pybind.cc 147.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
W
wanghuancoder 已提交
78
#ifndef PADDLE_ON_INFERENCE
79
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
80
#endif
81
#include "paddle/fluid/pybind/io.h"
82
#include "paddle/utils/none.h"
83 84 85
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
86
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
87
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
88
#include "paddle/fluid/pybind/box_helper_py.h"
89
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
90
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
91
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
92
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
94
#include "paddle/fluid/pybind/generator_py.h"
95
#include "paddle/fluid/pybind/global_value_getter_setter.h"
96
#include "paddle/fluid/pybind/gloo_context_py.h"
97
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
98
#include "paddle/fluid/pybind/heter_wrapper_py.h"
99
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
100
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
101
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
102
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
103
#include "paddle/fluid/pybind/pybind_boost_headers.h"
104

105
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
106
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
107
#endif
108
#include "paddle/fluid/framework/data_type.h"
109 110
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
111
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/tensor_py.h"
113
#include "paddle/fluid/string/to_string.h"
114 115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
116
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
117
#endif
118
#ifndef PADDLE_WITH_HIP
119
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
120
#endif
121
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
122 123
#endif

124
#ifdef PADDLE_WITH_ASCEND_CL
125
#include "paddle/fluid/platform/collective_helper.h"
126 127
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
128 129
#endif

130
#ifdef PADDLE_WITH_XPU
131
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
132 133
#endif

134
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
J
jianghaicheng 已提交
135 136 137 138
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#include "paddle/fluid/platform/ipu_info.h"
#endif
139

140 141 142 143
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
144 145 146 147
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
148
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
149 150 151
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
152 153
#include "pybind11/stl.h"

154
DECLARE_bool(use_mkldnn);
155

Q
Qiao Longfei 已提交
156 157
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
158 159 160
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
161

162
namespace paddle {
163
namespace pybind {
164 165 166 167 168 169 170

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
171
PyTypeObject *g_mluplace_pytype = nullptr;
172
PyTypeObject *g_framework_tensor_pytype = nullptr;
173
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
174

175
bool IsCompiledWithCUDA() {
176 177 178 179 180 181 182 183 184
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
185 186 187 188 189 190
  return false;
#else
  return true;
#endif
}

191 192 193 194 195 196 197 198
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

199 200 201 202 203 204 205 206
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
215 216 217 218 219 220 221 222
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

223 224 225 226 227 228 229 230
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

231 232 233 234 235 236 237 238
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

247 248 249 250 251 252 253 254
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

255 256 257 258 259 260 261 262 263 264 265
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

266 267 268 269 270 271 272 273 274 275 276
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
312 313 314
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

354
bool IsCompiledWithBrpc() {
355
#ifndef PADDLE_WITH_DISTRIBUTE
356 357
  return false;
#endif
358
  return true;
359 360
}

Y
update  
Yancey1989 已提交
361
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
362
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
363 364 365 366 367 368
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
369 370 371 372 373 374 375
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
376
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
377 378
}

H
hong 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
401 402 403
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
417 418
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
419 420
    }
    vec_res.emplace_back(
421
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
422 423 424 425 426 427 428 429 430 431 432 433
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
434 435
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
436 437 438 439 440 441 442 443 444 445 446 447
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
448 449 450
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
451 452 453 454
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
455 456
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
457 458 459 460
  }
  return vec_res;
}

461 462 463 464 465 466 467 468
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
469 470
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
471 472 473 474 475 476 477 478 479 480 481 482 483
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
484 485 486
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
487 488 489 490 491
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
492 493 494 495 496
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
497 498
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
499 500 501
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
502 503 504 505 506 507 508 509 510
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
511 512
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
513 514 515 516 517
  }

  return;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
542 543 544 545
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
546
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
547 548 549 550 551 552 553 554
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
555 556 557 558 559 560 561 562 563 564 565
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

566 567 568 569 570 571
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
572
#ifndef PADDLE_ON_INFERENCE
573
  BindEager(&m);
W
wanghuancoder 已提交
574
#endif
575 576
  BindCudaStream(&m);

Y
Yu Yang 已提交
577 578 579
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
580
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
581

582 583
  AssertStaticGraphAndDygraphGradMakerNoDiff();

584
  m.doc() = "C++ core of PaddlePaddle";
585

586 587 588 589
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

590
  BindException(&m);
Y
Yu Yang 已提交
591

592 593
  m.def("set_num_threads", &platform::SetNumThreads);

594 595
  m.def("disable_signal_handler", &DisableSignalHandler);

596 597 598 599 600 601 602 603
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

604
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
605
  m.def("cudnn_version", &platform::DnnVersion);
606 607 608 609 610 611
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
612
#endif
613

Z
Zeng Jinle 已提交
614 615 616 617
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

618 619 620 621 622 623 624 625 626 627
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
628 629
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
630 631
#endif

Z
Zeng Jinle 已提交
632 633 634 635
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
636 637 638
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
639 640 641 642 643 644

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
645 646
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
647
    framework::Tensor tensor;
6
633WHU 已提交
648

S
Siming Dai 已提交
649
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
650 651
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
652
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
653
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
654 655 656 657 658
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
659

660 661 662 663 664 665
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

666 667 668 669 670 671
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
672 673
  });

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
699 700 701 702 703 704
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
705
  m.def(
S
sneaxiy 已提交
706
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
707 708 709 710
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
711 712 713
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
730 731 732
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
733
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
734

735
  m.def("_set_fuse_parameter_group_size",
736
        &paddle::framework::ir::SetFuseParameterGroupsSize);
737
  m.def("_set_fuse_parameter_memory_size",
738
        &paddle::framework::ir::SetFuseParameterMemorySize);
739

S
sneaxiy 已提交
740 741 742
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

743 744
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

745 746 747
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

748
  BindImperative(&m);
749

750 751 752 753 754
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
755 756
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
757
      .def("_is_initialized",
758
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
759
      .def("_get_dims",
760
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
761
      .def("_set_dims",
762
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
763
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
764
           })
Y
yuyang18 已提交
765
      .def("_set_layout",
766
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
767 768
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
769
      .def("_alloc_float",
770
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
771
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
772
           })
773
      .def("_alloc_float",
774
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
775 776
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
777
      .def("_alloc_float",
778
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
779
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
780
           })
781 782 783 784
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
785 786 787 788
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
789
      .def("_alloc_double",
790
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
791 792
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
793
      .def("_alloc_int",
794
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
795
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
796
           })
797
      .def("_alloc_int",
798
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
799 800
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
801
      .def("_alloc_int",
802
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
803
             self.mutable_data<int>(place);
Q
qijun 已提交
804
           })
805 806 807 808
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
809
      .def("_alloc_int",
810 811
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
812 813
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
814
      .def("_alloc_float",
815 816
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
817 818
             self.mutable_data<float>(place);
           })
819
      .def("_mutable_data",
820
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
821 822 823
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
824
      .def("_mutable_data",
825
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
826 827 828
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
829
      .def("_mutable_data",
830
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
831 832 833 834
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
835
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
836 837 838
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
839 840 841 842 843
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
844
      .def("_clear", &framework::Tensor::clear)
845 846 847 848 849
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
850 851 852 853 854 855 856 857 858 859
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
860 861
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
862
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
863
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
864
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
865
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
866 867
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
868
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
869
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
870 871
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
872 873
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
874 875
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
876
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
877 878
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
879
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
880 881 882
        
        Args:
          lod (numpy.ndarray): The data to set.
883
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
884
          Tensor is to be set.
885 886
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
887 888 889 890 891 892 893 894 895 896

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

897
                t = fluid.Tensor()
L
Leo Chen 已提交
898 899
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
900

901 902 903
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
904
           Return the shape of Tensor.
L
Leo Chen 已提交
905 906

           Returns:
907
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
908 909 910 911 912 913 914 915


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

916
                  t = fluid.Tensor()
L
Leo Chen 已提交
917 918 919
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
920
      .def("_to_dlpack",
921
           [](framework::Tensor &self) {
6
633WHU 已提交
922
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
923
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
941 942 943 944
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
945 946
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
947
      .def("_layout",
948 949 950 951
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
952
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is invalid, "
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
977
      .def("__init__",
978 979
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
980
           })
G
gongweibao 已提交
981
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
982 983
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
984 985 986
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
987
      .def("set_lod",
988 989
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
990
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
991
             LoD new_lod;
992 993
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
994 995
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
996 997
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
998
             self.set_lod(new_lod);
S
sneaxiy 已提交
999 1000
           },
           py::arg("lod"), R"DOC(
1001
           Set LoD of the Tensor.
S
sneaxiy 已提交
1002 1003

           Args:
L
Leo Chen 已提交
1004 1005 1006 1007
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1008 1009 1010 1011 1012 1013 1014

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1015
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1016 1017
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1018
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1019
           )DOC")
1020
      .def("set_recursive_sequence_lengths",
1021 1022
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1023 1024 1025 1026 1027 1028 1029 1030
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1031 1032
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1033 1034 1035 1036 1037
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1038
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1039 1040
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1041
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1042

L
Leo Chen 已提交
1043
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1044
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1045
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1046 1047

           Args:
L
Leo Chen 已提交
1048 1049 1050 1051
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1052 1053 1054 1055 1056 1057 1058

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1059
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1060 1061
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1062
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1063
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1064
           )DOC")
1065
      .def("lod",
1066
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1067 1068 1069 1070 1071 1072
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1073 1074
           },
           R"DOC(
1075
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1076 1077

           Returns:
1078
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1079
           
Z
Zeng Jinle 已提交
1080 1081 1082 1083 1084 1085
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1086
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1087 1088 1089
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1090
           )DOC")
G
gongweibao 已提交
1091
      // Set above comments of set_lod.
1092
      .def("recursive_sequence_lengths",
1093
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1094 1095 1096 1097 1098 1099
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1100 1101
           },
           R"DOC(
L
Leo Chen 已提交
1102
           Return the recursive sequence lengths corresponding to of the LodD 
1103
           of the Tensor.
S
sneaxiy 已提交
1104 1105

           Returns:
L
Leo Chen 已提交
1106
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1107 1108 1109 1110 1111 1112 1113

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1114
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1115 1116 1117
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1118 1119
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1120
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1121
             // Check that the lod info is valid and match the outermost
1122
             // dimension of the Tensor data
S
sneaxiy 已提交
1123 1124 1125
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1126
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1127 1128

           Returns:
L
Leo Chen 已提交
1129
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1130 1131 1132 1133 1134 1135 1136

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1137
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1138 1139 1140
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1141
           )DOC")
L
Leo Chen 已提交
1142
      .def("_as_type",
1143
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1144
              paddle::framework::proto::VarType::Type type) {
1145
             framework::Tensor dst;
L
Leo Chen 已提交
1146 1147 1148 1149 1150
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1164
#ifdef _WIN32
1165
           });
1166 1167 1168
#else
           })
      .def(py::pickle(
1169
          [](const framework::Tensor &t) {  // __getstate__
1170
            auto holder = t.Holder();
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1183 1184 1185
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1186 1187
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1188 1189 1190
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1191
              throw std::runtime_error("Invalid Tensor state!");
1192 1193

            // 1. Create a new C++ instance
1194
            framework::Tensor tensor;
1195 1196 1197 1198 1199

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1200 1201
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1202 1203

            // 3. Maintain global fd set
1204
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1205 1206
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1207 1208 1209 1210
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1211 1212 1213 1214 1215 1216
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1217

Q
qijun 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1229 1230
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1231 1232
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1233 1234
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1235
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1236 1237 1238 1239 1240 1241
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1242
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1243
      .def("rows", [](SelectedRows &self) {
1244 1245 1246 1247 1248
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1249
      });
Q
qijun 已提交
1250

1251
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1252 1253 1254

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1255
      .def(py::init<>())
1256
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1257
      .def("set_int",
1258 1259
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1260 1261 1262 1263 1264 1265 1266
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1267
      .def("get_tensor",
1268 1269
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1270 1271
           },
           py::return_value_policy::reference)
1272 1273 1274 1275
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1288 1289 1290
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1291 1292 1293 1294 1295
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1296 1297 1298
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1299 1300 1301
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1302
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1303 1304 1305 1306 1307
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1308
#endif
Y
Refine  
Yu Yang 已提交
1309 1310
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1311 1312 1313 1314
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1315 1316
             return self.GetMutable<framework::ReaderHolder>();
           },
1317
           py::return_value_policy::reference)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1329 1330 1331 1332
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1333

S
sneaxiy 已提交
1334
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1335

S
sneaxiy 已提交
1336
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1350
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1351 1352 1353 1354 1355 1356
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1357 1358
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1359
      .def("var",
1360
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1361
             return self.Var(name);
Y
Yu Yang 已提交
1362
           },
S
sneaxiy 已提交
1363 1364
           py::arg("name"),
           R"DOC(
1365
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1366

1367
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1368
           current scope, the variable would be created. Otherwise,
1369
           return the existing variable.
S
sneaxiy 已提交
1370 1371

           Args:
1372 1373
               name (str): the variable name.

S
sneaxiy 已提交
1374
           Returns:
1375
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1376 1377 1378 1379
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1380
           Find variable named :code:`name` in the current scope or
1381
           its parent scope. Return None if not found. 
1382

S
sneaxiy 已提交
1383 1384
           Args:
               name (str): the variable name.
1385

S
sneaxiy 已提交
1386
           Returns:
1387
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1388
           )DOC",
1389
           py::return_value_policy::reference)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1402
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1403 1404 1405 1406 1407 1408
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1409
           py::return_value_policy::reference)
S
sneaxiy 已提交
1410 1411 1412
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1413 1414
           )DOC")
      .def("_kids", &Scope::kids);
1415

S
sneaxiy 已提交
1416 1417 1418 1419 1420 1421
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1422 1423
        R"DOC(
        Create a new scope.
1424

S
sneaxiy 已提交
1425 1426 1427
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1428 1429
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1430 1431
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1432 1433
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1434 1435 1436 1437
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1438 1439
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1440 1441
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1442 1443 1444
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1445 1446
    return ret_values;
  });
1447 1448 1449 1450 1451 1452 1453 1454
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1455
              res = op_checker->GetDefaultAttrsMap();
1456 1457 1458 1459
            }
          }
          return res;
        });
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1476 1477 1478
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1479 1480 1481 1482 1483
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1484 1485 1486
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1501
  m.def("prune", [](const ProgramDesc &origin,
1502
                    const std::set<std::string> &feeded_var_names,
1503
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1504
    ProgramDesc prog_with_targets(origin);
1505

1506
    for (const auto &t : targets) {
1507
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1508
    }
1509
    proto::ProgramDesc pruned_desc;
1510 1511 1512 1513
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1514
  });
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1532 1533 1534 1535
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1536 1537 1538
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1539 1540
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1541

Q
qijun 已提交
1542
  // clang-format off
Y
Yu Yang 已提交
1543
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1544 1545
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1546
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1547 1548
                    return new paddle::platform::CPUDeviceContext();
                  })
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1571 1572
#endif
                  })
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1585
      .def_static("create",
D
dzhwinter 已提交
1586
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1587
                      -> paddle::platform::DeviceContext* {
1588
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1589 1590 1591 1592
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1593
#else
Q
qijun 已提交
1594
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1595
#endif
C
chengduoZH 已提交
1596 1597 1598 1599
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1600
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1601 1602 1603 1604
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1605 1606 1607 1608
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1609
// clang-format on
1610
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1611 1612
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1613
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1614 1615 1616 1617 1618

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1619
    The memory of CUDAPlace with different dev_id is not accessible.
1620 1621 1622 1623 1624 1625 1626 1627
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1628 1629 1630 1631

    Examples:
        .. code-block:: python

1632 1633 1634
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1635

1636 1637 1638
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1639 1640
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1641
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1642 1643 1644 1645 1646 1647 1648 1649
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1650 1651
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1652 1653 1654 1655 1656 1657 1658 1659
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1660 1661
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1662 1663 1664 1665
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1666 1667
             new (&self) platform::CUDAPlace(dev_id);
#else
1668 1669 1670 1671 1672 1673 1674 1675 1676
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1677 1678
#endif
           })
1679
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1680 1681
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1682 1683 1684 1685
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1686
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1687
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1688
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1689 1690
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1691 1692 1693
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1694
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1695
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1696

1697
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1698 1699 1700 1701 1702
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1703 1704 1705
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1744
#ifdef PADDLE_WITH_XPU
1745 1746 1747 1748 1749 1750 1751
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1752 1753 1754
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1755
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1756
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1757
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1758 1759 1760 1761
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1762
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1763 1764
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
taixiurong 已提交
1765 1766 1767 1768 1769 1770 1771 1772
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1773
#endif
1774

1775
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1776
    CPUPlace is a descriptor of a device.
1777
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1778 1779 1780 1781

    Examples:
        .. code-block:: python

1782 1783
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1784

1785 1786 1787
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1788 1789
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1790
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1791
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1792 1793 1794 1795
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1796
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1797
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1798

1799 1800
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1801 1802 1803 1804 1805 1806
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1807 1808 1809 1810

    Examples:
        .. code-block:: python

1811 1812
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1813

1814 1815 1816 1817
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1818
      .def("__init__",
S
sneaxiy 已提交
1819
           [](platform::CUDAPinnedPlace &self) {
1820
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1821 1822 1823
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1824
#endif
S
sneaxiy 已提交
1825
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1826
           })
S
sneaxiy 已提交
1827 1828 1829 1830
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1831 1832
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1833 1834
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1835 1836 1837 1838
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1839
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1840 1841
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1842
  // NPUPlace
1843
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1844 1845 1846 1847 1848 1849 1850 1851
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1852 1853 1854
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1886
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1901 1902
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1903 1904
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2026 2027 2028
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2029 2030 2031 2032
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2033
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2034
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2035
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2036
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2037
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2038 2039
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2040 2041
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2042 2043
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2044 2045
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2046 2047
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2048 2049 2050 2051
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2052 2053
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2054 2055 2056 2057 2058
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2059 2060
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2061 2062 2063 2064
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2065 2066 2067 2068
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2069
      .def("set_place",
D
dzhwinter 已提交
2070
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2071
             self = gpu_place;
C
chengduoZH 已提交
2072
           })
2073 2074 2075 2076 2077
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2078 2079 2080 2081
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2082 2083 2084 2085
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2086 2087 2088 2089
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2090 2091
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2092

Y
Yu Yang 已提交
2093
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
2108
      .def("run",
2109
           [](OperatorBase &self, const Scope &scope,
2110 2111 2112 2113
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2114 2115
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2116 2117 2118 2119
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2120 2121
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2122 2123 2124 2125
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2126 2127
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2128 2129 2130 2131
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2132 2133 2134
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2135
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2136 2137
             self.Run(scope, place);
           })
2138 2139 2140 2141 2142 2143
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2144 2145 2146 2147 2148 2149 2150
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2151 2152
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2153
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2154
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2155 2156 2157 2158
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2159

2160 2161 2162
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2163 2164 2165 2166 2167 2168 2169
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2170 2171
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2172

2173 2174
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2175
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2176
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2177
      .def("close", &Executor::Close)
2178 2179
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2180 2181
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2182 2183 2184 2185
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2186
             pybind11::gil_scoped_release release;
2187 2188 2189 2190 2191 2192 2193
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2194 2195 2196
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2197
              std::map<std::string, FetchType *> *fetch_targets,
2198 2199 2200 2201 2202 2203 2204 2205
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2206
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2207 2208 2209 2210 2211 2212 2213
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2224
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2225 2226
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2227
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2228 2229
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2230
      });
S
sneaxiy 已提交
2231

2232
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2233
      .def(py::init<>())
2234 2235 2236 2237 2238
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2239

2240
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2241 2242 2243
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2244
           [](StandaloneExecutor &self,
H
hong 已提交
2245
              const std::unordered_map<std::string, py::array> &input_dict,
2246
              std::vector<std::string> fetch_names) {
2247
             std::vector<framework::LoDTensor> feed_tensors;
2248
             std::vector<std::string> feed_names;
H
hong 已提交
2249 2250 2251 2252 2253

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2254 2255
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2256 2257
             }

2258 2259 2260 2261 2262 2263 2264 2265 2266
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2267
              const std::unordered_map<std::string, framework::LoDTensor>
2268 2269
                  &input_dict,
              std::vector<std::string> fetch_names) {
2270
             std::vector<framework::LoDTensor> feed_tensors;
2271 2272 2273 2274 2275 2276 2277
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2278 2279 2280 2281
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2282
             }
W
wanghuancoder 已提交
2283
             return py::cast(std::move(ret));
2284
           })
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2295 2296 2297
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2298
             std::vector<framework::LoDTensor> feed_tensors;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2309
             framework::interpreter::CostInfo cost_info;
2310 2311 2312 2313 2314
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2315 2316
           });

D
dzhwinter 已提交
2317
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2318
  m.def("init_glog", framework::InitGLOG);
2319 2320
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2321
  m.def("init_devices", []() { framework::InitDevices(); });
2322

2323
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2324
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2325
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2326
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2327
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2328
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2329
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2330
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2331
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2332
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2333
  m.def("supports_bfloat16", SupportsBfloat16);
2334
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2335 2336
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2337
  m.def("op_supported_infos", OpSupportedInfos);
2338
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2339
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2340 2341 2342
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2362 2363 2364 2365 2366 2367 2368
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2378
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2379 2380
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2381
    return platform::GetGPUComputeCapability(place.device) >= 53;
2382 2383
  });
#endif
2384

S
Steffy-zxf 已提交
2385 2386 2387 2388 2389 2390
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2391 2392 2393 2394 2395
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2396
            return py::cast(BOOST_GET(LoDTensor, var));
2397
          } else {
2398
            return py::cast(BOOST_GET(LoDTensorArray, var));
2399 2400
          }
        });
2401
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2402

X
Xin Pan 已提交
2403 2404
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2405 2406 2407 2408
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2409
  BindCostModel(&m);
2410
  BindConstValue(&m);
2411
  BindGlobalValueGetterSetter(&m);
2412
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2413
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2414

Y
Yu Yang 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2424
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2425
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2426 2427 2428

    Examples:
        .. code-block:: python
2429

Z
Zeng Jinle 已提交
2430 2431 2432
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2433 2434 2435 2436
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2437 2438
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2439 2440 2441 2442 2443 2444
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2445 2446 2447 2448
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2449 2450 2451
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2452 2453 2454 2455 2456 2457
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2458 2459
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2460 2461 2462 2463 2464 2465
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2488

2489 2490 2491 2492 2493 2494 2495 2496
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2497
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2498 2499
                 res[i] = py::cast(std::move(data));
               } else {
2500
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2516
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2517 2518 2519 2520 2521 2522 2523 2524
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2525
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2526 2527 2528 2529 2530 2531 2532 2533 2534
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2535 2536
        )DOC")
      .def("_move_to_list",
2537
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2538 2539 2540 2541
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2542
                 if (data_is_lod_tensor(self[i][j])) {
2543
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2544 2545
                   tmp[j] = py::cast(std::move(var));
                 } else {
2546
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2547 2548 2549 2550 2551 2552
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2562
  m.def("op_support_gpu", OpSupportGPU);
2563
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2564
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2565 2566 2567 2568 2569 2570 2571 2572
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2573 2574 2575 2576 2577 2578 2579
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2605
      });
D
dangqingqing 已提交
2606

2607
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2608 2609 2610
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2611 2612 2613 2614
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2615
#endif
P
peizhilin 已提交
2616
#endif
Y
Yu Yang 已提交
2617

2618 2619
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2620
  m.def("npu_finalize", []() {
2621 2622
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2623 2624 2625
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2626
      platform::NPUDeviceGuard guard(devices[i]);
2627 2628 2629 2630
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2651 2652 2653 2654
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2655 2656 2657 2658
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2659 2660 2661 2662 2663 2664
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2665 2666 2667 2668
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2669
      .value("kAll", platform::ProfilerState::kAll)
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2681
  m.def("set_tracer_option", platform::SetTracerOption);
2682 2683
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2684
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2685
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2686
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2687 2688 2689 2690 2691
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2692
    callable.inc_ref();
2693 2694 2695 2696 2697 2698 2699 2700
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2701
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2702 2703 2704
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2705

2706 2707
  m.def("size_of_dtype", framework::SizeOfType);

2708
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2709 2710
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2711 2712
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2713
#endif  // PADDLE_WITH_CUDA
2714 2715
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2716

2717 2718 2719
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2720 2721
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2722
      .def("has", &ir::Pass::Has)
2723 2724 2725
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2726
           })
2727
      .def(
2728
          "set",
2729 2730 2731
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2732 2733
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2734 2735
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2736 2737 2738 2739 2740
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2755 2756
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2757
        self.Apply(graph.get());
F
flame 已提交
2758
      });
2759

X
fix  
Xin Pan 已提交
2760 2761
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2776
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2777
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2778 2779 2780 2781
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2782 2783 2784
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2785 2786 2787
    Examples:
        .. code-block:: python

2788 2789 2790 2791 2792 2793 2794 2795 2796
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2797

2798 2799
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2800

2801
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2802 2803
          sgd_optimizer.minimize(avg_loss)

2804
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2805 2806
          exec_strategy.num_threads = 4

2807 2808 2809
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2810 2811
        )DOC");

2812 2813 2814 2815
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2816

Y
yuyang18 已提交
2817
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2818 2819 2820 2821 2822
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2823
          },
2824 2825
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2826 2827 2828 2829 2830 2831 2832
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2846
      .def_property(
2847 2848
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2849
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2850 2851 2852
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2853 2854 2855 2856 2857
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2858 2859 2860
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2861 2862
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2863 2864 2865 2866 2867 2868 2869
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2870 2871 2872 2873
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2874
                because the temp variable's shape maybe the same between two iterations.
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2885

2886 2887 2888 2889 2890 2891 2892
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2893
              )DOC")
Q
Qiao Longfei 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2915
              )DOC")
2916 2917 2918 2919 2920 2921 2922 2923
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2924 2925 2926 2927 2928
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2929

Y
yuyang18 已提交
2930
  exec_strategy.def_property(
Y
yuyang18 已提交
2931 2932 2933 2934 2935 2936 2937
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2938 2939
      });

C
chengduo 已提交
2940 2941 2942 2943
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2944 2945 2946
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2947 2948 2949
    Examples:
        .. code-block:: python

2950
            import os
2951 2952 2953 2954
            import paddle
            import paddle.static as static

            paddle.enable_static()
2955

2956 2957
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2958

2959 2960 2961 2962
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2963

2964
            build_strategy = static.BuildStrategy()
2965 2966
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2967 2968
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2969
            program = program.with_data_parallel(loss_name=loss.name,
2970 2971
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2972
)DOC");
Y
yuyang18 已提交
2973 2974 2975

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
2976 2977
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
2978 2979 2980 2981 2982 2983 2984 2985
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2986
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2987 2988 2989 2990
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2991 2992 2993 2994
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2995
            self.reduce_ = strategy;
C
chengduo 已提交
2996
          },
2997
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2998 2999
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3000
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3001 3002
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3003
                Default is 'AllReduce'.
F
flame 已提交
3004 3005 3006 3007

                Examples:
                    .. code-block:: python

3008 3009 3010 3011 3012 3013 3014
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3015
                  )DOC")
Y
yuyang18 已提交
3016 3017 3018 3019 3020
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3021 3022 3023 3024
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3025
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3026
          },
3027
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3028
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3029 3030
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3031
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3032 3033 3034 3035

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3036 3037
                        import numpy
                        import os
3038 3039 3040 3041
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3042 3043

                        use_cuda = True
3044 3045
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3046 3047

                        # NOTE: If you use CPU to run the program, you need
3048
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3049 3050 3051 3052 3053 3054
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3055
                            places = static.cpu_places()
C
chengduo 已提交
3056
                        else:
3057
                            places = static.cuda_places()
C
chengduo 已提交
3058

3059 3060 3061 3062
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3063

3064
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3065

3066
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3067
                        build_strategy.gradient_scale_strategy = \
3068 3069 3070
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3071
                                          loss_name=loss.name, build_strategy=build_strategy,
3072
                                          places=places)
C
chengduo 已提交
3073 3074 3075 3076 3077 3078

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3079 3080
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3081
                   )DOC")
Y
yuyang18 已提交
3082 3083 3084 3085
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3086 3087 3088 3089
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3090
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3091
          },
3092
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3093
                writing the SSA Graph to file in the form of graphviz.
3094
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3095 3096 3097 3098

                Examples:
                    .. code-block:: python

3099 3100 3101 3102
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3103

3104 3105
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3106
                    )DOC")
S
sneaxiy 已提交
3107 3108 3109 3110 3111 3112
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3113 3114 3115 3116
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3117 3118
            self.enable_sequential_execution_ = b;
          },
3119 3120
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3121 3122 3123 3124

                Examples:
                    .. code-block:: python

3125 3126 3127 3128 3129 3130
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3131 3132
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3133 3134 3135 3136 3137 3138
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3139 3140 3141 3142
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3143 3144
            self.remove_unnecessary_lock_ = b;
          },
3145 3146
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3147 3148 3149 3150

                Examples:
                    .. code-block:: python

3151 3152 3153 3154 3155 3156
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3157 3158
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3159 3160 3161 3162
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3163
#ifdef WIN32
3164
            PADDLE_THROW(platform::errors::Unavailable(
3165
                "Distribution mode is not supported on Windows platform."));
3166
#endif
3167 3168
            self.num_trainers_ = num_trainers;
          })
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3181 3182 3183 3184 3185 3186
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3187 3188 3189 3190 3191 3192
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3193
      .def_property("use_hierarchical_allreduce",
3194 3195 3196 3197 3198 3199
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3200
      .def_property("hierarchical_allreduce_inter_nranks",
3201 3202 3203 3204 3205 3206 3207
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3208 3209 3210 3211 3212 3213
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3214 3215 3216 3217
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3218 3219
            self.fuse_elewise_add_act_ops_ = b;
          },
3220
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3221
                to fuse elementwise_add_op and activation_op,
3222
                it may make the execution faster. Default is False.
F
flame 已提交
3223 3224 3225 3226

                Examples:
                    .. code-block:: python

3227 3228 3229 3230 3231 3232
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3233 3234
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3235 3236 3237 3238
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3239
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3240
                              platform::errors::PreconditionNotMet(
3241 3242
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3252 3253 3254 3255 3256 3257
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3258 3259
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3285 3286 3287 3288
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3289
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3290
                              platform::errors::PreconditionNotMet(
3291 3292
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3303 3304 3305 3306 3307 3308
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3309 3310
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3311 3312 3313 3314 3315 3316
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3317 3318 3319 3320
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3321 3322
            self.fuse_relu_depthwise_conv_ = b;
          },
3323
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3324 3325 3326
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3327
                Default is False.
F
flame 已提交
3328 3329 3330 3331

                Examples:
                    .. code-block:: python

3332 3333 3334 3335 3336 3337
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3338 3339
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3340 3341 3342
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3343
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3344 3345
                    },
                    [](BuildStrategy &self, bool b) {
3346 3347 3348 3349
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3350 3351
                      self.fuse_broadcast_ops_ = b;
                    },
3352
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3353 3354 3355 3356
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3357 3358 3359 3360 3361
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3362 3363 3364 3365 3366 3367
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3368 3369
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3370 3371
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3372
                      return self.fuse_all_optimizer_ops_ == true ||
3373
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3374 3375
                    },
                    [](BuildStrategy &self, bool b) {
3376 3377 3378 3379
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3380 3381
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3382 3383 3384 3385
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3386 3387 3388 3389
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3390 3391
            self.sync_batch_norm_ = b;
          },
3392
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3393 3394 3395
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3396 3397
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3398 3399 3400 3401

                Examples:
                    .. code-block:: python

3402 3403 3404 3405 3406 3407
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3408 3409
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3410 3411
      .def_property(
          "memory_optimize",
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3422
              self.memory_optimize_ = paddle::none;
3423 3424 3425
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3426
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3427 3428
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3429 3430
            }
          },
3431
          R"DOC((bool, optional): memory opitimize aims to save total memory
3432
                consumption, set to True to enable it.
3433

3434 3435 3436
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3451 3452 3453
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3454 3455 3456
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3457
              PADDLE_THROW(platform::errors::Unavailable(
3458
                  "Distribution mode is not supported on Windows platform."));
3459 3460 3461 3462 3463
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3464 3465 3466
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3467
      .def_property(
D
dzhwinter 已提交
3468 3469 3470
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3471 3472 3473 3474
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3475 3476
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3477 3478
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3479
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3480
          },
C
chengduo 已提交
3481
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3482 3483 3484 3485 3486 3487 3488
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3489 3490 3491 3492
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3493 3494 3495 3496 3497 3498 3499 3500 3501
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3502 3503 3504 3505 3506 3507
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3508 3509 3510 3511 3512 3513 3514
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3515 3516 3517 3518 3519 3520
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3521
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3522
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3523 3524 3525 3526 3527
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3528

3529 3530 3531 3532 3533 3534
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3535
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3536
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3537
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3538
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3539 3540 3541 3542
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3543 3544 3545 3546 3547
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3548 3549 3550
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3551 3552 3553 3554
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3555 3556
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3557 3558 3559 3560 3561 3562 3563 3564
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3565
               return py::cast(
3566
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3567 3568
             } else {
               return py::cast(std::move(
3569
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3570
             }
3571 3572
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3573

J
jianghaicheng 已提交
3574 3575 3576 3577 3578 3579 3580 3581
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3582 3583
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3584 3585 3586 3587 3588
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3589
          })
J
jianghaicheng 已提交
3590 3591 3592 3593 3594 3595 3596
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3597
          })
J
jianghaicheng 已提交
3598 3599 3600 3601 3602 3603
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3604
                    })
J
jianghaicheng 已提交
3605 3606 3607 3608 3609 3610
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3611
                    })
J
jianghaicheng 已提交
3612 3613 3614 3615 3616 3617 3618
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3619
          })
J
jianghaicheng 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3634
          })
J
jianghaicheng 已提交
3635 3636 3637 3638 3639 3640
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3641
                    })
J
jianghaicheng 已提交
3642 3643 3644 3645 3646 3647
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3648
                    })
J
jianghaicheng 已提交
3649 3650 3651 3652 3653 3654
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3655
                    });
J
jianghaicheng 已提交
3656 3657
#endif

D
dongdaxiang 已提交
3658
  BindFleetWrapper(&m);
3659
  BindIO(&m);
T
Thunderbrook 已提交
3660

T
Thunderbrook 已提交
3661 3662
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3663
#endif
T
Thunderbrook 已提交
3664
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3665
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3666
#endif
3667
  BindGlooWrapper(&m);
H
hutuxian 已提交
3668
  BindBoxHelper(&m);
H
hutuxian 已提交
3669 3670 3671
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3672
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3673
  BindNCCLWrapper(&m);
3674 3675 3676
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3677
#endif
F
flame 已提交
3678 3679
  BindGraph(&m);
  BindNode(&m);
3680
  BindPass(&m);
F
flame 已提交
3681
  BindInferenceApi(&m);
3682
  BindCompatible(&m);
3683
  BindDataset(&m);
Y
yaoxuefeng 已提交
3684
  BindGenerator(&m);
3685 3686 3687
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3688
  BindAscendDevice(&m);
3689
#endif
Y
Yanghello 已提交
3690 3691 3692
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3693

T
tangwei12 已提交
3694
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3695 3696
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3697
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3698 3699
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3700 3701 3702 3703 3704
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3705 3706 3707 3708
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3709
  BindSparseShardingTools(&m);
3710
#endif
L
Luo Tao 已提交
3711
}
3712
}  // namespace pybind
3713
}  // namespace paddle