pybind.cc 165.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
49
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/op_info.h"
51
#include "paddle/fluid/framework/op_registry.h"
52
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/framework/parallel_executor.h"
54
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
56
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
57
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/framework/scope_pool.h"
59
#include "paddle/fluid/framework/selected_rows_utils.h"
60
#include "paddle/fluid/framework/tensor_util.h"
61
#include "paddle/fluid/framework/trainer.h"
62
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
63
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
64
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
65
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
67
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
68
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
69
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
70
#include "paddle/fluid/operators/py_func_op.h"
71
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
72
#include "paddle/fluid/platform/cpu_info.h"
73
#include "paddle/fluid/platform/device/device_wrapper.h"
74
#include "paddle/fluid/platform/device_context.h"
75
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/platform/enforce.h"
77
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
78
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
79 80
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
81 82 83
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
84
#include "paddle/fluid/pybind/cuda_streams_py.h"
85
#include "paddle/fluid/pybind/distributed_py.h"
86
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
87
#include "paddle/fluid/pybind/imperative.h"
88
#include "paddle/fluid/pybind/io.h"
89 90
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
91
#include "paddle/utils/none.h"
92 93 94
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
95
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
96
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
97
#include "paddle/fluid/pybind/box_helper_py.h"
98
#include "paddle/fluid/pybind/communication.h"
99
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
100
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
102
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
103
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
104
#include "paddle/fluid/pybind/generator_py.h"
105
#include "paddle/fluid/pybind/global_value_getter_setter.h"
106
#include "paddle/fluid/pybind/gloo_context_py.h"
107
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
108
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
109
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
110
#include "paddle/fluid/pybind/ir.h"
111
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
113
#include "paddle/fluid/pybind/pybind_boost_headers.h"
114

115
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
116
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
117
#endif
118
#include "paddle/fluid/framework/data_type.h"
119 120
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
121
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
122
#include "paddle/fluid/pybind/tensor_py.h"
123
#include "paddle/fluid/string/to_string.h"
124 125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
126
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
127
#endif
128
#ifndef PADDLE_WITH_HIP
129
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
130
#endif
131
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
132 133
#endif

134
#ifdef PADDLE_WITH_ASCEND_CL
135
#include "paddle/fluid/platform/collective_helper.h"
136 137
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
138 139
#endif

140
#ifdef PADDLE_WITH_XPU
141
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
142
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
143 144
#endif

145
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
146

J
jianghaicheng 已提交
147
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
148 149
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
150
#endif
151

152 153 154 155
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
156 157 158 159
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
160
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
161 162 163
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
164 165
#include "pybind11/stl.h"

166
DECLARE_bool(use_mkldnn);
167

Q
Qiao Longfei 已提交
168 169
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
170 171 172
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
173

174
namespace paddle {
175
namespace pybind {
176 177 178 179 180 181 182

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
183
PyTypeObject *g_mluplace_pytype = nullptr;
184
PyTypeObject *g_framework_tensor_pytype = nullptr;
185
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
186

187
bool IsCompiledWithCUDA() {
188 189 190 191 192 193 194
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

195 196 197 198 199 200 201 202
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

203 204
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
205 206 207 208 209 210
  return false;
#else
  return true;
#endif
}

211 212 213 214 215 216 217 218
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

219 220 221 222 223 224 225 226
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

227 228 229 230 231 232 233 234
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
235 236 237 238 239 240 241 242
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

243 244 245 246 247 248 249 250
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

251 252 253 254 255 256 257 258
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

259 260 261 262 263 264 265 266
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

267 268 269 270 271 272 273 274
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

275 276 277 278 279 280 281 282 283 284 285
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

286 287 288 289 290 291 292 293 294 295 296
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

314
bool IsCompiledWithBrpc() {
315
#ifndef PADDLE_WITH_DISTRIBUTE
316 317
  return false;
#endif
318
  return true;
319 320
}

Y
update  
Yancey1989 已提交
321
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
322
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
323 324 325 326 327 328
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
329 330 331 332 333 334 335
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
336
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
337 338
}

H
hong 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
361 362 363
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
377 378
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
379 380
    }
    vec_res.emplace_back(
381
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
382 383 384 385 386 387 388 389 390 391 392 393
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
394 395
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
396 397 398 399 400 401 402 403 404 405 406 407
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
408 409 410
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
411 412 413 414
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
415 416
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
417 418 419 420
  }
  return vec_res;
}

421 422 423 424 425 426 427 428
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
429 430
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
431 432 433 434 435 436 437 438 439 440 441 442 443
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
444 445 446
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
447 448 449 450 451
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
452 453 454 455 456
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
457 458
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
459 460 461
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
462 463 464 465
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
466
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
467 468
        tensor_temp->mutable_data(
            exe->GetPlace(),
469
            framework::TransToPhiDataType(var_desc.GetDataType()));
470 471 472
      }
    }
  } else {
473 474
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
475 476 477 478 479
  }

  return;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
504 505 506 507
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
508
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
509 510 511 512 513 514 515 516
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
517 518 519 520 521 522 523 524 525 526 527
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

528 529 530 531 532 533
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
534
  BindImperative(&m);
535
  BindEager(&m);
536 537
  BindCudaStream(&m);

Y
Yu Yang 已提交
538 539 540
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
541
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
542

543 544
  AssertStaticGraphAndDygraphGradMakerNoDiff();

545
  m.doc() = "C++ core of PaddlePaddle";
546

547 548 549 550
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

551
  BindException(&m);
Y
Yu Yang 已提交
552

553 554
  m.def("set_num_threads", &platform::SetNumThreads);

555 556
  m.def("disable_signal_handler", &DisableSignalHandler);

557 558 559 560 561 562 563 564
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

565
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
566
  m.def("cudnn_version", &platform::DnnVersion);
567 568 569 570 571 572
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
573
#endif
574

Z
Zeng Jinle 已提交
575 576 577 578
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

579 580 581 582 583 584 585 586 587 588
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
589 590
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
591 592
#endif

Z
Zeng Jinle 已提交
593 594 595 596
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
597 598 599
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
600 601 602 603 604 605

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
606 607
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
608
    framework::Tensor tensor;
6
633WHU 已提交
609

S
Siming Dai 已提交
610
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
611 612
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
613
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
614
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
615 616 617 618 619
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
620

621 622 623 624 625 626
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

627 628 629 630 631 632
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
633 634
  });

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
660 661
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
662 663
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
664 665
  });

S
sneaxiy 已提交
666
  m.def(
S
sneaxiy 已提交
667
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
668 669 670 671
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
672 673 674
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
692 693
            }
          }
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
713 714
                }
              }
715 716 717
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
718 719 720
            }
          }

721 722 723 724
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
725 726 727
           Return the registered kernels in paddle.

           Args:
728
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
729
           )DOC");
730

S
sneaxiy 已提交
731 732 733
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
734
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
735

736
  m.def("_set_fuse_parameter_group_size",
737
        &paddle::framework::ir::SetFuseParameterGroupsSize);
738
  m.def("_set_fuse_parameter_memory_size",
739
        &paddle::framework::ir::SetFuseParameterMemorySize);
740

S
sneaxiy 已提交
741 742 743
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

744 745
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

746 747 748
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

749 750 751 752 753
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
754 755
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
756 757 758 759
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
760
      .def("_is_initialized",
761
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
762
      .def("_get_dims",
763
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
764
      .def("_set_dims",
765
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
766
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
767
           })
Y
yuyang18 已提交
768
      .def("_set_layout",
769
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
770 771
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
772
      .def("_alloc_float",
773
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
774
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
775
           })
776
      .def("_alloc_float",
777
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
778 779
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
780
      .def("_alloc_float",
781
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
782
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
783
           })
784 785 786 787
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
788 789 790 791
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
792
      .def("_alloc_double",
793
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
794 795
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
796
      .def("_alloc_int",
797
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
798
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
799
           })
800
      .def("_alloc_int",
801
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
802 803
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
804
      .def("_alloc_int",
805
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
806
             self.mutable_data<int>(place);
Q
qijun 已提交
807
           })
808 809 810 811
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
812
      .def("_alloc_int",
813 814
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
815 816
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
817
      .def("_alloc_float",
818 819
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
820 821
             self.mutable_data<float>(place);
           })
822
      .def("_mutable_data",
823
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
824
              paddle::framework::proto::VarType::Type type) {
825 826
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
827
           })
828
      .def("_mutable_data",
829
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
830
              paddle::framework::proto::VarType::Type type) {
831 832
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
833
           })
834
      .def("_mutable_data",
835
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
836
              paddle::framework::proto::VarType::Type type) {
837 838
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
839 840
           })
      .def("_mutable_data",
841
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
842
              paddle::framework::proto::VarType::Type type) {
843 844
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
845
           })
846 847 848
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
849 850
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
851
           })
852
      .def("_clear", &framework::Tensor::clear)
853 854 855
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
856 857
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
858
           })
Z
Zeng Jinle 已提交
859 860 861 862 863 864 865 866 867 868
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
869 870
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
871
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
872
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
873
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
874
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
875 876
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
877
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
878
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
879 880
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
881 882
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
883 884
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
885
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
886 887
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
888
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
889 890 891
        
        Args:
          lod (numpy.ndarray): The data to set.
892
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
893
          Tensor is to be set.
894 895
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
896 897 898 899 900 901 902 903 904 905

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

906
                t = fluid.Tensor()
L
Leo Chen 已提交
907 908
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
909

910 911 912
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
913
           Return the shape of Tensor.
L
Leo Chen 已提交
914 915

           Returns:
916
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
917 918 919 920 921 922 923 924


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

925
                  t = fluid.Tensor()
L
Leo Chen 已提交
926 927 928
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
929
      .def("_to_dlpack",
930
           [](framework::Tensor &self) {
6
633WHU 已提交
931
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
932
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
950 951 952 953
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
954
      .def("_place", [](framework::Tensor &self) { return self.place(); })
955 956 957 958
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
959
      .def("_layout",
960 961 962 963
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
964
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
984 985
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
986 987 988 989
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
990
      .def("__init__",
991 992
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
993
           })
G
gongweibao 已提交
994
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
995 996
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
997 998 999
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1000
      .def("set_lod",
1001 1002
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1003
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1004
             LoD new_lod;
1005 1006
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1007 1008
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1009 1010
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1011
             self.set_lod(new_lod);
S
sneaxiy 已提交
1012 1013
           },
           py::arg("lod"), R"DOC(
1014
           Set LoD of the Tensor.
S
sneaxiy 已提交
1015 1016

           Args:
L
Leo Chen 已提交
1017 1018 1019 1020
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1021 1022 1023 1024 1025 1026 1027

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1028
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1029 1030
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1031
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1032
           )DOC")
1033
      .def("set_recursive_sequence_lengths",
1034 1035
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1036 1037 1038 1039 1040 1041 1042 1043
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1044 1045
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1046
                 platform::errors::InvalidArgument(
1047 1048
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1049 1050 1051
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1052
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1053 1054
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1055
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1056

L
Leo Chen 已提交
1057
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1058
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1059
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1060 1061

           Args:
L
Leo Chen 已提交
1062 1063 1064 1065
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1066 1067 1068 1069 1070 1071 1072

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1073
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1074 1075
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1076
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1077
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1078
           )DOC")
1079
      .def("lod",
1080
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1081 1082 1083 1084 1085 1086
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1087 1088
           },
           R"DOC(
1089
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1090 1091

           Returns:
1092
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1093
           
Z
Zeng Jinle 已提交
1094 1095 1096 1097 1098 1099
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1100
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1101 1102 1103
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1104
           )DOC")
G
gongweibao 已提交
1105
      // Set above comments of set_lod.
1106
      .def("recursive_sequence_lengths",
1107
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1108
             // output the length-based lod info
1109
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1110 1111 1112 1113
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1114 1115
           },
           R"DOC(
L
Leo Chen 已提交
1116
           Return the recursive sequence lengths corresponding to of the LodD 
1117
           of the Tensor.
S
sneaxiy 已提交
1118 1119

           Returns:
L
Leo Chen 已提交
1120
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1121 1122 1123 1124 1125 1126 1127

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1128
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1129 1130 1131
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1132 1133
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1134
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1135
             // Check that the lod info is valid and match the outermost
1136
             // dimension of the Tensor data
S
sneaxiy 已提交
1137 1138 1139
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1140
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1141 1142

           Returns:
L
Leo Chen 已提交
1143
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1144 1145 1146 1147 1148 1149 1150

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1151
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1152 1153 1154
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1155
           )DOC")
L
Leo Chen 已提交
1156
      .def("_as_type",
1157
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1158
              paddle::framework::proto::VarType::Type type) {
1159
             framework::Tensor dst;
L
Leo Chen 已提交
1160 1161 1162 1163 1164
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1178
#ifdef _WIN32
1179
           });
1180 1181 1182
#else
           })
      .def(py::pickle(
1183
          [](const framework::Tensor &t) {  // __getstate__
1184
            auto holder = t.Holder();
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1197 1198 1199
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1200 1201
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1202 1203 1204
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1205
              throw std::runtime_error("Invalid Tensor state!");
1206 1207

            // 1. Create a new C++ instance
1208
            framework::Tensor tensor;
1209 1210 1211 1212 1213

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1214 1215
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1216 1217

            // 3. Maintain global fd set
1218
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1219 1220
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1221 1222 1223
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1224
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1225
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1226 1227 1228 1229 1230
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1231

1232
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1233
      .def("__init__",
1234 1235
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1236
           })
Q
qijun 已提交
1237
      .def("__init__",
1238
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1239
              const int64_t &height) {
1240
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1241 1242
           })
      .def("get_tensor",
1243
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1244
           py::return_value_policy::reference)
1245
      .def("numel",
1246
           [](phi::SelectedRows &self) -> int64_t {
1247 1248
             return self.value().numel();
           })
1249 1250
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1251
      .def("set_rows",
1252
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1253
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1254 1255 1256 1257 1258 1259
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1260
      .def("sync_index",
1261 1262
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1263 1264 1265 1266 1267
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1268
      });
Q
qijun 已提交
1269

1270
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1271 1272 1273

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1274
      .def(py::init<>())
1275
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1276
      .def("set_int",
1277 1278
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1279 1280 1281 1282 1283 1284 1285
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1286
      .def("get_tensor",
1287 1288
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1289 1290
           },
           py::return_value_policy::reference)
1291 1292 1293 1294
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1307 1308 1309
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1310
      .def("get_selected_rows",
1311 1312
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1313 1314
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1315 1316 1317
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1318 1319 1320
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1321
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1322 1323 1324 1325 1326
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1327
#endif
Y
Refine  
Yu Yang 已提交
1328 1329
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1330 1331 1332 1333
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1334 1335
             return self.GetMutable<framework::ReaderHolder>();
           },
1336
           py::return_value_policy::reference)
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1348 1349 1350 1351
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1352

S
sneaxiy 已提交
1353
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1354

S
sneaxiy 已提交
1355
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1369
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1370 1371 1372 1373 1374 1375
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1376 1377
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1378
      .def("var",
1379
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1380
             return self.Var(name);
Y
Yu Yang 已提交
1381
           },
S
sneaxiy 已提交
1382 1383
           py::arg("name"),
           R"DOC(
1384
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1385

1386
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1387
           current scope, the variable would be created. Otherwise,
1388
           return the existing variable.
S
sneaxiy 已提交
1389 1390

           Args:
1391 1392
               name (str): the variable name.

S
sneaxiy 已提交
1393
           Returns:
1394
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1395 1396 1397 1398
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1399
           Find variable named :code:`name` in the current scope or
1400
           its parent scope. Return None if not found. 
1401

S
sneaxiy 已提交
1402 1403
           Args:
               name (str): the variable name.
1404

S
sneaxiy 已提交
1405
           Returns:
1406
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1407
           )DOC",
1408
           py::return_value_policy::reference)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1421
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1422 1423 1424 1425 1426 1427
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1428
           py::return_value_policy::reference)
S
sneaxiy 已提交
1429 1430 1431
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1432 1433
           )DOC")
      .def("_kids", &Scope::kids);
1434

S
sneaxiy 已提交
1435 1436 1437 1438 1439 1440
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1441 1442
        R"DOC(
        Create a new scope.
1443

S
sneaxiy 已提交
1444 1445 1446
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1447 1448
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1449 1450
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1451 1452
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1453 1454 1455 1456
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1457 1458
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1459 1460
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1461 1462 1463
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1464 1465
    return ret_values;
  });
1466 1467 1468 1469 1470 1471 1472 1473
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1474
              res = op_checker->GetDefaultAttrsMap();
1475 1476 1477 1478
            }
          }
          return res;
        });
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1495 1496 1497
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1498 1499 1500 1501 1502
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1503 1504 1505
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1520
  m.def("prune", [](const ProgramDesc &origin,
1521
                    const std::set<std::string> &feeded_var_names,
1522
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1523
    ProgramDesc prog_with_targets(origin);
1524

1525
    for (const auto &t : targets) {
1526
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1527
    }
1528
    proto::ProgramDesc pruned_desc;
1529 1530 1531 1532
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1533
  });
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1551 1552 1553 1554
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1555 1556 1557
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1558 1559
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1560

Q
qijun 已提交
1561
  // clang-format off
Y
Yu Yang 已提交
1562
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1563 1564
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1565
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1580
                  })
1581 1582 1583 1584 1585 1586 1587 1588 1589
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1616 1617
#endif
                  })
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1630
      .def_static("create",
D
dzhwinter 已提交
1631
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1632
                      -> paddle::platform::DeviceContext* {
1633
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1634 1635 1636 1637
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1638
#else
W
Wilber 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1654
#endif
C
chengduoZH 已提交
1655 1656 1657 1658
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1659
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1660 1661 1662 1663
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1664 1665 1666 1667
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1668
// clang-format on
1669
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1670 1671
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1672 1673 1674
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1675
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1689
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1703
    devices = phi::DeviceManager::GetAllDeviceList();
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1717
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

1754 1755
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
1756
               int dev_count = static_cast<int>(
1757
                   phi::DeviceManager::GetDeviceCount(device_type));
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
1805
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1806 1807 1808 1809 1810

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1811
    The memory of CUDAPlace with different dev_id is not accessible.
1812 1813 1814 1815 1816 1817 1818 1819
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1820 1821 1822 1823

    Examples:
        .. code-block:: python

1824 1825 1826
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1827

1828 1829 1830
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1831 1832
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1833
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1834 1835 1836 1837 1838 1839 1840 1841
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1842 1843
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1844 1845 1846 1847 1848 1849 1850 1851
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1852 1853
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1854 1855 1856 1857
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1858 1859
             new (&self) platform::CUDAPlace(dev_id);
#else
1860 1861 1862 1863 1864 1865 1866 1867 1868
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1869 1870
#endif
           })
1871
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1872 1873
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1874 1875 1876 1877
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1878
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1879
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1880
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1881 1882
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1883 1884 1885
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1886
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1887
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1888

1889
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1890 1891 1892 1893 1894
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1895 1896 1897
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1936
#ifdef PADDLE_WITH_XPU
1937 1938 1939 1940 1941 1942 1943
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1944 1945 1946
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1947
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1948
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1949
#ifdef PADDLE_WITH_XPU
1950 1951 1952
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1953
      .export_values();
1954
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1955 1956
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1957 1958 1959 1960 1961
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1962 1963
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1964 1965
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1966
    return platform::get_xpu_version(place.device) >
1967
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1968 1969 1970
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1971
    return platform::get_xpu_version(place.device) >
1972
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1973
  });
1974
#endif
1975

1976
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1977
    CPUPlace is a descriptor of a device.
1978
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1979 1980 1981 1982

    Examples:
        .. code-block:: python

1983 1984
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1985

1986 1987 1988
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1989 1990
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1991
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1992
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1993 1994 1995 1996
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1997
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1998
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1999

2000 2001
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2002 2003 2004 2005 2006 2007
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2008 2009 2010 2011

    Examples:
        .. code-block:: python

2012 2013
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2014

2015 2016 2017 2018
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2019
      .def("__init__",
S
sneaxiy 已提交
2020
           [](platform::CUDAPinnedPlace &self) {
2021
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2022 2023 2024
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2025
#endif
S
sneaxiy 已提交
2026
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2027
           })
S
sneaxiy 已提交
2028 2029 2030 2031
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2032 2033
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2034 2035
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2036 2037 2038 2039
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2040
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2041 2042
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2043
  // NPUPlace
2044
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2045 2046 2047 2048 2049 2050 2051 2052
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2053 2054 2055
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2087
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2102 2103
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2104 2105
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2227 2228 2229
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2230 2231 2232 2233
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2234
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2235
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2236
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2237
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2238
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2239 2240
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2241 2242
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2243 2244
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2245 2246
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2247 2248
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2249 2250 2251 2252
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2253 2254
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2255 2256 2257
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2258 2259 2260 2261 2262
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2263 2264
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2265 2266
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2267 2268 2269 2270
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2271 2272 2273 2274
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2275
      .def("set_place",
D
dzhwinter 已提交
2276
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2277
             self = gpu_place;
C
chengduoZH 已提交
2278
           })
2279 2280 2281 2282 2283
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2284 2285 2286 2287
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2288 2289 2290 2291
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2292 2293 2294 2295
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2296 2297 2298 2299
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2300 2301
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2302

Y
Yu Yang 已提交
2303
  py::class_<OperatorBase>(m, "Operator")
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2318
      .def("run",
2319
           [](OperatorBase &self, const Scope &scope,
2320 2321 2322 2323
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2324 2325
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2326 2327 2328 2329
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2330 2331
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2332 2333 2334 2335
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2336 2337
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2338 2339 2340 2341
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2342 2343 2344
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2345
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2346 2347
             self.Run(scope, place);
           })
2348 2349 2350 2351 2352 2353
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2354 2355 2356 2357 2358 2359 2360
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2361 2362
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2363
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2364
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2365 2366 2367 2368
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2369

2370 2371 2372
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2373 2374 2375 2376 2377 2378 2379
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2380 2381
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2382

2383 2384
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2385
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2386
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2387
      .def("close", &Executor::Close)
2388 2389
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2390 2391
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2392 2393 2394 2395
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2396
             pybind11::gil_scoped_release release;
2397 2398 2399 2400 2401 2402 2403
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2404 2405 2406
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2407
              std::map<std::string, FetchType *> *fetch_targets,
2408 2409 2410 2411 2412 2413 2414 2415
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2416
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2417 2418 2419 2420 2421 2422 2423
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2434
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2435 2436
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2437
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2438 2439
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2440
      });
S
sneaxiy 已提交
2441

2442
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2443
      .def(py::init<>())
2444 2445 2446 2447 2448
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2449

2450
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2451 2452 2453
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2454
           [](StandaloneExecutor &self,
H
hong 已提交
2455
              const std::unordered_map<std::string, py::array> &input_dict,
2456
              std::vector<std::string> fetch_names) {
2457
             std::vector<framework::LoDTensor> feed_tensors;
2458
             std::vector<std::string> feed_names;
H
hong 已提交
2459 2460 2461 2462 2463

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2464 2465
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2466 2467
             }

2468 2469 2470 2471 2472 2473 2474 2475 2476
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2477
              const std::unordered_map<std::string, framework::LoDTensor>
2478 2479
                  &input_dict,
              std::vector<std::string> fetch_names) {
2480
             std::vector<framework::LoDTensor> feed_tensors;
2481 2482 2483 2484 2485 2486 2487
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2488 2489 2490 2491
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2492
             }
W
wanghuancoder 已提交
2493
             return py::cast(std::move(ret));
2494
           })
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2505 2506 2507
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2508
             std::vector<framework::LoDTensor> feed_tensors;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2519
             framework::interpreter::CostInfo cost_info;
2520 2521 2522 2523 2524
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2525 2526
           });

D
dzhwinter 已提交
2527
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2528
  m.def("init_glog", framework::InitGLOG);
2529 2530
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2531
  m.def("init_devices", []() { framework::InitDevices(); });
2532

2533
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2534
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2535
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2536
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2537
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2538
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2539
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2540
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2541
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2542
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2543
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2544
  m.def("supports_bfloat16", SupportsBfloat16);
2545
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2546 2547
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2548
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2549
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2550
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2551 2552 2553
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2573 2574 2575 2576 2577 2578 2579
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2589
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2590 2591
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2592
    return platform::GetGPUComputeCapability(place.device) >= 53;
2593 2594
  });
#endif
2595

S
Steffy-zxf 已提交
2596 2597 2598 2599 2600 2601
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2602 2603 2604 2605 2606
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2607
            return py::cast(BOOST_GET(LoDTensor, var));
2608
          } else {
2609
            return py::cast(BOOST_GET(LoDTensorArray, var));
2610 2611
          }
        });
2612
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2613

X
Xin Pan 已提交
2614 2615
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2616 2617 2618 2619
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2620
  BindCostModel(&m);
2621
  BindConstValue(&m);
2622
  BindGlobalValueGetterSetter(&m);
2623
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2624
  BindFleetExecutor(&m);
2625
  BindTCPStore(&m);
Y
Yu Yang 已提交
2626

Y
Yu Yang 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2636
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2637
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2638 2639 2640

    Examples:
        .. code-block:: python
2641

Z
Zeng Jinle 已提交
2642 2643 2644
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2645 2646 2647 2648
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2649 2650
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2651 2652 2653 2654 2655 2656
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2657 2658 2659 2660
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2661 2662 2663
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2664 2665 2666 2667 2668 2669
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2670 2671
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2672 2673 2674 2675 2676 2677
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2700

2701 2702 2703 2704 2705 2706 2707 2708
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2709
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2710 2711
                 res[i] = py::cast(std::move(data));
               } else {
2712
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2728
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2729 2730 2731 2732 2733 2734 2735 2736
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2737
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2738 2739 2740 2741 2742 2743 2744 2745 2746
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2747 2748
        )DOC")
      .def("_move_to_list",
2749
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2750 2751 2752 2753
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2754
                 if (data_is_lod_tensor(self[i][j])) {
2755
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2756 2757
                   tmp[j] = py::cast(std::move(var));
                 } else {
2758
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2759 2760 2761 2762 2763 2764
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2774
  m.def("op_support_gpu", OpSupportGPU);
2775
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2776
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2777 2778 2779 2780 2781 2782 2783 2784
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2785 2786 2787 2788 2789 2790 2791
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2817
      });
D
dangqingqing 已提交
2818

2819
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2820 2821 2822
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2823 2824 2825 2826
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2827
#endif
P
peizhilin 已提交
2828
#endif
Y
Yu Yang 已提交
2829

2830 2831
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2832
  m.def("npu_finalize", []() {
2833 2834
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2835 2836 2837
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2838
      platform::NPUDeviceGuard guard(devices[i]);
2839 2840 2841 2842
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2863 2864 2865 2866
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2867 2868 2869 2870
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2871 2872 2873 2874 2875 2876
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2877 2878 2879 2880
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2881
      .value("kAll", platform::ProfilerState::kAll)
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2893
  m.def("set_tracer_option", platform::SetTracerOption);
2894 2895
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2896
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2897
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2898
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2899 2900
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2901 2902 2903
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2904
    callable.inc_ref();
2905 2906 2907 2908 2909 2910 2911 2912
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2913
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2914 2915 2916
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2917

2918
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
             return profiler->Stop();
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3001

3002
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3003 3004
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3005 3006
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3007
#endif  // PADDLE_WITH_CUDA
3008 3009
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3010

3011 3012 3013
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3014 3015
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3016
      .def("has", &ir::Pass::Has)
3017 3018 3019
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3020
           })
3021
      .def(
3022
          "set",
3023 3024 3025
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3026 3027
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3028 3029
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3030 3031 3032 3033 3034
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3049 3050
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3051
        self.Apply(graph.get());
F
flame 已提交
3052
      });
3053

X
fix  
Xin Pan 已提交
3054 3055
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3070
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3071
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3072 3073 3074 3075
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3076 3077 3078
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3079 3080 3081
    Examples:
        .. code-block:: python

3082 3083 3084 3085 3086 3087 3088 3089 3090
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3091

3092 3093
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3094

3095
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3096 3097
          sgd_optimizer.minimize(avg_loss)

3098
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3099 3100
          exec_strategy.num_threads = 4

3101 3102 3103
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3104 3105
        )DOC");

3106 3107 3108 3109
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3110

Y
yuyang18 已提交
3111
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3112 3113 3114 3115 3116
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3117
          },
3118 3119
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3120 3121 3122 3123 3124 3125 3126
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3140
      .def_property(
3141 3142
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3143
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3144 3145 3146
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3147 3148 3149 3150 3151
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3152 3153 3154
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3155 3156
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3157 3158 3159 3160 3161 3162 3163
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3164 3165 3166 3167
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3168
                because the temp variable's shape maybe the same between two iterations.
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3179

3180 3181 3182 3183 3184 3185 3186
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3187
              )DOC")
Q
Qiao Longfei 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3209
              )DOC")
3210 3211 3212 3213 3214 3215 3216 3217
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3218 3219 3220 3221 3222
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3223

Y
yuyang18 已提交
3224
  exec_strategy.def_property(
Y
yuyang18 已提交
3225 3226 3227 3228 3229 3230 3231
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3232 3233
      });

C
chengduo 已提交
3234 3235 3236 3237
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3238 3239 3240
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3241 3242 3243
    Examples:
        .. code-block:: python

3244
            import os
3245 3246 3247 3248
            import paddle
            import paddle.static as static

            paddle.enable_static()
3249

3250 3251
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3252

3253 3254 3255 3256
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3257

3258
            build_strategy = static.BuildStrategy()
3259 3260
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3261 3262
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3263
            program = program.with_data_parallel(loss_name=loss.name,
3264 3265
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3266
)DOC");
Y
yuyang18 已提交
3267 3268 3269

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3270 3271
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3272 3273 3274 3275 3276 3277 3278 3279
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3280
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3281 3282 3283 3284
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3285 3286 3287 3288
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3289
            self.reduce_ = strategy;
C
chengduo 已提交
3290
          },
3291
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3292 3293
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3294
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3295 3296
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3297
                Default is 'AllReduce'.
F
flame 已提交
3298 3299 3300 3301

                Examples:
                    .. code-block:: python

3302 3303 3304 3305 3306 3307 3308
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3309
                  )DOC")
Y
yuyang18 已提交
3310 3311 3312 3313 3314
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3315 3316 3317 3318
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3319
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3320
          },
3321
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3322
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3323 3324
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3325
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3326 3327 3328 3329

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3330 3331
                        import numpy
                        import os
3332 3333 3334 3335
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3336 3337

                        use_cuda = True
3338 3339
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3340 3341

                        # NOTE: If you use CPU to run the program, you need
3342
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3343 3344 3345 3346 3347 3348
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3349
                            places = static.cpu_places()
C
chengduo 已提交
3350
                        else:
3351
                            places = static.cuda_places()
C
chengduo 已提交
3352

3353 3354 3355 3356
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3357

3358
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3359

3360
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3361
                        build_strategy.gradient_scale_strategy = \
3362 3363 3364
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3365
                                          loss_name=loss.name, build_strategy=build_strategy,
3366
                                          places=places)
C
chengduo 已提交
3367 3368 3369 3370 3371 3372

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3373 3374
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3375
                   )DOC")
Y
yuyang18 已提交
3376 3377 3378 3379
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3380 3381 3382 3383
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3384
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3385
          },
3386
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3387
                writing the SSA Graph to file in the form of graphviz.
3388
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3389 3390 3391 3392

                Examples:
                    .. code-block:: python

3393 3394 3395 3396
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3397

3398 3399
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3400
                    )DOC")
S
sneaxiy 已提交
3401 3402 3403 3404 3405 3406
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3407 3408 3409 3410
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3411 3412
            self.enable_sequential_execution_ = b;
          },
3413 3414
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3415 3416 3417 3418

                Examples:
                    .. code-block:: python

3419 3420 3421 3422 3423 3424
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3425 3426
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3427 3428 3429 3430 3431 3432
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3433 3434 3435 3436
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3437 3438
            self.remove_unnecessary_lock_ = b;
          },
3439 3440
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3441 3442 3443 3444

                Examples:
                    .. code-block:: python

3445 3446 3447 3448 3449 3450
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3451 3452
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3453 3454 3455 3456
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3457
#ifdef WIN32
3458
            PADDLE_THROW(platform::errors::Unavailable(
3459
                "Distribution mode is not supported on Windows platform."));
3460
#endif
3461 3462
            self.num_trainers_ = num_trainers;
          })
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3475 3476 3477 3478 3479 3480
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3481 3482 3483 3484 3485 3486
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3487
      .def_property("use_hierarchical_allreduce",
3488 3489 3490 3491 3492 3493
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3494
      .def_property("hierarchical_allreduce_inter_nranks",
3495 3496 3497 3498 3499 3500 3501
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3502 3503 3504 3505 3506 3507
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3508 3509 3510 3511
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3512 3513
            self.fuse_elewise_add_act_ops_ = b;
          },
3514
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3515
                to fuse elementwise_add_op and activation_op,
3516
                it may make the execution faster. Default is False.
F
flame 已提交
3517 3518 3519 3520

                Examples:
                    .. code-block:: python

3521 3522 3523 3524 3525 3526
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3527 3528
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3554 3555 3556 3557
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3558
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3559
                              platform::errors::PreconditionNotMet(
3560 3561
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3571 3572 3573 3574 3575 3576
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3577 3578
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3604 3605 3606 3607
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3608
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3609
                              platform::errors::PreconditionNotMet(
3610 3611
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3622 3623 3624 3625 3626 3627
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3628 3629
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3630 3631 3632 3633 3634 3635
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3636 3637 3638 3639
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3640 3641
            self.fuse_relu_depthwise_conv_ = b;
          },
3642
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3643 3644 3645
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3646
                Default is False.
F
flame 已提交
3647 3648 3649 3650

                Examples:
                    .. code-block:: python

3651 3652 3653 3654 3655 3656
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3657 3658
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3659 3660 3661
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3662
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3663 3664
                    },
                    [](BuildStrategy &self, bool b) {
3665 3666 3667 3668
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3669 3670
                      self.fuse_broadcast_ops_ = b;
                    },
3671
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3672 3673 3674 3675
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3676 3677 3678 3679 3680
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3681 3682 3683 3684 3685 3686
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3687 3688
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3689 3690
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3691
                      return self.fuse_all_optimizer_ops_ == true ||
3692
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3693 3694
                    },
                    [](BuildStrategy &self, bool b) {
3695 3696 3697 3698
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3699 3700
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3701 3702 3703 3704
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3705 3706 3707 3708
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3709 3710
            self.sync_batch_norm_ = b;
          },
3711
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3712 3713 3714
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3715 3716
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3717 3718 3719 3720

                Examples:
                    .. code-block:: python

3721 3722 3723 3724 3725 3726
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3727 3728
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3729 3730
      .def_property(
          "memory_optimize",
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3741
              self.memory_optimize_ = paddle::none;
3742 3743 3744
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3745
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3746 3747
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3748 3749
            }
          },
3750
          R"DOC((bool, optional): memory opitimize aims to save total memory
3751
                consumption, set to True to enable it.
3752

3753 3754 3755
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3770 3771 3772
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3773 3774 3775
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3776
              PADDLE_THROW(platform::errors::Unavailable(
3777
                  "Distribution mode is not supported on Windows platform."));
3778 3779 3780 3781 3782
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3783 3784 3785
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3786
      .def_property(
D
dzhwinter 已提交
3787 3788 3789
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3790 3791 3792 3793
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3794 3795
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3796 3797
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3798
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3799
          },
C
chengduo 已提交
3800
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3801 3802 3803 3804 3805 3806 3807
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3808 3809 3810 3811
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3812 3813 3814 3815 3816 3817 3818 3819 3820
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3821 3822 3823 3824 3825 3826
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3827 3828 3829 3830 3831 3832 3833
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3834 3835 3836 3837 3838 3839
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3840
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3841
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3842 3843 3844 3845 3846
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3847

3848 3849 3850 3851 3852 3853
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3854
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3855
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3856
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3857
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3858 3859 3860 3861
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3862 3863 3864 3865 3866
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3867 3868 3869
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3870 3871 3872 3873
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3874 3875
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3876 3877 3878 3879 3880 3881 3882 3883
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3884
               return py::cast(
3885
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3886 3887
             } else {
               return py::cast(std::move(
3888
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3889
             }
3890 3891
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3892

J
jianghaicheng 已提交
3893 3894
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
3906
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4028 4029
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4030 4031 4032
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4033 4034
#endif

D
dongdaxiang 已提交
4035
  BindFleetWrapper(&m);
4036
  BindIO(&m);
T
Thunderbrook 已提交
4037

T
Thunderbrook 已提交
4038
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4039
  BindHeterWrapper(&m);
4040
  BindMetrics(&m);
T
Thunderbrook 已提交
4041
#endif
T
Thunderbrook 已提交
4042
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4043
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4044
#endif
4045
  BindGlooWrapper(&m);
H
hutuxian 已提交
4046
  BindBoxHelper(&m);
H
hutuxian 已提交
4047 4048 4049
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4050
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4051
  BindNCCLWrapper(&m);
4052 4053 4054
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4055
#endif
F
flame 已提交
4056 4057
  BindGraph(&m);
  BindNode(&m);
4058
  BindPass(&m);
F
flame 已提交
4059
  BindInferenceApi(&m);
4060
  BindCompatible(&m);
4061
  BindDataset(&m);
Y
yaoxuefeng 已提交
4062
  BindGenerator(&m);
4063 4064 4065
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4066 4067 4068
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4069
  BindAscendDevice(&m);
4070
#endif
Y
Yanghello 已提交
4071 4072 4073
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4074

T
tangwei12 已提交
4075
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4076 4077
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4078
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4079 4080
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4081 4082 4083 4084 4085
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4086 4087 4088 4089
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4090
  BindSparseShardingTools(&m);
4091
#endif
L
Luo Tao 已提交
4092
}
4093
}  // namespace pybind
4094
}  // namespace paddle