pybind.cc 109.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
32
#include "paddle/fluid/framework/io/fs.h"
33
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
35
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
36 37 38
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/op_info.h"
40
#include "paddle/fluid/framework/op_registry.h"
41
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
45
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/selected_rows.h"
48
#include "paddle/fluid/framework/trainer.h"
49
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
50
#include "paddle/fluid/framework/version.h"
H
hong 已提交
51
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
52
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
54
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/operators/py_func_op.h"
56
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
57
#include "paddle/fluid/platform/cpu_info.h"
58
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/platform/enforce.h"
60
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
61
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
62 63
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
64
#include "paddle/fluid/pybind/box_helper_py.h"
65
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
67
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
70
#include "paddle/fluid/pybind/generator_py.h"
71
#include "paddle/fluid/pybind/global_value_getter_setter.h"
72
#include "paddle/fluid/pybind/gloo_context_py.h"
73
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
74
#include "paddle/fluid/pybind/heter_wrapper_py.h"
75
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
76
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
77
#include "paddle/fluid/pybind/ir.h"
78
#include "paddle/fluid/pybind/pybind_boost_headers.h"
79

80
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
82
#endif
83
#include "paddle/fluid/framework/data_type.h"
84 85
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
86
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/tensor_py.h"
88
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
89
#ifdef PADDLE_WITH_CUDA
90
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
91
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
92
#endif
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
95 96
#endif

97 98 99 100
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

101 102 103 104
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
105 106 107 108
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
109 110
#include "pybind11/stl.h"

111
DECLARE_bool(use_mkldnn);
112

Q
Qiao Longfei 已提交
113 114
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
115 116 117
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
118

119
namespace paddle {
120
namespace pybind {
121
bool IsCompiledWithCUDA() {
122
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
123 124 125 126 127 128
  return false;
#else
  return true;
#endif
}

129 130 131 132 133 134 135 136
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

137 138 139 140 141 142 143 144
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

145 146 147 148 149 150 151 152 153 154 155
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

156
bool IsCompiledWithBrpc() {
157
#ifndef PADDLE_WITH_DISTRIBUTE
158 159
  return false;
#endif
160 161 162 163 164 165

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
166 167
}

Y
update  
Yancey1989 已提交
168
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
169
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
170 171 172 173 174 175
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
176 177 178 179 180 181 182 183 184 185
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
208 209 210
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
224 225
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
226 227
    }
    vec_res.emplace_back(
228
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
229 230 231 232 233 234 235 236 237 238 239 240
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
241 242
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
243 244 245 246 247 248 249 250 251 252 253 254
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
255 256 257
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
258 259 260 261
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
262 263
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
264 265 266 267
  }
  return vec_res;
}

268 269 270 271 272 273 274 275
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
276 277
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
278 279 280 281 282 283 284 285 286 287 288 289 290
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
291 292 293
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
294 295 296 297 298
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
299 300 301 302 303
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
304 305
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
306 307 308
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
309 310 311 312 313 314 315 316 317
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
318 319
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
320 321 322 323 324
  }

  return;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

349 350 351 352 353 354
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
355 356 357
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
358
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
359

360 361
  AssertStaticGraphAndDygraphGradMakerNoDiff();

362
  m.doc() = "C++ core of PaddlePaddle";
363

364 365 366 367
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

368
  BindException(&m);
Y
Yu Yang 已提交
369

370 371
  m.def("set_num_threads", &platform::SetNumThreads);

372 373 374 375
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
394 395 396 397 398 399 400 401 402
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
403
           const Scope &scope, const Executor *executor) {
H
hong 已提交
404
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
405
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
406 407 408
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

409 410 411 412 413 414
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
434

435 436 437 438 439 440
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
441 442
  });

S
sneaxiy 已提交
443
  m.def(
S
sneaxiy 已提交
444
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
445 446 447 448
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
449 450 451
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
468 469 470
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
471
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
472

473
  m.def("_set_fuse_parameter_group_size",
474
        &paddle::framework::ir::SetFuseParameterGroupsSize);
475
  m.def("_set_fuse_parameter_memory_size",
476
        &paddle::framework::ir::SetFuseParameterMemorySize);
477

S
sneaxiy 已提交
478 479 480
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

481 482
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

483
  BindImperative(&m);
484

485
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
486
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
487 488
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
489
      .def("_get_dims",
490
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
491
      .def("_set_dims",
Q
qijun 已提交
492
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
493
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
494
           })
Y
yuyang18 已提交
495
      .def("_set_layout",
D
dzhwinter 已提交
496 497 498
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
499
      .def("_alloc_float",
D
dzhwinter 已提交
500
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
501
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
502
           })
503 504 505 506
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
507
      .def("_alloc_float",
Y
Yu Yang 已提交
508
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
509
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
510
           })
511 512 513 514
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
515
      .def("_alloc_int",
Y
Yu Yang 已提交
516
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
517
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
518
           })
519 520 521 522
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
523
      .def("_alloc_int",
D
dzhwinter 已提交
524
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
525
             self.mutable_data<int>(place);
Q
qijun 已提交
526
           })
Y
yuyang18 已提交
527
      .def("_alloc_int",
C
chengduoZH 已提交
528 529 530
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
531
      .def("_alloc_float",
C
chengduoZH 已提交
532 533 534
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
535 536 537 538 539
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
540 541 542 543 544
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
545 546 547 548 549 550 551 552 553 554
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
555
      .def("_clear", &Tensor::clear)
556
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
557
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
558 559
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
560
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
561
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
562
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
563 564
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
565 566 567 568
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
569
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
570
          LoDTensor is to be set.
571 572
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
586

L
Leo Chen 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
626 627 628 629
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
630
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
631
      .def("_dtype", [](Tensor &self) { return self.type(); })
632
      .def("_share_data_with", &Tensor::ShareDataWith)
633 634 635 636 637 638
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
639

L
Leo Chen 已提交
640
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
641
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
716 717 718 719 720 721 722

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
723 724

        )DOC")
725
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
726 727 728 729 730 731 732 733 734
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
735 736
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
737 738 739 740
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
741 742
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
743
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
744
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
745 746
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
747 748 749
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
750
      .def("set_lod",
751
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
752
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
753
             LoD new_lod;
754 755
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
756 757
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
758 759
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
760
             self.set_lod(new_lod);
S
sneaxiy 已提交
761 762 763 764 765
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
766 767 768 769
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
770 771 772 773 774 775 776 777 778 779

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
780
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
781
           )DOC")
782 783 784 785 786 787 788 789 790 791 792
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
793 794
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
795 796 797 798 799
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
800
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
801 802
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
803
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
804

L
Leo Chen 已提交
805
           For example, if recursive_sequence_lengths=[[2, 3]], which means
806
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
807
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
808 809

           Args:
L
Leo Chen 已提交
810 811 812 813
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
814 815 816 817 818 819 820 821 822 823

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
824 825
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
826
           )DOC")
827 828 829 830 831 832 833 834
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
835 836 837 838 839
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
840 841
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
842 843 844 845 846 847 848 849 850 851
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
852
           )DOC")
G
gongweibao 已提交
853
      // Set above comments of set_lod.
854 855 856 857 858 859 860 861
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
862 863
           },
           R"DOC(
L
Leo Chen 已提交
864 865
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
866 867

           Returns:
L
Leo Chen 已提交
868
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
869 870 871 872 873 874 875 876 877 878 879

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
880 881 882 883 884 885 886 887
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
888
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
889 890

           Returns:
L
Leo Chen 已提交
891
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
892 893 894 895 896 897 898 899 900 901 902

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
903 904 905 906 907 908 909
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
910
           )DOC")
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
929
#ifdef _WIN32
930
      });
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
981

Q
qijun 已提交
982 983 984 985 986 987 988 989 990 991 992
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
993 994
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
995 996
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
997 998 999 1000 1001 1002 1003 1004 1005
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1006
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1007
      .def("rows", [](SelectedRows &self) {
1008 1009 1010 1011 1012
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1013
      });
Q
qijun 已提交
1014

1015
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1016 1017 1018

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1019
      .def(py::init<>())
1020
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1021
      .def("set_int",
1022 1023
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1024 1025 1026 1027 1028 1029 1030
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1031
      .def("get_tensor",
1032 1033
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1034 1035
           },
           py::return_value_policy::reference)
1036 1037 1038 1039
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1040 1041 1042
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1043 1044 1045 1046 1047
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1048 1049 1050
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1051 1052 1053
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1054
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1055 1056 1057 1058 1059
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1060
#endif
Y
Refine  
Yu Yang 已提交
1061 1062
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1063 1064 1065 1066
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1067 1068
             return self.GetMutable<framework::ReaderHolder>();
           },
1069 1070 1071 1072 1073
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1074

S
sneaxiy 已提交
1075
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1076

S
sneaxiy 已提交
1077
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1091
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1092 1093 1094 1095 1096 1097
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1098 1099
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1100
      .def("var",
1101
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1102
             return self.Var(name);
Y
Yu Yang 已提交
1103
           },
S
sneaxiy 已提交
1104 1105
           py::arg("name"),
           R"DOC(
1106
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1107

1108
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1109
           current scope, the variable would be created. Otherwise,
1110
           return the existing variable.
S
sneaxiy 已提交
1111 1112

           Args:
1113 1114
               name (str): the variable name.

S
sneaxiy 已提交
1115
           Returns:
1116
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1117 1118 1119 1120
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1121
           Find variable named :code:`name` in the current scope or
1122
           its parent scope. Return None if not found. 
1123

S
sneaxiy 已提交
1124 1125
           Args:
               name (str): the variable name.
1126

S
sneaxiy 已提交
1127
           Returns:
1128
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1129
           )DOC",
1130
           py::return_value_policy::reference)
1131
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1132 1133 1134 1135 1136 1137
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1138
           py::return_value_policy::reference)
S
sneaxiy 已提交
1139 1140 1141
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1142 1143
           )DOC")
      .def("_kids", &Scope::kids);
1144

S
sneaxiy 已提交
1145 1146 1147 1148 1149 1150
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1151 1152
        R"DOC(
        Create a new scope.
1153

S
sneaxiy 已提交
1154 1155 1156
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1157 1158
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1159 1160
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1161 1162
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1163 1164 1165 1166
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1167 1168
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1169 1170
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1171 1172 1173
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1174 1175
    return ret_values;
  });
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1205 1206 1207
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1208 1209 1210 1211 1212
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1213 1214 1215
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1230
  m.def("prune", [](const ProgramDesc &origin,
1231
                    const std::set<std::string> &feeded_var_names,
1232
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1233
    ProgramDesc prog_with_targets(origin);
1234

1235
    for (const auto &t : targets) {
1236
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1237
    }
1238
    proto::ProgramDesc pruned_desc;
1239 1240 1241 1242
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1243
  });
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1261 1262 1263 1264
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1265 1266 1267
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1268 1269
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1270
  // clang-format off
Y
Yu Yang 已提交
1271
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1272 1273
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1274
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1275 1276
                    return new paddle::platform::CPUDeviceContext();
                  })
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1289
      .def_static("create",
D
dzhwinter 已提交
1290
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1291
                      -> paddle::platform::DeviceContext* {
1292
#ifndef PADDLE_WITH_CUDA
1293 1294 1295 1296
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1297
#else
Q
qijun 已提交
1298
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1299
#endif
C
chengduoZH 已提交
1300 1301 1302 1303 1304
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1305 1306 1307 1308
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1309 1310 1311 1312
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1313
// clang-format on
1314
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1315 1316
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1317
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1318 1319 1320 1321 1322

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1323
    The memory of CUDAPlace with different dev_id is not accessible.
1324 1325 1326 1327 1328 1329 1330 1331
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1332 1333 1334 1335

    Examples:
        .. code-block:: python

1336 1337 1338 1339
          import paddle

          place = paddle.CUDAPlace(0)
          paddle.disable_static(place)
L
lujun 已提交
1340

1341
        )DOC")
S
sneaxiy 已提交
1342 1343 1344
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1369 1370
             new (&self) platform::CUDAPlace(dev_id);
#else
1371 1372 1373 1374 1375 1376 1377 1378 1379
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1380 1381
#endif
           })
1382
#ifdef PADDLE_WITH_CUDA
1383 1384
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1385 1386 1387 1388
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1389
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1390 1391
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1392 1393 1394
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1395
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1451
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1452
    CPUPlace is a descriptor of a device.
1453
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1454 1455 1456 1457

    Examples:
        .. code-block:: python

1458 1459
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1460

1461
        )DOC")
1462
      .def(py::init<>())
S
sneaxiy 已提交
1463 1464
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1465
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1466 1467 1468 1469
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1470
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1471

1472
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1473 1474 1475 1476 1477 1478
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1479 1480 1481 1482

    Examples:
        .. code-block:: python

1483 1484
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1485

1486
        )DOC")
S
sneaxiy 已提交
1487
      .def("__init__",
S
sneaxiy 已提交
1488
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1489
#ifndef PADDLE_WITH_CUDA
1490 1491 1492
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1493
#endif
S
sneaxiy 已提交
1494
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1495
           })
S
sneaxiy 已提交
1496 1497 1498 1499
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1500 1501
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1502 1503 1504 1505
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1506 1507
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1508 1509
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1510 1511 1512 1513
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1514
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1515
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1516 1517
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1518 1519
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1520 1521
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1522 1523 1524 1525
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1526 1527
      .def("gpu_device_id",
           [](platform::Place &self) {
1528
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1529
           })
1530 1531 1532 1533
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1534 1535
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1536 1537 1538 1539
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1540 1541 1542 1543
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1544
      .def("set_place",
D
dzhwinter 已提交
1545
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1546
             self = gpu_place;
C
chengduoZH 已提交
1547 1548
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1549 1550
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1551
      });
Y
Yu Yang 已提交
1552

Y
Yu Yang 已提交
1553
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1554 1555 1556 1557 1558
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1559 1560 1561 1562 1563 1564 1565
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1566 1567
            return OpRegistry::CreateOp(desc);
          })
1568
      .def("run",
1569
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1570
              const platform::CPUPlace &place) { self.Run(scope, place); })
1571 1572 1573
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1574 1575
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1576
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1577 1578 1579 1580 1581
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1582 1583 1584 1585 1586 1587 1588
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1589 1590
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1591
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1592
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1593 1594 1595 1596
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1597

1598 1599 1600
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1601 1602 1603 1604 1605 1606 1607 1608 1609
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1610
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1611
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1612
      .def("close", &Executor::Close)
1613 1614
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1615 1616
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1617 1618 1619 1620
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1621
             pybind11::gil_scoped_release release;
1622 1623 1624 1625 1626 1627 1628
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1629 1630 1631
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1632
              std::map<std::string, FetchType *> *fetch_targets,
1633 1634 1635 1636 1637 1638 1639 1640
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1641
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1642 1643 1644 1645 1646 1647 1648
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1659
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1660 1661
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1662
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1663 1664
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1665
      });
S
sneaxiy 已提交
1666

D
dzhwinter 已提交
1667
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1668
  m.def("init_glog", framework::InitGLOG);
1669
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1670 1671
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1672

1673
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1674
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1675
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1676
  m.def("supports_bfloat16", SupportsBfloat16);
1677
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1678
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1679 1680 1681
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1701 1702 1703 1704 1705 1706 1707
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1717 1718 1719 1720 1721 1722
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1723

1724
  m.def("set_feed_variable", framework::SetFeedVariable);
1725 1726 1727 1728 1729
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1730
            return py::cast(BOOST_GET(LoDTensor, var));
1731
          } else {
1732
            return py::cast(BOOST_GET(LoDTensorArray, var));
1733 1734
          }
        });
1735
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1736

X
Xin Pan 已提交
1737 1738
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1739 1740 1741 1742 1743
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1744
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1745

Y
Yu Yang 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1755
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1756
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1757 1758 1759

    Examples:
        .. code-block:: python
1760

Z
Zeng Jinle 已提交
1761 1762 1763 1764
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1765 1766
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1767 1768 1769 1770 1771 1772
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1773 1774 1775 1776
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1777 1778 1779
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1780 1781 1782 1783 1784 1785
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1786 1787
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1788 1789 1790 1791 1792 1793
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1816

1817 1818 1819 1820 1821 1822 1823 1824
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1825
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1826 1827
                 res[i] = py::cast(std::move(data));
               } else {
1828
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1844
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1845 1846 1847 1848 1849 1850 1851 1852
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1853
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1854 1855 1856 1857 1858 1859 1860 1861 1862
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1863 1864
        )DOC")
      .def("_move_to_list",
1865
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1866 1867 1868 1869
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1870
                 if (data_is_lod_tensor(self[i][j])) {
1871
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1872 1873
                   tmp[j] = py::cast(std::move(var));
                 } else {
1874
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1875 1876 1877 1878 1879 1880
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1890
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1891
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1892
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1893

P
peizhilin 已提交
1894
#ifndef _WIN32
D
dangqingqing 已提交
1895 1896 1897
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1898
#endif
P
peizhilin 已提交
1899
#endif
Y
Yu Yang 已提交
1900

1901 1902 1903 1904 1905 1906
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1907 1908 1909 1910
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1911
      .value("kAll", platform::ProfilerState::kAll)
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1923
  m.def("set_tracer_option", platform::SetTracerOption);
1924 1925
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1926
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1927
  m.def("reset_profiler", platform::ResetProfiler);
1928
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1929 1930 1931
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1932

1933 1934
  m.def("size_of_dtype", framework::SizeOfType);

1935 1936 1937
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1938 1939
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1940
      .def("has", &ir::Pass::Has)
1941 1942 1943
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1944
           })
1945
      .def(
1946
          "set",
1947 1948 1949
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1950 1951
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1952 1953
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1968 1969
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1970
        self.Apply(graph.get());
F
flame 已提交
1971
      });
1972

X
fix  
Xin Pan 已提交
1973 1974
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1989
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1990

Y
yuyang18 已提交
1991
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1992 1993 1994 1995
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

1996 1997 1998
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
1999 2000 2001
    Examples:
        .. code-block:: python

2002 2003 2004 2005 2006 2007 2008 2009 2010
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2011

2012 2013
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2014

2015
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2016 2017
          sgd_optimizer.minimize(avg_loss)

2018
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2019 2020
          exec_strategy.num_threads = 4

2021 2022 2023
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2024 2025
        )DOC");

Y
yuyang18 已提交
2026
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2027 2028 2029 2030 2031
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2032
          },
2033 2034
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2035 2036 2037 2038 2039 2040 2041
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2055
      .def_property(
2056 2057 2058 2059
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2060 2061 2062 2063
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2064 2065 2066 2067 2068
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2069 2070 2071
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2072 2073
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2074 2075 2076 2077 2078 2079 2080
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2081 2082 2083 2084
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2085
                because the temp variable's shape maybe the same between two iterations.
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2096

2097 2098 2099 2100 2101 2102 2103
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2104
              )DOC")
Q
Qiao Longfei 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2126
              )DOC")
2127 2128 2129 2130 2131 2132 2133 2134
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2135 2136 2137 2138 2139
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2140

Y
yuyang18 已提交
2141
  exec_strategy.def_property(
Y
yuyang18 已提交
2142 2143 2144 2145 2146 2147 2148
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2149 2150
      });

C
chengduo 已提交
2151 2152 2153 2154
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2155 2156 2157
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2158 2159 2160
    Examples:
        .. code-block:: python

2161
            import os
2162 2163 2164 2165
            import paddle
            import paddle.static as static

            paddle.enable_static()
2166

2167 2168
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2169

2170 2171 2172 2173
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2174

2175
            build_strategy = static.BuildStrategy()
2176 2177
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2178 2179
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2180
            program = program.with_data_parallel(loss_name=loss.name,
2181 2182
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2183
)DOC");
Y
yuyang18 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2200 2201 2202 2203
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2204
            self.reduce_ = strategy;
C
chengduo 已提交
2205
          },
2206
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2207 2208
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2209
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2210 2211
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2212
                Default is 'AllReduce'.
F
flame 已提交
2213 2214 2215 2216

                Examples:
                    .. code-block:: python

2217 2218 2219 2220 2221 2222 2223
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2224
                  )DOC")
Y
yuyang18 已提交
2225 2226 2227 2228 2229
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2230 2231 2232 2233
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2234
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2235
          },
2236 2237
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2238 2239
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2240
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2241 2242 2243 2244

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2245 2246
                        import numpy
                        import os
2247 2248 2249 2250
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2251 2252

                        use_cuda = True
2253 2254
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2255 2256

                        # NOTE: If you use CPU to run the program, you need
2257
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2258 2259 2260 2261 2262 2263
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2264
                            places = static.cpu_places()
C
chengduo 已提交
2265
                        else:
2266
                            places = static.cuda_places()
C
chengduo 已提交
2267

2268 2269 2270 2271
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2272

2273
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2274

2275
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2276
                        build_strategy.gradient_scale_strategy = \
2277 2278 2279
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2280
                                          loss_name=loss.name, build_strategy=build_strategy,
2281
                                          places=places)
C
chengduo 已提交
2282 2283 2284 2285 2286 2287

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2288 2289
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2290
                   )DOC")
Y
yuyang18 已提交
2291 2292 2293 2294
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2295 2296 2297 2298
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2299
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2300
          },
2301
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2302
                writing the SSA Graph to file in the form of graphviz.
2303
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2304 2305 2306 2307

                Examples:
                    .. code-block:: python

2308 2309 2310 2311
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2312

2313 2314
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2315
                    )DOC")
S
sneaxiy 已提交
2316 2317 2318 2319 2320 2321
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2322 2323 2324 2325
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2326 2327
            self.enable_sequential_execution_ = b;
          },
2328 2329
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2330 2331 2332 2333

                Examples:
                    .. code-block:: python

2334 2335 2336 2337 2338 2339
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2340 2341
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2342 2343 2344 2345 2346 2347
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2348 2349 2350 2351
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2352 2353
            self.remove_unnecessary_lock_ = b;
          },
2354 2355
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2356 2357 2358 2359

                Examples:
                    .. code-block:: python

2360 2361 2362 2363 2364 2365
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2366 2367
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2368 2369 2370 2371
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2372
#ifdef WIN32
2373
            PADDLE_THROW(platform::errors::Unavailable(
2374
                "Distribution mode is not supported on Windows platform."));
2375
#endif
2376 2377
            self.num_trainers_ = num_trainers;
          })
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2390 2391 2392 2393 2394 2395
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2396
      .def_property("use_hierarchical_allreduce",
2397 2398 2399 2400 2401 2402
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2403
      .def_property("hierarchical_allreduce_inter_nranks",
2404 2405 2406 2407 2408 2409 2410
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2411 2412 2413 2414 2415 2416
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2417 2418 2419 2420
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2421 2422
            self.fuse_elewise_add_act_ops_ = b;
          },
2423
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2424
                to fuse elementwise_add_op and activation_op,
2425
                it may make the execution faster. Default is False.
F
flame 已提交
2426 2427 2428 2429

                Examples:
                    .. code-block:: python

2430 2431 2432 2433 2434 2435
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2436 2437
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2438 2439 2440 2441
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2442
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2443
                              platform::errors::PreconditionNotMet(
2444 2445
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2455 2456 2457 2458 2459 2460
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2461 2462
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2463 2464 2465 2466
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2467
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2468
                              platform::errors::PreconditionNotMet(
2469 2470
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2481 2482 2483 2484 2485 2486
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2487 2488
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2489 2490 2491 2492 2493 2494
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2495 2496 2497 2498
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2499 2500
            self.fuse_relu_depthwise_conv_ = b;
          },
2501
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2502 2503 2504
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2505
                Default is False.
F
flame 已提交
2506 2507 2508 2509

                Examples:
                    .. code-block:: python

2510 2511 2512 2513 2514 2515
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2516 2517
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2518 2519 2520 2521 2522 2523
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2524 2525 2526 2527
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2528 2529
                      self.fuse_broadcast_ops_ = b;
                    },
2530
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2531 2532 2533 2534
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2535 2536 2537 2538 2539
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2540 2541 2542 2543 2544 2545
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2546 2547
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2548 2549
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2550 2551
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2552 2553
                    },
                    [](BuildStrategy &self, bool b) {
2554 2555 2556 2557
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2558 2559
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2560 2561 2562 2563
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2564 2565 2566 2567
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2568 2569
            self.sync_batch_norm_ = b;
          },
2570
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2571 2572 2573
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2574 2575
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2576 2577 2578 2579

                Examples:
                    .. code-block:: python

2580 2581 2582 2583 2584 2585
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2586 2587
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2588 2589
      .def_property(
          "memory_optimize",
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2604 2605 2606
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2607 2608
            }
          },
2609
          R"DOC((bool, optional): memory opitimize aims to save total memory
2610
                consumption, set to True to enable it.
2611

2612 2613 2614
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2629 2630 2631
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2632 2633 2634
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2635
              PADDLE_THROW(platform::errors::Unavailable(
2636
                  "Distribution mode is not supported on Windows platform."));
2637 2638 2639 2640 2641
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2642 2643 2644
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2645
      .def_property(
D
dzhwinter 已提交
2646 2647 2648
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2649 2650 2651 2652
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2653 2654
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2655 2656 2657 2658
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2659
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2660 2661 2662 2663 2664 2665 2666
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2667 2668 2669 2670
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2671 2672 2673 2674 2675 2676 2677 2678 2679
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2680
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2681
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2682 2683 2684 2685 2686
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2687 2688

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2689
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2690
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2691
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2692 2693 2694 2695
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2696 2697 2698 2699 2700
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2701 2702 2703
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2704 2705 2706 2707
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2708 2709
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2710 2711 2712 2713 2714 2715 2716 2717
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2718
               return py::cast(
2719
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2720 2721
             } else {
               return py::cast(std::move(
2722
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2723
             }
2724 2725
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2726

D
dongdaxiang 已提交
2727
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2728 2729 2730
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2731
  BindGlooWrapper(&m);
H
hutuxian 已提交
2732
  BindBoxHelper(&m);
H
hutuxian 已提交
2733 2734 2735
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2736
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2737
  BindNCCLWrapper(&m);
2738 2739 2740
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2741
#endif
F
flame 已提交
2742 2743
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2744
  BindInferenceApi(&m);
2745
  BindCompatible(&m);
2746
  BindDataset(&m);
Y
yaoxuefeng 已提交
2747
  BindGenerator(&m);
Y
Yanghello 已提交
2748 2749 2750
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2751 2752
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2753 2754
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2755
#endif
L
Luo Tao 已提交
2756
}
2757
}  // namespace pybind
2758
}  // namespace paddle