *sd;
6924
	int i;
6925
#ifdef CONFIG_NUMA
6926
	d.sd_allnodes = 0;
6927
#endif
6928

6929 6930 6931 6932
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6933

L
Linus Torvalds 已提交
6934
	/*
6935
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6936
	 */
6937
	for_each_cpu(i, cpu_map) {
6938 6939
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6940

6941
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6942
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6943
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6944
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
6945
	}
6946

6947
	for_each_cpu(i, cpu_map) {
6948
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6949
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
6950
	}
6951

L
Linus Torvalds 已提交
6952
	/* Set up physical groups */
6953 6954
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6955

L
Linus Torvalds 已提交
6956 6957
#ifdef CONFIG_NUMA
	/* Set up node groups */
6958 6959
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6960

6961 6962
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
6963
			goto error;
L
Linus Torvalds 已提交
6964 6965 6966
#endif

	/* Calculate CPU power for physical packages and nodes */
6967
#ifdef CONFIG_SCHED_SMT
6968
	for_each_cpu(i, cpu_map) {
6969
		sd = &per_cpu(cpu_domains, i).sd;
6970
		init_sched_groups_power(i, sd);
6971
	}
L
Linus Torvalds 已提交
6972
#endif
6973
#ifdef CONFIG_SCHED_MC
6974
	for_each_cpu(i, cpu_map) {
6975
		sd = &per_cpu(core_domains, i).sd;
6976
		init_sched_groups_power(i, sd);
6977 6978
	}
#endif
6979

6980
	for_each_cpu(i, cpu_map) {
6981
		sd = &per_cpu(phys_domains, i).sd;
6982
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6983 6984
	}

6985
#ifdef CONFIG_NUMA
6986
	for (i = 0; i < nr_node_ids; i++)
6987
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
6988

6989
	if (d.sd_allnodes) {
6990
		struct sched_group *sg;
6991

6992
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6993
								d.tmpmask);
6994 6995
		init_numa_sched_groups_power(sg);
	}
6996 6997
#endif

L
Linus Torvalds 已提交
6998
	/* Attach the domains */
6999
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7000
#ifdef CONFIG_SCHED_SMT
7001
		sd = &per_cpu(cpu_domains, i).sd;
7002
#elif defined(CONFIG_SCHED_MC)
7003
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7004
#else
7005
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7006
#endif
7007
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7008
	}
7009

7010 7011 7012
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7013 7014

error:
7015 7016
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7017
}
P
Paul Jackson 已提交
7018

7019
static int build_sched_domains(const struct cpumask *cpu_map)
7020 7021 7022 7023
{
	return __build_sched_domains(cpu_map, NULL);
}

7024
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7025
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7026 7027
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7028 7029 7030

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7031 7032
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7033
 */
7034
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7035

7036 7037 7038 7039 7040 7041
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7042
{
7043
	return 0;
7044 7045
}

7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7071
/*
I
Ingo Molnar 已提交
7072
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7073 7074
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7075
 */
7076
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7077
{
7078 7079
	int err;

7080
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7081
	ndoms_cur = 1;
7082
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7083
	if (!doms_cur)
7084 7085
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7086
	dattr_cur = NULL;
7087
	err = build_sched_domains(doms_cur[0]);
7088
	register_sched_domain_sysctl();
7089 7090

	return err;
7091 7092
}

7093 7094
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7095
{
7096
	free_sched_groups(cpu_map, tmpmask);
7097
}
L
Linus Torvalds 已提交
7098

7099 7100 7101 7102
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7103
static void detach_destroy_domains(const struct cpumask *cpu_map)
7104
{
7105 7106
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7107 7108
	int i;

7109
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7110
		cpu_attach_domain(NULL, &def_root_domain, i);
7111
	synchronize_sched();
7112
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7113 7114
}

7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7131 7132
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7133
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7134 7135 7136
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7137
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7138 7139 7140
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7141 7142 7143
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7144 7145 7146 7147 7148 7149
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7150
 *
7151
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7152 7153
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7154
 *
P
Paul Jackson 已提交
7155 7156
 * Call with hotplug lock held
 */
7157
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7158
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7159
{
7160
	int i, j, n;
7161
	int new_topology;
P
Paul Jackson 已提交
7162

7163
	mutex_lock(&sched_domains_mutex);
7164

7165 7166 7167
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7168 7169 7170
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7171
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7172 7173 7174

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7175
		for (j = 0; j < n && !new_topology; j++) {
7176
			if (cpumask_equal(doms_cur[i], doms_new[j])
7177
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7178 7179 7180
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7181
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7182 7183 7184 7185
match1:
		;
	}

7186 7187
	if (doms_new == NULL) {
		ndoms_cur = 0;
7188
		doms_new = &fallback_doms;
7189
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7190
		WARN_ON_ONCE(dattr_new);
7191 7192
	}

P
Paul Jackson 已提交
7193 7194
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7195
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7196
			if (cpumask_equal(doms_new[i], doms_cur[j])
7197
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7198 7199 7200
				goto match2;
		}
		/* no match - add a new doms_new */
7201
		__build_sched_domains(doms_new[i],
7202
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7203 7204 7205 7206 7207
match2:
		;
	}

	/* Remember the new sched domains */
7208 7209
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7210
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7211
	doms_cur = doms_new;
7212
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7213
	ndoms_cur = ndoms_new;
7214 7215

	register_sched_domain_sysctl();
7216

7217
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7218 7219
}

7220
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7221
static void arch_reinit_sched_domains(void)
7222
{
7223
	get_online_cpus();
7224 7225 7226 7227

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7228
	rebuild_sched_domains();
7229
	put_online_cpus();
7230 7231 7232 7233
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7234
	unsigned int level = 0;
7235

7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7247 7248 7249
		return -EINVAL;

	if (smt)
7250
		sched_smt_power_savings = level;
7251
	else
7252
		sched_mc_power_savings = level;
7253

7254
	arch_reinit_sched_domains();
7255

7256
	return count;
7257 7258 7259
}

#ifdef CONFIG_SCHED_MC
7260
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7261
					   struct sysdev_class_attribute *attr,
7262
					   char *page)
7263 7264 7265
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7266
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7267
					    struct sysdev_class_attribute *attr,
7268
					    const char *buf, size_t count)
7269 7270 7271
{
	return sched_power_savings_store(buf, count, 0);
}
7272 7273 7274
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7275 7276 7277
#endif

#ifdef CONFIG_SCHED_SMT
7278
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7279
					    struct sysdev_class_attribute *attr,
7280
					    char *page)
7281 7282 7283
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7284
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7285
					     struct sysdev_class_attribute *attr,
7286
					     const char *buf, size_t count)
7287 7288 7289
{
	return sched_power_savings_store(buf, count, 1);
}
7290 7291
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7292 7293 7294
		   sched_smt_power_savings_store);
#endif

7295
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7311
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7312

7313
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7314
/*
7315 7316
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7317 7318 7319
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7320 7321 7322 7323
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7324 7325 7326 7327
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7328
		partition_sched_domains(1, NULL, NULL);
7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7339
{
P
Peter Zijlstra 已提交
7340 7341
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7342 7343
	switch (action) {
	case CPU_DOWN_PREPARE:
7344
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7345
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7346 7347 7348
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7349
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7350
	case CPU_ONLINE:
7351
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7352
		enable_runtime(cpu_rq(cpu));
7353 7354
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7355 7356 7357 7358 7359 7360 7361
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7362 7363 7364
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7365
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7366

7367 7368 7369 7370 7371
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7372
	get_online_cpus();
7373
	mutex_lock(&sched_domains_mutex);
7374
	arch_init_sched_domains(cpu_active_mask);
7375 7376 7377
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7378
	mutex_unlock(&sched_domains_mutex);
7379
	put_online_cpus();
7380 7381

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7382 7383
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7384 7385 7386 7387 7388
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7389
	init_hrtick();
7390 7391

	/* Move init over to a non-isolated CPU */
7392
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7393
		BUG();
I
Ingo Molnar 已提交
7394
	sched_init_granularity();
7395
	free_cpumask_var(non_isolated_cpus);
7396

7397
	init_sched_rt_class();
L
Linus Torvalds 已提交
7398 7399 7400 7401
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7402
	sched_init_granularity();
L
Linus Torvalds 已提交
7403 7404 7405
}
#endif /* CONFIG_SMP */

7406 7407
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7408 7409 7410 7411 7412 7413 7414
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7415
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7416 7417
{
	cfs_rq->tasks_timeline = RB_ROOT;
7418
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7419 7420 7421
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7422
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7423 7424
}

P
Peter Zijlstra 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7438
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7439
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7440
#ifdef CONFIG_SMP
7441
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7442 7443
#endif
#endif
P
Peter Zijlstra 已提交
7444 7445 7446
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7447
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7448 7449 7450 7451
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7452
	rt_rq->rt_runtime = 0;
7453
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7454

7455
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7456
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7457 7458
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7459 7460
}

P
Peter Zijlstra 已提交
7461
#ifdef CONFIG_FAIR_GROUP_SCHED
7462 7463 7464
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7465
{
7466
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7467 7468 7469 7470 7471 7472 7473
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7474 7475 7476 7477
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7478 7479 7480 7481 7482
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7483 7484
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7485
	se->load.inv_weight = 0;
7486
	se->parent = parent;
P
Peter Zijlstra 已提交
7487
}
7488
#endif
P
Peter Zijlstra 已提交
7489

7490
#ifdef CONFIG_RT_GROUP_SCHED
7491 7492 7493
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7494
{
7495 7496
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7497 7498 7499
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7500
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7501 7502 7503 7504
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7505 7506 7507
	if (!rt_se)
		return;

7508 7509 7510 7511 7512
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7513
	rt_se->my_q = rt_rq;
7514
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7515 7516 7517 7518
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7519 7520
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7521
	int i, j;
7522 7523 7524 7525 7526 7527 7528
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7529
#endif
7530
#ifdef CONFIG_CPUMASK_OFFSTACK
7531
	alloc_size += num_possible_cpus() * cpumask_size();
7532 7533
#endif
	if (alloc_size) {
7534
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7535 7536 7537 7538 7539 7540 7541

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7542

7543
#endif /* CONFIG_FAIR_GROUP_SCHED */
7544 7545 7546 7547 7548
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7549 7550
		ptr += nr_cpu_ids * sizeof(void **);

7551
#endif /* CONFIG_RT_GROUP_SCHED */
7552 7553 7554 7555 7556 7557
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7558
	}
I
Ingo Molnar 已提交
7559

G
Gregory Haskins 已提交
7560 7561 7562 7563
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7564 7565 7566 7567 7568 7569
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7570
#endif /* CONFIG_RT_GROUP_SCHED */
7571

D
Dhaval Giani 已提交
7572
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7573
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7574 7575
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7576
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7577

7578 7579 7580 7581
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7582
	for_each_possible_cpu(i) {
7583
		struct rq *rq;
L
Linus Torvalds 已提交
7584 7585

		rq = cpu_rq(i);
7586
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7587
		rq->nr_running = 0;
7588 7589
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7590
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7591
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7592
#ifdef CONFIG_FAIR_GROUP_SCHED
7593
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7594
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7610
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7611 7612 7613 7614
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7615
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7616
#endif
D
Dhaval Giani 已提交
7617 7618 7619
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7620
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7621
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7622
#ifdef CONFIG_CGROUP_SCHED
7623
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7624
#endif
I
Ingo Molnar 已提交
7625
#endif
L
Linus Torvalds 已提交
7626

I
Ingo Molnar 已提交
7627 7628
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7629
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7630
		rq->sd = NULL;
G
Gregory Haskins 已提交
7631
		rq->rd = NULL;
7632
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7633
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7634
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7635
		rq->push_cpu = 0;
7636
		rq->cpu = i;
7637
		rq->online = 0;
7638 7639
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7640
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7641
#endif
P
Peter Zijlstra 已提交
7642
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7643 7644 7645
		atomic_set(&rq->nr_iowait, 0);
	}

7646
	set_load_weight(&init_task);
7647

7648 7649 7650 7651
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7652
#ifdef CONFIG_SMP
7653
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7654 7655
#endif

7656
#ifdef CONFIG_RT_MUTEXES
7657
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7658 7659
#endif

L
Linus Torvalds 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7673 7674 7675

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7676 7677 7678 7679
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7680

7681
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7682
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7683
#ifdef CONFIG_SMP
7684
#ifdef CONFIG_NO_HZ
7685
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7686
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7687
#endif
R
Rusty Russell 已提交
7688 7689 7690
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7691
#endif /* SMP */
7692

7693
	perf_event_init();
7694

7695
	scheduler_running = 1;
L
Linus Torvalds 已提交
7696 7697 7698
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7699 7700
static inline int preempt_count_equals(int preempt_offset)
{
7701
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7702 7703 7704 7705

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7706
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7707
{
7708
#ifdef in_atomic
L
Linus Torvalds 已提交
7709 7710
	static unsigned long prev_jiffy;	/* ratelimiting */

7711 7712
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7713 7714 7715 7716 7717
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7718 7719 7720 7721 7722 7723 7724
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7725 7726 7727 7728 7729

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7730 7731 7732 7733 7734 7735
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7736 7737 7738
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7739

7740 7741 7742 7743 7744 7745 7746 7747 7748 7749
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7750 7751
void normalize_rt_tasks(void)
{
7752
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7753
	unsigned long flags;
7754
	struct rq *rq;
L
Linus Torvalds 已提交
7755

7756
	read_lock_irqsave(&tasklist_lock, flags);
7757
	do_each_thread(g, p) {
7758 7759 7760 7761 7762 7763
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7764 7765
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7766 7767 7768
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7769
#endif
I
Ingo Molnar 已提交
7770 7771 7772 7773 7774 7775 7776 7777

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7778
			continue;
I
Ingo Molnar 已提交
7779
		}
L
Linus Torvalds 已提交
7780

7781
		raw_spin_lock(&p->pi_lock);
7782
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7783

7784
		normalize_task(rq, p);
7785

7786
		__task_rq_unlock(rq);
7787
		raw_spin_unlock(&p->pi_lock);
7788 7789
	} while_each_thread(g, p);

7790
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7791 7792 7793
}

#endif /* CONFIG_MAGIC_SYSRQ */
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7812
struct task_struct *curr_task(int cpu)
7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7823 7824
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7825 7826 7827 7828 7829 7830 7831
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7832
void set_curr_task(int cpu, struct task_struct *p)
7833 7834 7835 7836 7837
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7838

7839 7840
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7855 7856
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7857 7858
{
	struct cfs_rq *cfs_rq;
7859
	struct sched_entity *se;
7860
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7861 7862
	int i;

7863
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7864 7865
	if (!tg->cfs_rq)
		goto err;
7866
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7867 7868
	if (!tg->se)
		goto err;
7869 7870

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7871 7872

	for_each_possible_cpu(i) {
7873
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7874

7875 7876
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7877 7878 7879
		if (!cfs_rq)
			goto err;

7880 7881
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7882
		if (!se)
7883
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7884

7885
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7886 7887 7888 7889
	}

	return 1;

7890 7891
 err_free_rq:
	kfree(cfs_rq);
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7906
#else /* !CONFG_FAIR_GROUP_SCHED */
7907 7908 7909 7910
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7911 7912
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7924
#endif /* CONFIG_FAIR_GROUP_SCHED */
7925 7926

#ifdef CONFIG_RT_GROUP_SCHED
7927 7928 7929 7930
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7931 7932
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

7944 7945
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7946 7947
{
	struct rt_rq *rt_rq;
7948
	struct sched_rt_entity *rt_se;
7949 7950 7951
	struct rq *rq;
	int i;

7952
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7953 7954
	if (!tg->rt_rq)
		goto err;
7955
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7956 7957 7958
	if (!tg->rt_se)
		goto err;

7959 7960
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7961 7962 7963 7964

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

7965 7966
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7967 7968
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7969

7970 7971
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7972
		if (!rt_se)
7973
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7974

7975
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
7976 7977
	}

7978 7979
	return 1;

7980 7981
 err_free_rq:
	kfree(rt_rq);
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
7996
#else /* !CONFIG_RT_GROUP_SCHED */
7997 7998 7999 8000
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8001 8002
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8014
#endif /* CONFIG_RT_GROUP_SCHED */
8015

D
Dhaval Giani 已提交
8016
#ifdef CONFIG_CGROUP_SCHED
8017 8018 8019 8020 8021 8022 8023 8024
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8025
struct task_group *sched_create_group(struct task_group *parent)
8026 8027 8028 8029 8030 8031 8032 8033 8034
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8035
	if (!alloc_fair_sched_group(tg, parent))
8036 8037
		goto err;

8038
	if (!alloc_rt_sched_group(tg, parent))
8039 8040
		goto err;

8041
	spin_lock_irqsave(&task_group_lock, flags);
8042
	for_each_possible_cpu(i) {
8043 8044
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8045
	}
P
Peter Zijlstra 已提交
8046
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8047 8048 8049 8050 8051

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8052
	list_add_rcu(&tg->siblings, &parent->children);
8053
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8054

8055
	return tg;
S
Srivatsa Vaddagiri 已提交
8056 8057

err:
P
Peter Zijlstra 已提交
8058
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8059 8060 8061
	return ERR_PTR(-ENOMEM);
}

8062
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8063
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8064 8065
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8066
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8067 8068
}

8069
/* Destroy runqueue etc associated with a task group */
8070
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8071
{
8072
	unsigned long flags;
8073
	int i;
S
Srivatsa Vaddagiri 已提交
8074

8075
	spin_lock_irqsave(&task_group_lock, flags);
8076
	for_each_possible_cpu(i) {
8077 8078
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8079
	}
P
Peter Zijlstra 已提交
8080
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8081
	list_del_rcu(&tg->siblings);
8082
	spin_unlock_irqrestore(&task_group_lock, flags);
8083 8084

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8085
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8086 8087
}

8088
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8089 8090 8091
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8092 8093
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8094 8095 8096 8097 8098 8099 8100
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8101
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8102 8103
	on_rq = tsk->se.on_rq;

8104
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8105
		dequeue_task(rq, tsk, 0);
8106 8107
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8108

P
Peter Zijlstra 已提交
8109
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8110

P
Peter Zijlstra 已提交
8111 8112
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8113
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8114 8115
#endif

8116 8117 8118
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8119
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8120 8121 8122

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8123
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8124

8125
#ifdef CONFIG_FAIR_GROUP_SCHED
8126
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8127 8128 8129 8130 8131
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8132
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8133 8134 8135
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8136
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8137

8138
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8139
		enqueue_entity(cfs_rq, se, 0);
8140
}
8141

8142 8143 8144 8145 8146 8147
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8148
	raw_spin_lock_irqsave(&rq->lock, flags);
8149
	__set_se_shares(se, shares);
8150
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8151 8152
}

8153 8154
static DEFINE_MUTEX(shares_mutex);

8155
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8156 8157
{
	int i;
8158
	unsigned long flags;
8159

8160 8161 8162 8163 8164 8165
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8166 8167
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8168 8169
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8170

8171
	mutex_lock(&shares_mutex);
8172
	if (tg->shares == shares)
8173
		goto done;
S
Srivatsa Vaddagiri 已提交
8174

8175
	spin_lock_irqsave(&task_group_lock, flags);
8176 8177
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8178
	list_del_rcu(&tg->siblings);
8179
	spin_unlock_irqrestore(&task_group_lock, flags);
8180 8181 8182 8183 8184 8185 8186 8187

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8188
	tg->shares = shares;
8189 8190 8191 8192 8193
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8194
		set_se_shares(tg->se[i], shares);
8195
	}
S
Srivatsa Vaddagiri 已提交
8196

8197 8198 8199 8200
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8201
	spin_lock_irqsave(&task_group_lock, flags);
8202 8203
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8204
	list_add_rcu(&tg->siblings, &tg->parent->children);
8205
	spin_unlock_irqrestore(&task_group_lock, flags);
8206
done:
8207
	mutex_unlock(&shares_mutex);
8208
	return 0;
S
Srivatsa Vaddagiri 已提交
8209 8210
}

8211 8212 8213 8214
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8215
#endif
8216

8217
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8218
/*
P
Peter Zijlstra 已提交
8219
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8220
 */
P
Peter Zijlstra 已提交
8221 8222 8223 8224 8225
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8226
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8227

P
Peter Zijlstra 已提交
8228
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8229 8230
}

P
Peter Zijlstra 已提交
8231 8232
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8233
{
P
Peter Zijlstra 已提交
8234
	struct task_struct *g, *p;
8235

P
Peter Zijlstra 已提交
8236 8237 8238 8239
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8240

P
Peter Zijlstra 已提交
8241 8242
	return 0;
}
8243

P
Peter Zijlstra 已提交
8244 8245 8246 8247 8248
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8249

P
Peter Zijlstra 已提交
8250 8251 8252 8253 8254 8255
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8256

P
Peter Zijlstra 已提交
8257 8258
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8259

P
Peter Zijlstra 已提交
8260 8261 8262
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8263 8264
	}

8265 8266 8267 8268 8269
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8270

8271 8272 8273
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8274 8275
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8276

P
Peter Zijlstra 已提交
8277
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8278

8279 8280 8281 8282 8283
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8284

8285 8286 8287
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8288 8289 8290
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8291

P
Peter Zijlstra 已提交
8292 8293 8294 8295
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8296

P
Peter Zijlstra 已提交
8297
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8298
	}
P
Peter Zijlstra 已提交
8299

P
Peter Zijlstra 已提交
8300 8301 8302 8303
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8304 8305
}

P
Peter Zijlstra 已提交
8306
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8307
{
P
Peter Zijlstra 已提交
8308 8309 8310 8311 8312 8313 8314
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8315 8316
}

8317 8318
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8319
{
P
Peter Zijlstra 已提交
8320
	int i, err = 0;
P
Peter Zijlstra 已提交
8321 8322

	mutex_lock(&rt_constraints_mutex);
8323
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8324 8325
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8326
		goto unlock;
P
Peter Zijlstra 已提交
8327

8328
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8329 8330
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8331 8332 8333 8334

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8335
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8336
		rt_rq->rt_runtime = rt_runtime;
8337
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8338
	}
8339
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8340
 unlock:
8341
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8342 8343 8344
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8345 8346
}

8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8359 8360 8361 8362
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8363
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8364 8365
		return -1;

8366
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8367 8368 8369
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8370 8371 8372 8373 8374 8375 8376 8377

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8378 8379 8380
	if (rt_period == 0)
		return -EINVAL;

8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8395
	u64 runtime, period;
8396 8397
	int ret = 0;

8398 8399 8400
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8401 8402 8403 8404 8405 8406 8407 8408
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8409

8410
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8411
	read_lock(&tasklist_lock);
8412
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8413
	read_unlock(&tasklist_lock);
8414 8415 8416 8417
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8428
#else /* !CONFIG_RT_GROUP_SCHED */
8429 8430
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8431 8432 8433
	unsigned long flags;
	int i;

8434 8435 8436
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8437 8438 8439 8440 8441 8442 8443
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8444
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8445 8446 8447
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8448
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8449
		rt_rq->rt_runtime = global_rt_runtime();
8450
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8451
	}
8452
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8453

8454 8455
	return 0;
}
8456
#endif /* CONFIG_RT_GROUP_SCHED */
8457 8458

int sched_rt_handler(struct ctl_table *table, int write,
8459
		void __user *buffer, size_t *lenp,
8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8470
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8487

8488
#ifdef CONFIG_CGROUP_SCHED
8489 8490

/* return corresponding task_group object of a cgroup */
8491
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8492
{
8493 8494
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8495 8496 8497
}

static struct cgroup_subsys_state *
8498
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8499
{
8500
	struct task_group *tg, *parent;
8501

8502
	if (!cgrp->parent) {
8503 8504 8505 8506
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8507 8508
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8509 8510 8511 8512 8513 8514
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8515 8516
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8517
{
8518
	struct task_group *tg = cgroup_tg(cgrp);
8519 8520 8521 8522

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8523
static int
8524
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8525
{
8526
#ifdef CONFIG_RT_GROUP_SCHED
8527
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8528 8529
		return -EINVAL;
#else
8530 8531 8532
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8533
#endif
8534 8535
	return 0;
}
8536

8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8556 8557 8558 8559
	return 0;
}

static void
8560
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8561 8562
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8563 8564
{
	sched_move_task(tsk);
8565 8566 8567 8568 8569 8570 8571 8572
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8573 8574
}

8575
#ifdef CONFIG_FAIR_GROUP_SCHED
8576
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8577
				u64 shareval)
8578
{
8579
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8580 8581
}

8582
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8583
{
8584
	struct task_group *tg = cgroup_tg(cgrp);
8585 8586 8587

	return (u64) tg->shares;
}
8588
#endif /* CONFIG_FAIR_GROUP_SCHED */
8589

8590
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8591
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8592
				s64 val)
P
Peter Zijlstra 已提交
8593
{
8594
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8595 8596
}

8597
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8598
{
8599
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8600
}
8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8612
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8613

8614
static struct cftype cpu_files[] = {
8615
#ifdef CONFIG_FAIR_GROUP_SCHED
8616 8617
	{
		.name = "shares",
8618 8619
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8620
	},
8621 8622
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8623
	{
P
Peter Zijlstra 已提交
8624
		.name = "rt_runtime_us",
8625 8626
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8627
	},
8628 8629
	{
		.name = "rt_period_us",
8630 8631
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8632
	},
8633
#endif
8634 8635 8636 8637
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8638
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8639 8640 8641
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8642 8643 8644 8645 8646 8647 8648
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8649 8650 8651
	.early_init	= 1,
};

8652
#endif	/* CONFIG_CGROUP_SCHED */
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8663
/* track cpu usage of a group of tasks and its child groups */
8664 8665 8666
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8667
	u64 __percpu *cpuusage;
8668
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8669
	struct cpuacct *parent;
8670 8671 8672 8673 8674
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8675
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8676
{
8677
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8690
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8691 8692
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8693
	int i;
8694 8695

	if (!ca)
8696
		goto out;
8697 8698

	ca->cpuusage = alloc_percpu(u64);
8699 8700 8701 8702 8703 8704
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8705

8706 8707 8708
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8709
	return &ca->css;
8710 8711 8712 8713 8714 8715 8716 8717 8718

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8719 8720 8721
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8722
static void
8723
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8724
{
8725
	struct cpuacct *ca = cgroup_ca(cgrp);
8726
	int i;
8727

8728 8729
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8730 8731 8732 8733
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8734 8735
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8736
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8737 8738 8739 8740 8741 8742
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8743
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8744
	data = *cpuusage;
8745
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8746 8747 8748 8749 8750 8751 8752 8753 8754
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8755
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8756 8757 8758 8759 8760

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8761
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8762
	*cpuusage = val;
8763
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8764 8765 8766 8767 8768
#else
	*cpuusage = val;
#endif
}

8769
/* return total cpu usage (in nanoseconds) of a group */
8770
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8771
{
8772
	struct cpuacct *ca = cgroup_ca(cgrp);
8773 8774 8775
	u64 totalcpuusage = 0;
	int i;

8776 8777
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8778 8779 8780 8781

	return totalcpuusage;
}

8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8794 8795
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8796 8797 8798 8799 8800

out:
	return err;
}

8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8835 8836 8837
static struct cftype files[] = {
	{
		.name = "usage",
8838 8839
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8840
	},
8841 8842 8843 8844
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8845 8846 8847 8848
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8849 8850
};

8851
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8852
{
8853
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8864
	int cpu;
8865

L
Li Zefan 已提交
8866
	if (unlikely(!cpuacct_subsys.active))
8867 8868
		return;

8869
	cpu = task_cpu(tsk);
8870 8871 8872

	rcu_read_lock();

8873 8874
	ca = task_ca(tsk);

8875
	for (; ca; ca = ca->parent) {
8876
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8877 8878
		*cpuusage += cputime;
	}
8879 8880

	rcu_read_unlock();
8881 8882
}

8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8900 8901 8902 8903 8904 8905 8906
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8907
	int batch = CPUACCT_BATCH;
8908 8909 8910 8911 8912 8913 8914 8915

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8916
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8917 8918 8919 8920 8921
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8922 8923 8924 8925 8926 8927 8928 8929
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8930 8931 8932 8933

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
8934 8935 8936 8937 8938 8939 8940 8941 8942
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
8943
{
8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
8955
	smp_mb(); /* See above comment block. */
8956
	return 0;
8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
8971 8972
	int snap, trycount = 0;

8973
	smp_mb();  /* ensure prior mod happens before capturing snap. */
8974
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8975
	get_online_cpus();
8976 8977
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
8978
			     NULL) == -EAGAIN) {
8979 8980 8981 8982 8983
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
8984
			return;
8985
		}
8986
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8987
			smp_mb(); /* ensure test happens before caller kfree */
8988
			return;
8989 8990 8991
		}
		get_online_cpus();
	}
8992
	atomic_inc(&synchronize_sched_expedited_count);
8993
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8994 8995 8996 8997 8998
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */