pybind.cc 189.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93
#include "paddle/fluid/pybind/jit.h"
94 95
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
96
#include "paddle/utils/none.h"
97 98 99
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
100
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
101
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
102
#include "paddle/fluid/pybind/box_helper_py.h"
103
#include "paddle/fluid/pybind/communication.h"
104
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
105
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
106
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
108
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
109
#include "paddle/fluid/pybind/generator_py.h"
110
#include "paddle/fluid/pybind/global_value_getter_setter.h"
111
#include "paddle/fluid/pybind/gloo_context_py.h"
112
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
113
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
115
#include "paddle/fluid/pybind/ir.h"
116
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
117
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
118
#include "paddle/fluid/pybind/pybind_boost_headers.h"
119
#include "paddle/phi/backends/device_manager.h"
120

121
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
122
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
123
#endif
124
#include "paddle/fluid/framework/data_type.h"
125 126
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
127
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
128
#include "paddle/fluid/pybind/tensor_py.h"
129
#include "paddle/fluid/string/to_string.h"
130 131
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
132
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
133
#endif
134
#ifndef PADDLE_WITH_HIP
135
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
136
#endif
137
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
138 139
#endif

140
#ifdef PADDLE_WITH_ASCEND_CL
141
#include "paddle/fluid/platform/collective_helper.h"
142 143
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
144 145
#endif

146
#ifdef PADDLE_WITH_XPU
147
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
148
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
149 150
#endif

151 152 153 154
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

155
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
156

J
jianghaicheng 已提交
157
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
158 159
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
160
#endif
161

162 163 164 165
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
166 167 168 169
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
170
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
171 172 173
#include "paddle/fluid/pybind/fleet_py.h"
#endif

174 175 176 177
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

178
#include "paddle/fluid/eager/api/utils/global_utils.h"
179
#include "paddle/fluid/imperative/layout_autotune.h"
180 181
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
182 183
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
184 185
#include "pybind11/stl.h"

186
DECLARE_bool(use_mkldnn);
187

Q
Qiao Longfei 已提交
188 189
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
190 191 192
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
193

194
namespace paddle {
195
namespace pybind {
196 197

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
198
PyTypeObject *g_framework_scope_pytype = nullptr;
199 200 201 202 203
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
204
PyTypeObject *g_mluplace_pytype = nullptr;
205
PyTypeObject *g_customplace_pytype = nullptr;
206
PyTypeObject *g_framework_tensor_pytype = nullptr;
207
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
208
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
209

210
bool IsCompiledWithCUDA() {
211 212 213 214 215 216 217
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

218 219 220 221 222 223 224 225
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

226 227
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
228 229 230 231 232 233
  return false;
#else
  return true;
#endif
}

234 235 236 237 238 239 240 241
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

242 243 244 245 246 247 248 249
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

250 251 252 253 254 255 256 257
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
258 259 260 261 262 263 264 265
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

266 267 268 269 270 271 272 273
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

274 275 276 277 278 279 280 281
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

282 283 284 285 286 287 288 289
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

290 291 292 293 294 295 296 297
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

298 299 300 301 302 303 304 305 306 307 308
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

309 310 311 312 313 314 315 316 317 318 319
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

337
bool IsCompiledWithBrpc() {
338
#ifndef PADDLE_WITH_DISTRIBUTE
339 340
  return false;
#endif
341
  return true;
342 343
}

Y
update  
Yancey1989 已提交
344
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
345
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
346 347 348 349 350 351
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
352 353 354 355 356 357 358
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
359
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
360 361
}

H
hong 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
384 385
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
386 387
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
401 402
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
403 404
    }
    vec_res.emplace_back(
405
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
406 407 408 409 410 411 412 413 414 415 416 417
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
418 419
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
420 421 422 423 424 425 426 427 428 429 430 431
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
432 433 434
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
435 436 437 438
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
439 440
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
441 442 443 444
  }
  return vec_res;
}

445
static void inline CreateVariableIfNotExit(
446 447
    const py::handle &py_handle,
    const framework::Scope &scope,
448 449 450 451 452 453
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
454 455
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
456 457 458 459 460 461 462 463 464 465 466 467 468
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
469 470 471
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
472 473 474 475 476
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
477 478 479 480 481
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
482 483
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
484
        PADDLE_ENFORCE_NOT_NULL(
485 486 487
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
488 489 490 491
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
492
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
493 494
        tensor_temp->mutable_data(
            exe->GetPlace(),
495
            framework::TransToPhiDataType(var_desc.GetDataType()));
496 497 498
      }
    }
  } else {
499 500
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
501 502 503 504 505
  }

  return;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
522 523
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
524 525 526 527 528 529 530
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
531 532 533 534
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
535
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
536 537 538 539 540 541 542 543
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
544
template <typename PlaceType>
545 546 547 548
static void TensorCopyFrom(framework::Tensor *dst,
                           const framework::Tensor &src,
                           const PlaceType &place,
                           int64_t batch_size) {
Z
Zeng Jinle 已提交
549 550 551 552 553 554 555 556
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

557 558 559 560 561 562
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
563
  BindImperative(&m);
564
  BindEager(&m);
J
Jack Zhou 已提交
565
  BindEagerStringTensor(&m);
566
  BindCudaStream(&m);
567
  BindJit(&m);
568

Y
Yu Yang 已提交
569 570 571
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
572
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
573

574 575
  AssertStaticGraphAndDygraphGradMakerNoDiff();

576
  m.doc() = "C++ core of PaddlePaddle";
577

578 579 580 581
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

582
  BindException(&m);
Y
Yu Yang 已提交
583

584 585
  m.def("set_num_threads", &platform::SetNumThreads);

586 587
  m.def("disable_signal_handler", &DisableSignalHandler);

588 589 590 591 592 593 594 595
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

596
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
597
  m.def("cudnn_version", &platform::DnnVersion);
598 599 600 601 602 603
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
604
#endif
605

Z
Zeng Jinle 已提交
606 607 608 609
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

610 611 612 613 614 615 616 617 618
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
619 620
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
621
      .def("replay", &platform::CUDAGraph::Replay)
622 623
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
624 625
#endif

Z
Zeng Jinle 已提交
626 627 628 629
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
630 631 632
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
633 634

    PADDLE_ENFORCE_NOT_NULL(
635 636 637 638
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
639

6
633WHU 已提交
640 641
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
642
    framework::Tensor tensor;
6
633WHU 已提交
643

S
Siming Dai 已提交
644
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
645 646
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
647
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
648
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
649 650 651 652 653
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
654

655
  m.def("_create_loaded_parameter",
656 657
        [](const py::handle &vec_var_list,
           const Scope &scope,
658 659 660 661
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

662 663 664 665 666 667
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
668 669
  });

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

695 696 697 698 699 700
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
701

S
sneaxiy 已提交
702
  m.def(
S
sneaxiy 已提交
703
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
704 705 706 707
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
708 709 710
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
727
            }
728
            all_kernels_info.emplace(op_type, kernel_types);
729
          }
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
746
                }
747 748
              } else {
                kernel_types.emplace_back(kernel_type_str);
749
              }
750
            }
751 752 753
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
754
          }
755
        }
756

757 758 759 760
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
761 762 763
           Return the registered kernels in paddle.

           Args:
764
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
765
           )DOC");
766

767 768 769 770 771 772
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
773 774 775 776 777
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
778

S
sneaxiy 已提交
779 780 781
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
782
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
783

784
  m.def("_set_fuse_parameter_group_size",
785
        &paddle::framework::ir::SetFuseParameterGroupsSize);
786
  m.def("_set_fuse_parameter_memory_size",
787
        &paddle::framework::ir::SetFuseParameterMemorySize);
788

S
sneaxiy 已提交
789 790 791
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

792 793
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

794 795 796
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
838 839 840 841 842 843 844 845 846 847 848 849 850
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
851 852 853 854 855
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
856

857 858
  py::class_<framework::Tensor> framework_tensor(
      m, "Tensor", py::buffer_protocol());
859 860 861
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
862 863
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
864 865 866 867
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
868 869
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
870
      .def("_is_initialized",
871
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
872
      .def("_get_dims",
873
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
874
      .def("_set_dims",
875
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
876
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
877
           })
Y
yuyang18 已提交
878
      .def("_set_layout",
879
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
880 881
             self.set_layout(StringToDataLayout(layout));
           })
R
ronnywang 已提交
882 883 884 885
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
886
      .def("_alloc_float",
887
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
888
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
889
           })
890
      .def("_alloc_float",
891
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
892 893
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
894
      .def("_alloc_float",
895
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
896
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
897
           })
898 899 900 901
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
902 903 904 905
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
906
      .def("_alloc_double",
907
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
908 909
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
910
      .def("_alloc_int",
911
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
912
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
913
           })
R
ronnywang 已提交
914 915 916 917
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<int>(place);
           })
918
      .def("_alloc_int",
919
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
920 921
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
922
      .def("_alloc_int",
923
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
924
             self.mutable_data<int>(place);
Q
qijun 已提交
925
           })
926 927 928 929
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
930
      .def("_alloc_int",
931 932
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
933 934
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
935
      .def("_alloc_float",
936 937
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
938 939
             self.mutable_data<float>(place);
           })
940
      .def("_mutable_data",
941 942
           [](framework::Tensor &self,
              paddle::platform::CPUPlace &place,
943
              paddle::framework::proto::VarType::Type type) {
944 945
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
946
           })
R
ronnywang 已提交
947
      .def("_mutable_data",
948 949
           [](framework::Tensor &self,
              paddle::platform::CustomPlace &place,
R
ronnywang 已提交
950 951 952 953
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
954
      .def("_mutable_data",
955 956
           [](framework::Tensor &self,
              paddle::platform::XPUPlace &place,
957
              paddle::framework::proto::VarType::Type type) {
958 959
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
960
           })
961
      .def("_mutable_data",
962 963
           [](framework::Tensor &self,
              paddle::platform::CUDAPlace &place,
964
              paddle::framework::proto::VarType::Type type) {
965 966
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
967 968
           })
      .def("_mutable_data",
969 970
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place,
971
              paddle::framework::proto::VarType::Type type) {
972 973
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
974
           })
975
      .def("_mutable_data",
976 977
           [](framework::Tensor &self,
              paddle::platform::MLUPlace &place,
978
              paddle::framework::proto::VarType::Type type) {
979 980
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
981
           })
982
      .def("_clear", &framework::Tensor::clear)
983
      .def("_mutable_data",
984 985
           [](framework::Tensor &self,
              paddle::platform::NPUPlace &place,
986
              paddle::framework::proto::VarType::Type type) {
987 988
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
989
           })
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::Place>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CUDAPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false,
1070
           R"DOC(
1071
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
1072 1073 1074
        
        Args:
          lod (numpy.ndarray): The data to set.
1075
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
1076
          Tensor is to be set.
1077 1078
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1089
                t = fluid.Tensor()
L
Leo Chen 已提交
1090 1091
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1092

1093 1094 1095 1096
      .def(
          "shape",
          [](framework::Tensor &self) { return vectorize(self.dims()); },
          R"DOC(
1097
           Return the shape of Tensor.
L
Leo Chen 已提交
1098 1099

           Returns:
1100
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1101 1102 1103 1104 1105 1106 1107 1108


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1109
                  t = fluid.Tensor()
L
Leo Chen 已提交
1110 1111 1112
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1113
      .def("_to_dlpack",
1114
           [](framework::Tensor &self) {
6
633WHU 已提交
1115
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1116
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1134 1135 1136 1137
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1138
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1139 1140 1141 1142
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1143
      .def("_layout",
1144 1145 1146 1147
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1148
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1149 1150 1151 1152 1153 1154
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
      .def("__init__",
           [](framework::Tensor &instance,
              const std::vector<std::vector<size_t>>
                  &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1),
                 true,
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
             new (&instance) framework::Tensor(new_offset_lod);
           })
1175
      .def("__init__",
1176 1177
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1178
           })
G
gongweibao 已提交
1179
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1180 1181
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1182 1183 1184
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
1185 1186 1187 1188 1189 1190 1191 1192 1193
      .def(
          "set_lod",
          [](framework::Tensor &self,
             const std::vector<std::vector<size_t>> &lod) {
            // the input lod is offset-based level-of-detail info
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            PADDLE_ENFORCE_EQ(
1194 1195
                CheckLoD(new_lod, vectorize(self.dims()).front()),
                true,
1196 1197 1198 1199
                platform::errors::InvalidArgument(
                    "The provided LoD is invalid, the LoD is %s", new_lod));
            self.set_lod(new_lod);
          },
1200 1201
          py::arg("lod"),
          R"DOC(
1202
           Set LoD of the Tensor.
S
sneaxiy 已提交
1203 1204

           Args:
L
Leo Chen 已提交
1205 1206 1207 1208
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1209 1210 1211 1212 1213 1214 1215

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1216
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1217 1218
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1219
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1220
           )DOC")
1221 1222
      .def(
          "set_recursive_sequence_lengths",
1223 1224 1225
          [](framework::Tensor &self,
             const std::vector<std::vector<size_t>>
                 &recursive_sequence_lengths) {
1226 1227 1228 1229 1230 1231 1232 1233 1234
            // the input recursive_sequence_lengths is length-based
            // level-of-detail info
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
1235 1236
                CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                true,
1237 1238 1239 1240 1241 1242 1243 1244
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
                    "the LoD converted by recursive_sequence_lengths is "
                    "%s",
                    new_lod));
            self.set_lod(new_offset_lod);
          },
1245 1246
          py::arg("recursive_sequence_lengths"),
          R"DOC(
1247
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1248

L
Leo Chen 已提交
1249
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1250
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1251
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1252 1253

           Args:
L
Leo Chen 已提交
1254 1255 1256 1257
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1258 1259 1260 1261 1262 1263 1264

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1265
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1266 1267
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1268
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1269
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1270
           )DOC")
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      .def(
          "lod",
          [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
            // output the offset-based lod info
            LoD lod = self.lod();
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
1282
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1283 1284

           Returns:
1285
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1286
           
Z
Zeng Jinle 已提交
1287 1288 1289 1290 1291 1292
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1293
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1294 1295 1296
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1297
           )DOC")
G
gongweibao 已提交
1298
      // Set above comments of set_lod.
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
      .def(
          "recursive_sequence_lengths",
          [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
            // output the length-based lod info
            LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
L
Leo Chen 已提交
1310
           Return the recursive sequence lengths corresponding to of the LodD 
1311
           of the Tensor.
S
sneaxiy 已提交
1312 1313

           Returns:
L
Leo Chen 已提交
1314
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1315 1316 1317 1318 1319 1320 1321

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1322
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1323 1324 1325
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1326
           )DOC")
1327 1328 1329 1330 1331 1332 1333 1334
      .def(
          "has_valid_recursive_sequence_lengths",
          [](framework::Tensor &self) -> bool {
            // Check that the lod info is valid and match the outermost
            // dimension of the Tensor data
            return CheckLoD(self.lod(), vectorize(self.dims()).front());
          },
          R"DOC(
1335
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1336 1337

           Returns:
L
Leo Chen 已提交
1338
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1339 1340 1341 1342 1343 1344 1345

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1346
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1347 1348 1349
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1350
           )DOC")
L
Leo Chen 已提交
1351
      .def("_as_type",
1352
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1353
              paddle::framework::proto::VarType::Type type) {
1354
             framework::Tensor dst;
L
Leo Chen 已提交
1355 1356 1357 1358 1359
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1373
#ifdef _WIN32
1374
           });
1375 1376
#else
           })
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1658
      .def(py::pickle(
1659
          [](const framework::Tensor &t) {  // __getstate__
1660
            auto holder = t.Holder();
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1673 1674 1675
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1676 1677
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1678 1679 1680
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1681
              throw std::runtime_error("Invalid Tensor state!");
1682 1683

            // 1. Create a new C++ instance
1684
            framework::Tensor tensor;
1685 1686 1687 1688 1689

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1690 1691
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1692 1693

            // 3. Maintain global fd set
1694
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1695 1696
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1697 1698 1699
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1700
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1701
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1702 1703 1704 1705 1706
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1707

1708
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1709
      .def("__init__",
1710 1711
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1712
           })
Q
qijun 已提交
1713
      .def("__init__",
1714 1715
           [](phi::SelectedRows &instance,
              const std::vector<int64_t> rows,
Q
qijun 已提交
1716
              const int64_t &height) {
1717
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1718
           })
1719 1720 1721 1722
      .def(
          "get_tensor",
          [](phi::SelectedRows &self) { return self.mutable_value(); },
          py::return_value_policy::reference)
1723
      .def("numel",
1724
           [](phi::SelectedRows &self) -> int64_t {
1725 1726
             return self.value().numel();
           })
1727 1728
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1729
      .def("set_rows",
1730
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1731
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1732 1733 1734 1735 1736 1737
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1738
      .def("sync_index",
1739 1740
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1741 1742 1743 1744 1745
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1746
      });
Q
qijun 已提交
1747

1748
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1749 1750 1751

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1752
      .def(py::init<>())
1753
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1754
      .def("set_int",
1755 1756
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1757 1758 1759 1760 1761 1762 1763
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1764 1765 1766 1767 1768 1769
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
1770 1771 1772 1773
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1774 1775 1776 1777
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
1778 1779 1780 1781
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1808
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1809 1810 1811 1812 1813 1814
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1815
#endif
1816 1817 1818
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1819 1820
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1831 1832
                scope_vec->size(),
                0,
1833 1834 1835 1836 1837
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1838 1839 1840 1841
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1842

S
sneaxiy 已提交
1843
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1844

0
0x45f 已提交
1845
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1859
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1860 1861 1862 1863 1864
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1865 1866 1867
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1868 1869
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1870 1871 1872 1873 1874 1875 1876
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1877
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1878

1879
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1880
           current scope, the variable would be created. Otherwise,
1881
           return the existing variable.
S
sneaxiy 已提交
1882 1883

           Args:
1884 1885
               name (str): the variable name.

S
sneaxiy 已提交
1886
           Returns:
1887
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1888
           )DOC",
1889
          py::return_value_policy::reference)
1890 1891 1892
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1893
           R"DOC(
1894
           Find variable named :code:`name` in the current scope or
1895
           its parent scope. Return None if not found. 
1896

S
sneaxiy 已提交
1897 1898
           Args:
               name (str): the variable name.
1899

S
sneaxiy 已提交
1900
           Returns:
1901
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1902
           )DOC",
1903
           py::return_value_policy::reference)
1904
      .def("size", &Scope::Size)
1905 1906 1907
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1919
      .def(
1920 1921
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1922
          R"DOC(
S
sneaxiy 已提交
1923 1924 1925 1926 1927
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1928
          py::return_value_policy::reference)
1929 1930
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1931 1932
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1933 1934
           )DOC")
      .def("_kids", &Scope::kids);
1935

1936 1937 1938 1939 1940 1941 1942 1943
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1944
        Create a new scope.
1945

S
sneaxiy 已提交
1946 1947 1948
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1949
      py::return_value_policy::reference);
S
sneaxiy 已提交
1950

Y
Yu Yang 已提交
1951 1952
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1953 1954
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1955 1956 1957 1958
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1959
        PADDLE_ENFORCE_EQ(
1960 1961
            info.Proto().SerializeToString(&str),
            true,
1962 1963
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1964 1965 1966
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1967 1968
    return ret_values;
  });
1969 1970 1971 1972 1973 1974 1975
  m.def("get_all_op_names", []() {
    std::vector<std::string> op_names;
    for (auto &iter : OpInfoMap::Instance().map()) {
      op_names.emplace_back(iter.first);
    }
    return op_names;
  });
1976 1977 1978 1979 1980 1981 1982 1983
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1984
              res = op_checker->GetDefaultAttrsMap();
1985 1986 1987 1988
            }
          }
          return res;
        });
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
2007 2008 2009
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
2010 2011 2012 2013 2014
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
2015 2016 2017
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
2018
  m.def("infer_no_need_buffer_slots",
2019 2020
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
2048 2049 2050 2051 2052 2053
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
2054 2055 2056
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
2057
            Args:
2058 2059 2060 2061 2062 2063 2064 2065
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
2066 2067 2068 2069
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
2070 2071
    VLOG(4) << s;
    return s;
2072 2073 2074 2075 2076 2077
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
2078
  });
2079 2080 2081 2082
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
2083 2084 2085
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
2086 2087
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
2088

Q
qijun 已提交
2089
  // clang-format off
Y
Yu Yang 已提交
2090
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
2091 2092
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
2093
                      -> paddle::platform::DeviceContext* {
L
Leo Chen 已提交
2094
    auto* context = new phi::CPUContext();
W
Wilber 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
2108
                  })
2109 2110 2111 2112 2113 2114 2115 2116 2117
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
2144 2145
#endif
                  })
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
2169 2170
#endif
        })
Q
qijun 已提交
2171
      .def_static("create",
D
dzhwinter 已提交
2172
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2173
                      -> paddle::platform::DeviceContext* {
2174
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2175 2176 2177 2178
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2179
#else
W
Wilber 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2193 2194 2195 2196
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2197 2198
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2199
#endif
C
chengduoZH 已提交
2200 2201 2202 2203
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2204
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2205 2206 2207 2208
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2209 2210 2211 2212
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2213
// clang-format on
2214
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2215 2216
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2217 2218 2219
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2220
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2221
#else
R
ronnywang 已提交
2222
          VLOG(1) << string::Sprintf(
2223 2224 2225 2226
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
2227
              "PaddlePaddle by: pip install paddlepaddle\n");
2228 2229 2230 2231 2232 2233
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2234
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2235
#else
R
ronnywang 已提交
2236
          VLOG(1) << string::Sprintf(
2237 2238 2239 2240
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
2241
              "PaddlePaddle by: pip install paddlepaddle\n");
2242 2243 2244 2245 2246 2247
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2248
    devices = phi::DeviceManager::GetAllDeviceList();
2249
#else
R
ronnywang 已提交
2250
          VLOG(1) << string::Sprintf(
2251 2252 2253 2254
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
2255
              "PaddlePaddle by: pip install paddlepaddle\n");
2256 2257 2258 2259 2260 2261
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2262
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2263
#else
R
ronnywang 已提交
2264
          VLOG(1) << string::Sprintf(
2265 2266 2267 2268 2269 2270
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
2271
              "PaddlePaddle by: pip install paddlepaddle\n");
2272 2273 2274
#endif
    return devices;
  });
2275 2276
  py::class_<platform::CustomPlace> customplace(m,
                                                "CustomPlace",
2277
                                                R"DOC(
2278 2279 2280 2281 2282 2283 2284 2285
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
2286 2287 2288
                                             )DOC");
  g_customplace_pytype = reinterpret_cast<PyTypeObject *>(customplace.ptr());
  customplace
2289
      .def("__init__",
2290 2291
           [](platform::CustomPlace &self,
              const std::string &device_type,
2292 2293 2294 2295 2296 2297 2298
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
2299 2300
                   device_type,
                   dev_id);
2301 2302 2303
               std::exit(-1);
             }

2304 2305
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2306
               int dev_count = static_cast<int>(
2307
                   phi::DeviceManager::GetDeviceCount(device_type));
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
2321 2322 2323 2324 2325
                       device_type,
                       dev_id,
                       dev_count,
                       device_type,
                       dev_count);
2326 2327 2328 2329 2330 2331 2332 2333 2334
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
2335 2336
                   device_type,
                   dev_id);
2337 2338 2339 2340 2341 2342 2343 2344
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
R
ronnywang 已提交
2345
                 "PaddlePaddle by: pip install paddlepaddle\n"
2346 2347 2348 2349 2350 2351
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
2352
      .def("_type", &PlaceIndex<platform::CustomPlace>)
2353 2354 2355 2356 2357 2358 2359 2360
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2361
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2362 2363 2364 2365 2366

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2367
    The memory of CUDAPlace with different dev_id is not accessible.
2368 2369 2370 2371 2372 2373 2374 2375
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2376 2377 2378 2379

    Examples:
        .. code-block:: python

2380 2381 2382
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2383

2384 2385 2386
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2387 2388
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2389
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2390 2391 2392 2393 2394 2395 2396 2397
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2398 2399
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2400 2401 2402 2403 2404 2405 2406 2407
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
2408 2409
                     dev_id,
                     platform::GetGPUDeviceCount(),
2410
                     platform::GetGPUDeviceCount());
2411 2412 2413 2414
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2415 2416
             new (&self) platform::CUDAPlace(dev_id);
#else
2417 2418 2419 2420 2421 2422 2423 2424 2425
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2426 2427
#endif
           })
2428
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2429 2430
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2431 2432 2433 2434
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2435
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2436
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2437
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2438 2439
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2440 2441 2442
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2443
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2444
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2445

2446
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2447 2448 2449 2450 2451
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2452 2453 2454
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
2475 2476
                     dev_id,
                     platform::GetXPUDeviceCount(),
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2494
#ifdef PADDLE_WITH_XPU
2495 2496 2497 2498 2499 2500 2501
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2502 2503 2504
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2505
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2506
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2507
#ifdef PADDLE_WITH_XPU
2508 2509 2510
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2511
      .export_values();
2512
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2513 2514
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2515 2516 2517 2518 2519 2520
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2521 2522 2523 2524
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2525
#endif
2526
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2527 2528
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2529 2530
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2531
    return platform::get_xpu_version(place.device) >
2532
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2533 2534 2535
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2536
    return platform::get_xpu_version(place.device) >
2537
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2538
  });
2539
#endif
2540

2541
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2542
    CPUPlace is a descriptor of a device.
2543
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2544 2545 2546 2547

    Examples:
        .. code-block:: python

2548 2549
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2550

2551 2552 2553
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2554 2555
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2556
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2557
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2558 2559 2560 2561
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2562
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2563
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2564

2565 2566
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2567 2568 2569 2570 2571 2572
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2573 2574 2575 2576

    Examples:
        .. code-block:: python

2577 2578
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2579

2580 2581 2582 2583
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2584
      .def("__init__",
S
sneaxiy 已提交
2585
           [](platform::CUDAPinnedPlace &self) {
2586
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2587 2588 2589
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2590
#endif
S
sneaxiy 已提交
2591
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2592
           })
S
sneaxiy 已提交
2593 2594 2595 2596
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2597 2598
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2599 2600
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2601 2602 2603 2604
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2605
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2606 2607
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2608
  // NPUPlace
2609
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2610 2611 2612 2613 2614 2615 2616 2617
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2618 2619 2620
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
2641 2642
                     dev_id,
                     platform::GetNPUDeviceCount(),
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2653
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2668 2669
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2670 2671
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
2758 2759
                     dev_id,
                     platform::GetMLUDeviceCount(),
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2794 2795 2796
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2797 2798 2799 2800
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2801
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2802
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2803
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2804
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2805
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
2806
      .def("_equals", &IsSamePlace<platform::Place, platform::CustomPlace>)
X
xuezhong 已提交
2807 2808
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2809 2810
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2811 2812
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2813 2814
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2815 2816
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2817 2818 2819 2820
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2821 2822
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2823 2824 2825
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2826 2827 2828 2829 2830
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2831 2832
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
2833 2834 2835 2836
      .def("set_place",
           [](platform::Place &self, const platform::Place &other) {
             self = other;
           })
Y
Yu Yang 已提交
2837 2838 2839 2840
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2841 2842 2843 2844
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2845
      .def("set_place",
D
dzhwinter 已提交
2846
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2847
             self = gpu_place;
C
chengduoZH 已提交
2848
           })
2849 2850 2851 2852 2853
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2854 2855 2856 2857
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2858 2859 2860 2861
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2862 2863 2864 2865
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2866 2867 2868 2869
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2870 2871
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2872

Y
Yu Yang 已提交
2873
  py::class_<OperatorBase>(m, "Operator")
2874 2875 2876 2877 2878 2879 2880
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
2881 2882
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
2883 2884 2885 2886 2887 2888
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2889
      .def("run",
2890 2891
           [](OperatorBase &self,
              const Scope &scope,
2892 2893 2894 2895
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2896
      .def("run",
2897 2898
           [](OperatorBase &self,
              const Scope &scope,
2899 2900 2901 2902
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2903
      .def("run",
2904 2905
           [](OperatorBase &self,
              const Scope &scope,
2906 2907 2908 2909
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2910
      .def("run",
2911 2912
           [](OperatorBase &self,
              const Scope &scope,
2913 2914 2915 2916
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2917
      .def("run",
2918 2919
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
2920
              const platform::CUDAPinnedPlace &place) {
2921
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2922 2923
             self.Run(scope, place);
           })
2924
      .def("run",
2925 2926
           [](OperatorBase &self,
              const Scope &scope,
2927 2928 2929 2930
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
2931
      .def("run",
2932 2933
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
2934 2935 2936 2937
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2938 2939 2940 2941 2942
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
2943 2944
             return op.Outputs();
           })
Q
qijun 已提交
2945 2946
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2947
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2948
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2949 2950 2951 2952
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2953

2954 2955 2956
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2957 2958
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
2959 2960 2961 2962 2963 2964
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
2965 2966
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2967

2968 2969
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2970
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2971
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2972
      .def("close", &Executor::Close)
2973 2974
      .def("run_from_dataset",
           &Executor::RunFromDataset,
2975
           py::call_guard<py::gil_scoped_release>())
2976 2977
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
2978
           py::call_guard<py::gil_scoped_release>())
2979
      .def("init_for_dataset",
2980 2981 2982 2983
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
2984
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2985
             pybind11::gil_scoped_release release;
2986 2987 2988 2989 2990 2991 2992
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2993
      .def("run_prepared_ctx",
2994 2995 2996
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
2997
              std::map<std::string, const LoDTensor *> *feed_targets,
2998
              std::map<std::string, FetchType *> *fetch_targets,
2999 3000
              bool create_local_scope = true,
              bool create_vars = true,
3001 3002 3003
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
3004 3005 3006 3007 3008 3009 3010 3011
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
3012
           })
3013
      .def("run_prepared_ctx",
3014 3015 3016 3017 3018
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
3019 3020
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
3021 3022
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
3023
           })
3024
      .def("prepare",
3025 3026 3027
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
3028 3029 3030 3031
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
3032 3033
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
3034 3035
           })
      .def("create_variables", &Executor::CreateVariables)
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
3052

3053
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
3054
      .def(py::init<>())
3055 3056 3057 3058 3059
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
3060

3061
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
3062
      .def(py::init<const platform::Place &, const ProgramDesc &>())
3063
      .def("run",
3064
           [](StandaloneExecutor &self,
3065
              Scope *scope,
3066
              std::vector<std::string> feed_names,
3067 3068 3069 3070
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
3071
               ret = self.Run(scope, feed_names, fetch_names);
3072 3073 3074
             }
             return py::cast(std::move(ret));
           })
3075 3076
      .def("dry_run",
           [](StandaloneExecutor &self,
3077
              Scope *scope,
3078
              const std::unordered_map<std::string, py::array> &input_dict) {
3079
             std::vector<framework::LoDTensor> feed_tensors;
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

3090
             framework::interpreter::CostInfo cost_info;
3091 3092
             {
               pybind11::gil_scoped_release release;
3093
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
3094 3095
             }
             return cost_info;
H
hong 已提交
3096 3097
           });

D
dzhwinter 已提交
3098
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
3099
  m.def("init_glog", framework::InitGLOG);
3100 3101 3102 3103
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
3104
  m.def("init_devices", []() { framework::InitDevices(); });
3105 3106
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
3107
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
3108
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
3109
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
3110
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
3111
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
3112
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
3113
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
3114
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
3115
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
3116
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
3117
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
3118
  m.def("supports_bfloat16", SupportsBfloat16);
3119
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
3120 3121
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
3122
  m.def("op_supported_infos", imperative::OpSupportedInfos);
3123
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
3124
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
3125 3126 3127
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
3147 3148 3149
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
3150 3151
  m.def(
      "run_cmd",
3152 3153
      [](const std::string &cmd,
         int time_out = -1,
3154
         int sleep_inter = -1) -> const std::string {
3155 3156
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
3157
      },
3158 3159 3160
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
3161 3162
  m.def(
      "shell_execute_cmd",
3163 3164 3165
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
3166
         bool redirect_stderr = false) -> std::vector<std::string> {
3167 3168
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
3169
      },
3170 3171 3172
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
3173
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
3174

3175
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3176 3177
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3178
    return platform::GetGPUComputeCapability(place.device) >= 53;
3179
  });
3180 3181 3182 3183
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
3184
#endif
3185

S
Steffy-zxf 已提交
3186
  m.def("set_feed_variable",
3187 3188 3189 3190 3191
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
3192
  m.def("set_feed_variable",
3193 3194 3195 3196 3197
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
3198
  m.def("get_fetch_variable",
3199 3200
        [](const Scope &scope,
           const std::string &var_name,
3201 3202 3203
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3204
            return py::cast(BOOST_GET(LoDTensor, var));
3205
          } else {
3206
            return py::cast(BOOST_GET(LoDTensorArray, var));
3207 3208
          }
        });
3209
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3210

X
Xin Pan 已提交
3211 3212
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3213 3214 3215 3216
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3217
  BindCostModel(&m);
3218
  BindConstValue(&m);
3219
  BindGlobalValueGetterSetter(&m);
3220
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3221
  BindFleetExecutor(&m);
3222
  BindTCPStore(&m);
Y
Yu Yang 已提交
3223

Y
Yu Yang 已提交
3224 3225 3226 3227 3228 3229 3230 3231 3232
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3233
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3234
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3235 3236 3237

    Examples:
        .. code-block:: python
3238

Z
Zeng Jinle 已提交
3239 3240 3241
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3242 3243 3244 3245
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3246 3247
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
3248 3249 3250 3251
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
3252 3253 3254
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
3255 3256
             PADDLE_ENFORCE_LT(i,
                               self.size(),
3257 3258 3259
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3260 3261 3262
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
3263 3264 3265 3266 3267 3268 3269
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
3270 3271
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
3272
             Append a LoDensor to LoDTensorArray.
3273 3274 3275 3276 3277 3278
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3290
           )DOC")
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3302

3303
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
3304
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
3305
        )DOC")
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
                auto &data = BOOST_GET(LoDTensor, self[i]);
                res[i] = py::cast(std::move(data));
              } else {
                auto &data = BOOST_GET(LoDTensorArray, self[i]);
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
            auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
            auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
3349 3350

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
3351
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3352
        )DOC")
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
                  auto &var = BOOST_GET(LoDTensor, self[i][j]);
                  tmp[j] = py::cast(std::move(var));
                } else {
                  auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
3379

Y
Yu Yang 已提交
3380
  m.def("op_support_gpu", OpSupportGPU);
3381
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3382
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3383
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3384 3385 3386 3387 3388 3389 3390 3391
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
3392 3393 3394 3395 3396 3397
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
3398 3399

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3425
      });
D
dangqingqing 已提交
3426

3427
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3428 3429 3430
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3431 3432 3433 3434
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3435
#endif
P
peizhilin 已提交
3436
#endif
Y
Yu Yang 已提交
3437

3438 3439
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3440
  m.def("npu_finalize", []() {
3441 3442
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3443 3444 3445
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3446
      platform::NPUDeviceGuard guard(devices[i]);
3447 3448 3449 3450
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3471 3472 3473 3474
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3475 3476 3477 3478
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3479 3480 3481 3482 3483 3484
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3485 3486 3487 3488
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3489
      .value("kAll", platform::ProfilerState::kAll)
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3501
  m.def("set_tracer_option", platform::SetTracerOption);
3502 3503
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3504
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3505
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3506
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3507
    PADDLE_ENFORCE_EQ(
3508 3509
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
3510 3511 3512
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3513
    callable.inc_ref();
3514 3515 3516 3517 3518 3519 3520 3521
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
3522
  });
3523
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3524 3525 3526
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3527

3528
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3529 3530
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
3531 3532
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
3533 3534 3535 3536
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
3579 3580 3581 3582
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
3583 3584 3585 3586 3587
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
3588 3589 3590
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
3591 3592

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
3593 3594
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
3595
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3596
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
3597 3598
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
3599 3600 3601 3602 3603 3604
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

3628 3629 3630 3631 3632 3633 3634 3635
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3654

3655
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3656 3657
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3658 3659
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3660
#endif  // PADDLE_WITH_CUDA
3661 3662
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3663

3664 3665 3666
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3667 3668
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3669
      .def("has", &ir::Pass::Has)
3670 3671 3672
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3673
           })
3674
      .def(
3675
          "set",
3676 3677 3678
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
J
jianghaicheng 已提交
3679
      .def("set",
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
           [](ir::Pass &self, const std::string &name, bool val) {
             self.Set<bool>(name, new bool(val));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, int val) {
             self.Set<const int>(name, new int(val));
           })
      .def("set",
           [](ir::Pass &self,
              const std::string &name,
J
jianghaicheng 已提交
3690 3691 3692
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3693
      .def("set",
3694 3695
           [](ir::Pass &self,
              const std::string &name,
3696 3697 3698 3699
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
3700 3701
           [](ir::Pass &self,
              const std::string &name,
3702 3703 3704 3705 3706 3707 3708
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3709 3710
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3711
        self.Apply(graph.get());
F
flame 已提交
3712
      });
3713

X
fix  
Xin Pan 已提交
3714 3715
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3730
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3731
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3732 3733 3734 3735
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3736 3737 3738
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3739 3740 3741
    Examples:
        .. code-block:: python

3742 3743 3744 3745 3746 3747 3748 3749 3750
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3751

3752 3753
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3754

3755
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3756 3757
          sgd_optimizer.minimize(avg_loss)

3758
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3759 3760
          exec_strategy.num_threads = 4

3761 3762 3763
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3764 3765
        )DOC");

3766 3767 3768 3769
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3770

Y
yuyang18 已提交
3771
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3772 3773 3774 3775 3776
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3777
          },
3778 3779
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3780 3781 3782 3783 3784 3785 3786
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3800
      .def_property(
3801 3802
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3803
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3804 3805 3806
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3807 3808 3809 3810 3811
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3812 3813 3814
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3815 3816
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3817 3818 3819 3820 3821 3822 3823
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3824 3825 3826 3827
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3828
                because the temp variable's shape maybe the same between two iterations.
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3839

3840 3841 3842 3843 3844 3845 3846
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3847
              )DOC")
Q
Qiao Longfei 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3869
              )DOC")
3870 3871 3872 3873 3874 3875 3876 3877
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3878 3879 3880 3881 3882 3883
      .def_property(
          "_dry_run",
          [](const ExecutionStrategy &self) { return self.dry_run_; },
          [](ExecutionStrategy &self, bool dry_run) {
            self.dry_run_ = dry_run;
          });
C
chengduo 已提交
3884

Y
yuyang18 已提交
3885
  exec_strategy.def_property(
Y
yuyang18 已提交
3886 3887 3888 3889 3890 3891 3892
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3893 3894
      });

C
chengduo 已提交
3895 3896 3897 3898
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3899 3900 3901
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3902 3903 3904
    Examples:
        .. code-block:: python

3905
            import os
3906 3907 3908 3909
            import paddle
            import paddle.static as static

            paddle.enable_static()
3910

3911 3912
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3913

3914 3915 3916 3917
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3918

3919
            build_strategy = static.BuildStrategy()
3920 3921
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3922 3923
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3924
            program = program.with_data_parallel(loss_name=loss.name,
3925 3926
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3927
)DOC");
Y
yuyang18 已提交
3928 3929 3930

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3931 3932
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3933 3934 3935 3936 3937 3938 3939 3940
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3941
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3942 3943 3944 3945
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3946 3947
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
3948 3949 3950
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3951
            self.reduce_ = strategy;
C
chengduo 已提交
3952
          },
3953
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3954 3955
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3956
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3957 3958
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3959
                Default is 'AllReduce'.
F
flame 已提交
3960 3961 3962 3963

                Examples:
                    .. code-block:: python

3964 3965 3966 3967 3968 3969 3970
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3971
                  )DOC")
Y
yuyang18 已提交
3972 3973 3974 3975 3976
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3977 3978
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
3979 3980 3981
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3982
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3983
          },
3984
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3985
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3986 3987
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3988
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3989 3990 3991 3992

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3993 3994
                        import numpy
                        import os
3995 3996 3997 3998
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3999 4000

                        use_cuda = True
4001 4002
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
4003 4004

                        # NOTE: If you use CPU to run the program, you need
4005
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
4006 4007 4008 4009 4010 4011
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
4012
                            places = static.cpu_places()
C
chengduo 已提交
4013
                        else:
4014
                            places = static.cuda_places()
C
chengduo 已提交
4015

4016 4017 4018 4019
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
4020

4021
                        exe.run(static.default_startup_program())
C
chengduo 已提交
4022

4023
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
4024
                        build_strategy.gradient_scale_strategy = \
4025 4026 4027
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
4028
                                          loss_name=loss.name, build_strategy=build_strategy,
4029
                                          places=places)
C
chengduo 已提交
4030 4031 4032 4033 4034 4035

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
4036 4037
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
4038
                   )DOC")
Y
yuyang18 已提交
4039 4040 4041 4042
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
4043 4044
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4045 4046 4047
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
4048
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
4049
          },
4050
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
4051
                writing the SSA Graph to file in the form of graphviz.
4052
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
4053 4054 4055 4056

                Examples:
                    .. code-block:: python

4057 4058 4059 4060
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
4061

4062 4063
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
4064
                    )DOC")
S
sneaxiy 已提交
4065 4066 4067 4068 4069 4070
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
4071 4072
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4073 4074 4075
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
4076 4077
            self.enable_sequential_execution_ = b;
          },
4078 4079
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
4080 4081 4082 4083

                Examples:
                    .. code-block:: python

4084 4085 4086 4087 4088 4089
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4090 4091
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
4092 4093 4094 4095 4096 4097
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
4098 4099
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4100 4101 4102
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
4103 4104
            self.remove_unnecessary_lock_ = b;
          },
4105 4106
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
4107 4108 4109 4110

                Examples:
                    .. code-block:: python

4111 4112 4113 4114 4115 4116
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4117 4118
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
4119 4120 4121 4122
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
4123
#ifdef WIN32
4124
            PADDLE_THROW(platform::errors::Unavailable(
4125
                "Distribution mode is not supported on Windows platform."));
4126
#endif
4127 4128
            self.num_trainers_ = num_trainers;
          })
4129 4130 4131 4132 4133 4134 4135
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
4136 4137 4138 4139 4140 4141
      .def_property(
          "trainer_id",
          [](const BuildStrategy &self) { return self.trainer_id_; },
          [](BuildStrategy &self, int trainer_id) {
            self.trainer_id_ = trainer_id;
          })
4142 4143 4144 4145 4146 4147
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
4148 4149 4150 4151 4152 4153
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
      .def_property(
          "use_hierarchical_allreduce",
          [](const BuildStrategy &self) {
            return self.use_hierarchical_allreduce_;
          },
          [](BuildStrategy &self, bool use) {
            self.use_hierarchical_allreduce_ = use;
          })
      .def_property(
          "hierarchical_allreduce_inter_nranks",
          [](const BuildStrategy &self) {
            return self.hierarchical_allreduce_inter_nranks_;
          },
          [](BuildStrategy &self, int nranks) {
            self.hierarchical_allreduce_inter_nranks_ = nranks;
          })
4170

C
chengduo 已提交
4171 4172 4173 4174 4175 4176
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
4177 4178
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4179 4180 4181
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
4182 4183
            self.fuse_elewise_add_act_ops_ = b;
          },
4184
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
4185
                to fuse elementwise_add_op and activation_op,
4186
                it may make the execution faster. Default is False.
F
flame 已提交
4187 4188 4189 4190

                Examples:
                    .. code-block:: python

4191 4192 4193 4194 4195 4196
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4197 4198
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
4199 4200 4201 4202
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
4203 4204
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
4225 4226 4227 4228
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
4229 4230
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
Z
Zhen Wang 已提交
4231
                              platform::errors::PreconditionNotMet(
4232 4233
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

4243 4244 4245 4246 4247 4248
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
4249 4250
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
4251 4252 4253 4254
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
4255 4256
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
Z
Zhang Ting 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4277 4278 4279 4280
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
4281 4282
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4283
                              platform::errors::PreconditionNotMet(
4284 4285
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4296 4297 4298 4299 4300 4301
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4302 4303
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4304 4305 4306 4307 4308 4309
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
4310 4311
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4312 4313 4314
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4315 4316
            self.fuse_relu_depthwise_conv_ = b;
          },
4317
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4318 4319 4320
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4321
                Default is False.
F
flame 已提交
4322 4323 4324 4325

                Examples:
                    .. code-block:: python

4326 4327 4328 4329 4330 4331
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4332 4333
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
4334 4335 4336 4337 4338 4339 4340
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) {
            return self.fuse_broadcast_ops_ == true ||
                   self.fuse_broadcast_ops_ == paddle::none;
          },
          [](BuildStrategy &self, bool b) {
4341 4342
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4343 4344 4345 4346 4347 4348
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, "
                                  "cannot be configured again."));
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC((bool, optional): fuse_broadcast_op indicates whether
4349 4350 4351 4352
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4353 4354 4355 4356 4357
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4358 4359 4360 4361 4362 4363
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4364 4365
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
4366 4367 4368 4369 4370 4371 4372
      .def_property(
          "fuse_all_optimizer_ops",
          [](const BuildStrategy &self) {
            return self.fuse_all_optimizer_ops_ == true ||
                   self.fuse_all_optimizer_ops_ == paddle::none;
          },
          [](BuildStrategy &self, bool b) {
4373 4374
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4375 4376 4377 4378 4379
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, "
                                  "cannot be configured again."));
            self.fuse_all_optimizer_ops_ = b;
          })
Q
qingqing01 已提交
4380 4381 4382 4383
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
4384 4385
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4386 4387 4388
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4389 4390
            self.sync_batch_norm_ = b;
          },
4391
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4392 4393 4394
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4395 4396
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4397 4398 4399 4400

                Examples:
                    .. code-block:: python

4401 4402 4403 4404 4405 4406
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4407 4408
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4409 4410
      .def_property(
          "memory_optimize",
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4421
              self.memory_optimize_ = paddle::none;
4422 4423 4424
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4425
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4426 4427
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4428 4429
            }
          },
4430
          R"DOC((bool, optional): memory opitimize aims to save total memory
4431
                consumption, set to True to enable it.
4432

4433 4434 4435
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4450 4451 4452
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4453 4454 4455
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4456
              PADDLE_THROW(platform::errors::Unavailable(
4457
                  "Distribution mode is not supported on Windows platform."));
4458 4459 4460 4461 4462
            }
#else
            self.is_distribution_ = b;
#endif
          })
4463 4464 4465 4466
      .def_property(
          "async_mode",
          [](const BuildStrategy &self) { return self.async_mode_; },
          [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4467
      .def_property(
D
dzhwinter 已提交
4468 4469 4470
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4471 4472 4473 4474
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4475 4476
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4477 4478
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4479
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4480
          },
C
chengduo 已提交
4481
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
4482 4483 4484 4485 4486 4487 4488 4489
      .def_property(
          "enable_backward_optimizer_op_deps",
          [](const BuildStrategy &self) {
            return self.enable_backward_optimizer_op_deps_;
          },
          [](BuildStrategy &self, bool b) {
            self.enable_backward_optimizer_op_deps_ = b;
          })
4490 4491 4492 4493
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4494 4495 4496 4497 4498 4499 4500 4501 4502
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4503 4504 4505 4506 4507 4508
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
4509 4510 4511 4512 4513 4514 4515 4516
      .def_property(
          "allow_cuda_graph_capture",
          [](const BuildStrategy &self) {
            return self.allow_cuda_graph_capture_;
          },
          [](BuildStrategy &self, bool allow_cuda_graph_capture) {
            self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
          })
4517 4518 4519 4520 4521 4522
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
4523 4524 4525 4526 4527 4528
      .def(
          "_finalize_strategy_and_create_passes",
          [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
            return self.CreatePassesFromStrategy(true);
          },
          R"DOC(Allow user to customized passes. Normally model-specific
4529 4530
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4531

4532 4533 4534 4535 4536 4537
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4538
  pe.def(py::init<const std::vector<platform::Place> &,
4539 4540 4541 4542 4543 4544 4545
                  const std::vector<std::string> &,
                  const std::string &,
                  Scope *,
                  std::vector<Scope *> &,
                  const ExecutionStrategy &,
                  const BuildStrategy &,
                  ir::Graph *>())
Y
Yu Yang 已提交
4546 4547 4548 4549
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
4550 4551 4552 4553 4554 4555
      .def(
          "local_scopes",
          [](ParallelExecutor &self) -> std::vector<Scope *> * {
            return &self.GetLocalScopes();
          },
          py::return_value_policy::reference)
4556 4557 4558
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4559 4560 4561 4562
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4563 4564
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4565 4566 4567
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             if (return_merged) {
4568 4569 4570 4571 4572 4573
               paddle::framework::FetchList ret;
               /*gil_scoped_release*/ {
                 pybind11::gil_scoped_release release;
                 ret = self.RunAndMerge(fetch_tensors);
               }
               return py::cast(std::move(ret));
Z
Zhen Wang 已提交
4574
             } else {
4575 4576 4577 4578 4579 4580
               paddle::framework::FetchUnmergedList ret;
               /*gil_scoped_release*/ {
                 pybind11::gil_scoped_release release;
                 ret = self.Run(fetch_tensors);
               }
               return py::cast(std::move(ret));
Z
Zhen Wang 已提交
4581
             }
4582 4583
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4584

J
jianghaicheng 已提交
4585 4586
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4587 4588 4589
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
4590 4591 4592 4593 4594 4595 4596
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
4597
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4598 4599
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4600
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
4611 4612 4613 4614
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
4637 4638
                         option.get_type(),
                         option_name));
4639 4640 4641 4642 4643 4644 4645
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
4646 4647
                         option_name,
                         option.first.cast<std::string>(),
4648 4649
                         option.second.cast<std::uint64_t>());
                   }
4650 4651 4652 4653 4654 4655
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
4701 4702
                           option.second.get_type(),
                           option_key));
4703
                     }
4704 4705
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
4706 4707 4708 4709 4710 4711
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
4712 4713
                     element.second.get_type(),
                     option_name));
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4744 4745
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4746 4747 4748
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4749 4750
#endif

4751 4752 4753 4754 4755 4756 4757 4758
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

4759
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
4760 4761 4762 4763 4764 4765 4766 4767 4768
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
4769
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
4770 4771 4772 4773 4774 4775 4776
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
4791
  BindFleetWrapper(&m);
4792
  BindIO(&m);
T
Thunderbrook 已提交
4793

T
Thunderbrook 已提交
4794
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4795
  BindHeterWrapper(&m);
4796
  BindMetrics(&m);
T
Thunderbrook 已提交
4797
#endif
T
Thunderbrook 已提交
4798
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4799
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4800 4801 4802
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
4803
#endif
4804
  BindGlooWrapper(&m);
H
hutuxian 已提交
4805
  BindBoxHelper(&m);
H
hutuxian 已提交
4806 4807 4808
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4809
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4810
  BindNCCLWrapper(&m);
4811 4812 4813
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4814
#endif
F
flame 已提交
4815 4816
  BindGraph(&m);
  BindNode(&m);
4817
  BindPass(&m);
F
flame 已提交
4818
  BindInferenceApi(&m);
4819
  BindCompatible(&m);
4820
  BindDataset(&m);
Y
yaoxuefeng 已提交
4821
  BindGenerator(&m);
4822 4823 4824
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4825 4826 4827
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4828
  BindAscendDevice(&m);
4829
#endif
Y
Yanghello 已提交
4830 4831 4832
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4833

T
tangwei12 已提交
4834
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4835 4836
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4837
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4838 4839
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4840 4841 4842 4843 4844
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4845 4846 4847 4848
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4849
#ifdef PADDLE_WITH_HETERPS
4850 4851
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
4852 4853 4854
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
4855
#endif
L
Luo Tao 已提交
4856
}
4857
}  // namespace pybind
4858
}  // namespace paddle