pybind.cc 148.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
79
#ifndef PADDLE_ON_INFERENCE
80
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
81
#endif
82
#include "paddle/fluid/pybind/io.h"
83
#include "paddle/utils/none.h"
84 85 86
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
87
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
88
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
89
#include "paddle/fluid/pybind/box_helper_py.h"
90
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
94
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
95
#include "paddle/fluid/pybind/generator_py.h"
96
#include "paddle/fluid/pybind/global_value_getter_setter.h"
97
#include "paddle/fluid/pybind/gloo_context_py.h"
98
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
99
#include "paddle/fluid/pybind/heter_wrapper_py.h"
100
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
101
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
102
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
103
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
104
#include "paddle/fluid/pybind/pybind_boost_headers.h"
105

106
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
108
#endif
109
#include "paddle/fluid/framework/data_type.h"
110 111
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
112
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
113
#include "paddle/fluid/pybind/tensor_py.h"
114
#include "paddle/fluid/string/to_string.h"
115 116
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
117
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
118
#endif
119
#ifndef PADDLE_WITH_HIP
120
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
121
#endif
122
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
123 124
#endif

125
#ifdef PADDLE_WITH_ASCEND_CL
126
#include "paddle/fluid/platform/collective_helper.h"
127 128
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
129 130
#endif

131
#ifdef PADDLE_WITH_XPU
132
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
133
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
134 135
#endif

136
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
J
jianghaicheng 已提交
137 138 139 140
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#include "paddle/fluid/platform/ipu_info.h"
#endif
141

142 143 144 145
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
146 147 148 149
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
150
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
151 152 153
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
154 155
#include "pybind11/stl.h"

156
DECLARE_bool(use_mkldnn);
157

Q
Qiao Longfei 已提交
158 159
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
160 161 162
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
163

164
namespace paddle {
165
namespace pybind {
166 167 168 169 170 171 172

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
173
PyTypeObject *g_mluplace_pytype = nullptr;
174
PyTypeObject *g_framework_tensor_pytype = nullptr;
175
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
176

177
bool IsCompiledWithCUDA() {
178 179 180 181 182 183 184 185 186
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
187 188 189 190 191 192
  return false;
#else
  return true;
#endif
}

193 194 195 196 197 198 199 200
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

201 202 203 204 205 206 207 208
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

209 210 211 212 213 214 215 216
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
217 218 219 220 221 222 223 224
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

225 226 227 228 229 230 231 232
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

233 234 235 236 237 238 239 240
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

241 242 243 244 245 246 247 248
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

249 250 251 252 253 254 255 256
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

257 258 259 260 261 262 263 264 265 266 267
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

268 269 270 271 272 273 274 275 276 277 278
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
314 315 316
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

356
bool IsCompiledWithBrpc() {
357
#ifndef PADDLE_WITH_DISTRIBUTE
358 359
  return false;
#endif
360
  return true;
361 362
}

Y
update  
Yancey1989 已提交
363
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
364
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
365 366 367 368 369 370
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
371 372 373 374 375 376 377
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
378
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
379 380
}

H
hong 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
403 404 405
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
419 420
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
421 422
    }
    vec_res.emplace_back(
423
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
424 425 426 427 428 429 430 431 432 433 434 435
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
436 437
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
438 439 440 441 442 443 444 445 446 447 448 449
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
450 451 452
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
453 454 455 456
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
457 458
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
459 460 461 462
  }
  return vec_res;
}

463 464 465 466 467 468 469 470
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
471 472
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
473 474 475 476 477 478 479 480 481 482 483 484 485
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
486 487 488
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
489 490 491 492 493
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
494 495 496 497 498
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
499 500
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
501 502 503
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
504 505 506 507 508 509 510 511 512
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
513 514
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
515 516 517 518 519
  }

  return;
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
544 545 546 547
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
548
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
549 550 551 552 553 554 555 556
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
557 558 559 560 561 562 563 564 565 566 567
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

568 569 570 571 572 573
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
574
#ifndef PADDLE_ON_INFERENCE
575
  BindEager(&m);
W
wanghuancoder 已提交
576
#endif
577 578
  BindCudaStream(&m);

Y
Yu Yang 已提交
579 580 581
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
582
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
583

584 585
  AssertStaticGraphAndDygraphGradMakerNoDiff();

586
  m.doc() = "C++ core of PaddlePaddle";
587

588 589 590 591
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

592
  BindException(&m);
Y
Yu Yang 已提交
593

594 595
  m.def("set_num_threads", &platform::SetNumThreads);

596 597
  m.def("disable_signal_handler", &DisableSignalHandler);

598 599 600 601 602 603 604 605
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

606
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
607
  m.def("cudnn_version", &platform::DnnVersion);
608 609 610 611 612 613
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
614
#endif
615

Z
Zeng Jinle 已提交
616 617 618 619
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

620 621 622 623 624 625 626 627 628 629
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
630 631
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
632 633
#endif

Z
Zeng Jinle 已提交
634 635 636 637
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
638 639 640
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
641 642 643 644 645 646

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
647 648
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
649
    framework::Tensor tensor;
6
633WHU 已提交
650

S
Siming Dai 已提交
651
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
652 653
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
654
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
655
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
656 657 658 659 660
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
661

662 663 664 665 666 667
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

668 669 670 671 672 673
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
674 675
  });

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
701 702 703 704 705 706
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
707
  m.def(
S
sneaxiy 已提交
708
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
709 710 711 712
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
713 714 715
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
732 733 734
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
735
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
736

737
  m.def("_set_fuse_parameter_group_size",
738
        &paddle::framework::ir::SetFuseParameterGroupsSize);
739
  m.def("_set_fuse_parameter_memory_size",
740
        &paddle::framework::ir::SetFuseParameterMemorySize);
741

S
sneaxiy 已提交
742 743 744
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

745 746
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

747 748 749
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

750
  BindImperative(&m);
751

752 753 754 755 756
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
757 758
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
759
      .def("_is_initialized",
760
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
761
      .def("_get_dims",
762
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
763
      .def("_set_dims",
764
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
765
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
766
           })
Y
yuyang18 已提交
767
      .def("_set_layout",
768
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
769 770
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
771
      .def("_alloc_float",
772
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
773
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
774
           })
775
      .def("_alloc_float",
776
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
777 778
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
779
      .def("_alloc_float",
780
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
781
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
782
           })
783 784 785 786
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
787 788 789 790
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
791
      .def("_alloc_double",
792
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
793 794
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
795
      .def("_alloc_int",
796
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
797
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
798
           })
799
      .def("_alloc_int",
800
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
801 802
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
803
      .def("_alloc_int",
804
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
805
             self.mutable_data<int>(place);
Q
qijun 已提交
806
           })
807 808 809 810
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
811
      .def("_alloc_int",
812 813
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
814 815
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
816
      .def("_alloc_float",
817 818
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
819 820
             self.mutable_data<float>(place);
           })
821
      .def("_mutable_data",
822
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
823 824 825
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
826
      .def("_mutable_data",
827
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
828 829 830
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
831
      .def("_mutable_data",
832
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
833 834 835 836
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
837
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
838 839 840
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
841 842 843 844 845
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
846
      .def("_clear", &framework::Tensor::clear)
847 848 849 850 851
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
852 853 854 855 856 857 858 859 860 861
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
862 863
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
864
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
865
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
866
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
867
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
868 869
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
870
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
871
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
872 873
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
874 875
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
876 877
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
878
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
879 880
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
881
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
882 883 884
        
        Args:
          lod (numpy.ndarray): The data to set.
885
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
886
          Tensor is to be set.
887 888
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
889 890 891 892 893 894 895 896 897 898

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

899
                t = fluid.Tensor()
L
Leo Chen 已提交
900 901
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
902

903 904 905
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
906
           Return the shape of Tensor.
L
Leo Chen 已提交
907 908

           Returns:
909
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
910 911 912 913 914 915 916 917


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

918
                  t = fluid.Tensor()
L
Leo Chen 已提交
919 920 921
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
922
      .def("_to_dlpack",
923
           [](framework::Tensor &self) {
6
633WHU 已提交
924
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
925
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
943 944 945 946
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
947 948
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
949
      .def("_layout",
950 951 952 953
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
954
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is invalid, "
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
979
      .def("__init__",
980 981
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
982
           })
G
gongweibao 已提交
983
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
984 985
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
986 987 988
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
989
      .def("set_lod",
990 991
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
992
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
993
             LoD new_lod;
994 995
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
996 997
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
998 999
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1000
             self.set_lod(new_lod);
S
sneaxiy 已提交
1001 1002
           },
           py::arg("lod"), R"DOC(
1003
           Set LoD of the Tensor.
S
sneaxiy 已提交
1004 1005

           Args:
L
Leo Chen 已提交
1006 1007 1008 1009
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1010 1011 1012 1013 1014 1015 1016

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1017
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1018 1019
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1020
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1021
           )DOC")
1022
      .def("set_recursive_sequence_lengths",
1023 1024
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1025 1026 1027 1028 1029 1030 1031 1032
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1033 1034
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1035 1036 1037 1038 1039
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1040
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1041 1042
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1043
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1044

L
Leo Chen 已提交
1045
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1046
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1047
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1048 1049

           Args:
L
Leo Chen 已提交
1050 1051 1052 1053
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1054 1055 1056 1057 1058 1059 1060

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1061
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1062 1063
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1064
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1065
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1066
           )DOC")
1067
      .def("lod",
1068
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1069 1070 1071 1072 1073 1074
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1075 1076
           },
           R"DOC(
1077
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1078 1079

           Returns:
1080
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1081
           
Z
Zeng Jinle 已提交
1082 1083 1084 1085 1086 1087
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1088
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1089 1090 1091
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1092
           )DOC")
G
gongweibao 已提交
1093
      // Set above comments of set_lod.
1094
      .def("recursive_sequence_lengths",
1095
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1096
             // output the length-based lod info
1097
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1098 1099 1100 1101
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1102 1103
           },
           R"DOC(
L
Leo Chen 已提交
1104
           Return the recursive sequence lengths corresponding to of the LodD 
1105
           of the Tensor.
S
sneaxiy 已提交
1106 1107

           Returns:
L
Leo Chen 已提交
1108
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1109 1110 1111 1112 1113 1114 1115

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1116
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1117 1118 1119
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1120 1121
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1122
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1123
             // Check that the lod info is valid and match the outermost
1124
             // dimension of the Tensor data
S
sneaxiy 已提交
1125 1126 1127
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1128
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1129 1130

           Returns:
L
Leo Chen 已提交
1131
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1132 1133 1134 1135 1136 1137 1138

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1139
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1140 1141 1142
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1143
           )DOC")
L
Leo Chen 已提交
1144
      .def("_as_type",
1145
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1146
              paddle::framework::proto::VarType::Type type) {
1147
             framework::Tensor dst;
L
Leo Chen 已提交
1148 1149 1150 1151 1152
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1166
#ifdef _WIN32
1167
           });
1168 1169 1170
#else
           })
      .def(py::pickle(
1171
          [](const framework::Tensor &t) {  // __getstate__
1172
            auto holder = t.Holder();
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1185 1186 1187
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1188 1189
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1190 1191 1192
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1193
              throw std::runtime_error("Invalid Tensor state!");
1194 1195

            // 1. Create a new C++ instance
1196
            framework::Tensor tensor;
1197 1198 1199 1200 1201

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1202 1203
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1204 1205

            // 3. Maintain global fd set
1206
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1207 1208
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1209 1210 1211 1212
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1213 1214 1215 1216 1217 1218
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1219

1220
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1221
      .def("__init__",
1222 1223 1224
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1225
      .def("__init__",
1226
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1227
              const int64_t &height) {
1228
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1229 1230
           })
      .def("get_tensor",
1231
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1232
           py::return_value_policy::reference)
1233
      .def("numel",
1234 1235 1236 1237 1238
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1239
      .def("set_rows",
1240
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1241
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1242 1243 1244 1245 1246 1247
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1248 1249 1250
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1251 1252 1253 1254 1255
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1256
      });
Q
qijun 已提交
1257

1258
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1259 1260 1261

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1262
      .def(py::init<>())
1263
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1264
      .def("set_int",
1265 1266
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1267 1268 1269 1270 1271 1272 1273
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1274
      .def("get_tensor",
1275 1276
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1277 1278
           },
           py::return_value_policy::reference)
1279 1280 1281 1282
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1295 1296 1297
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1298
      .def("get_selected_rows",
1299 1300
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1301 1302
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1303 1304 1305
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1306 1307 1308
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1309
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1310 1311 1312 1313 1314
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1315
#endif
Y
Refine  
Yu Yang 已提交
1316 1317
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1318 1319 1320 1321
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1322 1323
             return self.GetMutable<framework::ReaderHolder>();
           },
1324
           py::return_value_policy::reference)
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1336 1337 1338 1339
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1340

S
sneaxiy 已提交
1341
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1342

S
sneaxiy 已提交
1343
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1357
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1358 1359 1360 1361 1362 1363
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1364 1365
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1366
      .def("var",
1367
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1368
             return self.Var(name);
Y
Yu Yang 已提交
1369
           },
S
sneaxiy 已提交
1370 1371
           py::arg("name"),
           R"DOC(
1372
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1373

1374
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1375
           current scope, the variable would be created. Otherwise,
1376
           return the existing variable.
S
sneaxiy 已提交
1377 1378

           Args:
1379 1380
               name (str): the variable name.

S
sneaxiy 已提交
1381
           Returns:
1382
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1383 1384 1385 1386
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1387
           Find variable named :code:`name` in the current scope or
1388
           its parent scope. Return None if not found. 
1389

S
sneaxiy 已提交
1390 1391
           Args:
               name (str): the variable name.
1392

S
sneaxiy 已提交
1393
           Returns:
1394
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1395
           )DOC",
1396
           py::return_value_policy::reference)
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1409
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1410 1411 1412 1413 1414 1415
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1416
           py::return_value_policy::reference)
S
sneaxiy 已提交
1417 1418 1419
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1420 1421
           )DOC")
      .def("_kids", &Scope::kids);
1422

S
sneaxiy 已提交
1423 1424 1425 1426 1427 1428
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1429 1430
        R"DOC(
        Create a new scope.
1431

S
sneaxiy 已提交
1432 1433 1434
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1435 1436
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1437 1438
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1439 1440
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1441 1442 1443 1444
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1445 1446
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1447 1448
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1449 1450 1451
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1452 1453
    return ret_values;
  });
1454 1455 1456 1457 1458 1459 1460 1461
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1462
              res = op_checker->GetDefaultAttrsMap();
1463 1464 1465 1466
            }
          }
          return res;
        });
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1483 1484 1485
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1486 1487 1488 1489 1490
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1491 1492 1493
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1508
  m.def("prune", [](const ProgramDesc &origin,
1509
                    const std::set<std::string> &feeded_var_names,
1510
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1511
    ProgramDesc prog_with_targets(origin);
1512

1513
    for (const auto &t : targets) {
1514
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1515
    }
1516
    proto::ProgramDesc pruned_desc;
1517 1518 1519 1520
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1521
  });
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1539 1540 1541 1542
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1543 1544 1545
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1546 1547
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1548

Q
qijun 已提交
1549
  // clang-format off
Y
Yu Yang 已提交
1550
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1551 1552
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1553
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1554 1555
                    return new paddle::platform::CPUDeviceContext();
                  })
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1578 1579
#endif
                  })
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1592
      .def_static("create",
D
dzhwinter 已提交
1593
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1594
                      -> paddle::platform::DeviceContext* {
1595
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1596 1597 1598 1599
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1600
#else
Q
qijun 已提交
1601
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1602
#endif
C
chengduoZH 已提交
1603 1604 1605 1606
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1607
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1608 1609 1610 1611
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1612 1613 1614 1615
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1616
// clang-format on
1617
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1618 1619
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1620
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1621 1622 1623 1624 1625

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1626
    The memory of CUDAPlace with different dev_id is not accessible.
1627 1628 1629 1630 1631 1632 1633 1634
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1635 1636 1637 1638

    Examples:
        .. code-block:: python

1639 1640 1641
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1642

1643 1644 1645
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1646 1647
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1648
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1649 1650 1651 1652 1653 1654 1655 1656
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1657 1658
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1659 1660 1661 1662 1663 1664 1665 1666
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1667 1668
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1669 1670 1671 1672
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1673 1674
             new (&self) platform::CUDAPlace(dev_id);
#else
1675 1676 1677 1678 1679 1680 1681 1682 1683
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1684 1685
#endif
           })
1686
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1687 1688
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1689 1690 1691 1692
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1693
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1694
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1695
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1696 1697
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1698 1699 1700
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1701
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1702
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1703

1704
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1705 1706 1707 1708 1709
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1710 1711 1712
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1751
#ifdef PADDLE_WITH_XPU
1752 1753 1754 1755 1756 1757 1758
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1759 1760 1761
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1762
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1763
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1764
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1765 1766 1767
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1768
      .export_values();
1769
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1770 1771
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1772 1773 1774 1775 1776 1777
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1778 1779
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1780 1781
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1782 1783
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1784 1785 1786
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1787 1788
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1789
  });
1790
#endif
1791

1792
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1793
    CPUPlace is a descriptor of a device.
1794
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1795 1796 1797 1798

    Examples:
        .. code-block:: python

1799 1800
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1801

1802 1803 1804
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1805 1806
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1807
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1808
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1809 1810 1811 1812
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1813
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1814
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1815

1816 1817
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1818 1819 1820 1821 1822 1823
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1824 1825 1826 1827

    Examples:
        .. code-block:: python

1828 1829
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1830

1831 1832 1833 1834
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1835
      .def("__init__",
S
sneaxiy 已提交
1836
           [](platform::CUDAPinnedPlace &self) {
1837
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1838 1839 1840
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1841
#endif
S
sneaxiy 已提交
1842
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1843
           })
S
sneaxiy 已提交
1844 1845 1846 1847
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1848 1849
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1850 1851
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1852 1853 1854 1855
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1856
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1857 1858
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1859
  // NPUPlace
1860
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1861 1862 1863 1864 1865 1866 1867 1868
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1869 1870 1871
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1903
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1918 1919
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1920 1921
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2043 2044 2045
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2046 2047 2048 2049
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2050
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2051
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2052
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2053
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2054
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2055 2056
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2057 2058
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2059 2060
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2061 2062
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2063 2064
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2065 2066 2067 2068
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2069 2070
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2071 2072 2073 2074 2075
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2076 2077
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2078 2079 2080 2081
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2082 2083 2084 2085
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2086
      .def("set_place",
D
dzhwinter 已提交
2087
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2088
             self = gpu_place;
C
chengduoZH 已提交
2089
           })
2090 2091 2092 2093 2094
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2095 2096 2097 2098
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2099 2100 2101 2102
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2103 2104 2105 2106
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2107 2108
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2109

Y
Yu Yang 已提交
2110
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
2125
      .def("run",
2126
           [](OperatorBase &self, const Scope &scope,
2127 2128 2129 2130
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2131 2132
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2133 2134 2135 2136
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2137 2138
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2139 2140 2141 2142
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2143 2144
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2145 2146 2147 2148
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2149 2150 2151
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2152
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2153 2154
             self.Run(scope, place);
           })
2155 2156 2157 2158 2159 2160
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2161 2162 2163 2164 2165 2166 2167
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2168 2169
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2170
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2171
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2172 2173 2174 2175
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2176

2177 2178 2179
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2180 2181 2182 2183 2184 2185 2186
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2187 2188
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2189

2190 2191
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2192
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2193
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2194
      .def("close", &Executor::Close)
2195 2196
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2197 2198
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2199 2200 2201 2202
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2203
             pybind11::gil_scoped_release release;
2204 2205 2206 2207 2208 2209 2210
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2211 2212 2213
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2214
              std::map<std::string, FetchType *> *fetch_targets,
2215 2216 2217 2218 2219 2220 2221 2222
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2223
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2224 2225 2226 2227 2228 2229 2230
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2241
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2242 2243
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2244
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2245 2246
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2247
      });
S
sneaxiy 已提交
2248

2249
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2250
      .def(py::init<>())
2251 2252 2253 2254 2255
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2256

2257
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2258 2259 2260
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2261
           [](StandaloneExecutor &self,
H
hong 已提交
2262
              const std::unordered_map<std::string, py::array> &input_dict,
2263
              std::vector<std::string> fetch_names) {
2264
             std::vector<framework::LoDTensor> feed_tensors;
2265
             std::vector<std::string> feed_names;
H
hong 已提交
2266 2267 2268 2269 2270

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2271 2272
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2273 2274
             }

2275 2276 2277 2278 2279 2280 2281 2282 2283
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2284
              const std::unordered_map<std::string, framework::LoDTensor>
2285 2286
                  &input_dict,
              std::vector<std::string> fetch_names) {
2287
             std::vector<framework::LoDTensor> feed_tensors;
2288 2289 2290 2291 2292 2293 2294
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2295 2296 2297 2298
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2299
             }
W
wanghuancoder 已提交
2300
             return py::cast(std::move(ret));
2301
           })
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2312 2313 2314
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2315
             std::vector<framework::LoDTensor> feed_tensors;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2326
             framework::interpreter::CostInfo cost_info;
2327 2328 2329 2330 2331
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2332 2333
           });

D
dzhwinter 已提交
2334
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2335
  m.def("init_glog", framework::InitGLOG);
2336 2337
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2338
  m.def("init_devices", []() { framework::InitDevices(); });
2339

2340
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2341
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2342
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2343
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2344
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2345
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2346
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2347
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2348
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2349
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2350
  m.def("supports_bfloat16", SupportsBfloat16);
2351
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2352 2353
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2354
  m.def("op_supported_infos", OpSupportedInfos);
2355
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2356
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2357 2358 2359
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2379 2380 2381 2382 2383 2384 2385
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2395
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2396 2397
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2398
    return platform::GetGPUComputeCapability(place.device) >= 53;
2399 2400
  });
#endif
2401

S
Steffy-zxf 已提交
2402 2403 2404 2405 2406 2407
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2408 2409 2410 2411 2412
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2413
            return py::cast(BOOST_GET(LoDTensor, var));
2414
          } else {
2415
            return py::cast(BOOST_GET(LoDTensorArray, var));
2416 2417
          }
        });
2418
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2419

X
Xin Pan 已提交
2420 2421
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2422 2423 2424 2425
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2426
  BindCostModel(&m);
2427
  BindConstValue(&m);
2428
  BindGlobalValueGetterSetter(&m);
2429
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2430
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2431

Y
Yu Yang 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2441
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2442
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2443 2444 2445

    Examples:
        .. code-block:: python
2446

Z
Zeng Jinle 已提交
2447 2448 2449
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2450 2451 2452 2453
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2454 2455
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2456 2457 2458 2459 2460 2461
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2462 2463 2464 2465
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2466 2467 2468
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2469 2470 2471 2472 2473 2474
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2475 2476
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2477 2478 2479 2480 2481 2482
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2505

2506 2507 2508 2509 2510 2511 2512 2513
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2514
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2515 2516
                 res[i] = py::cast(std::move(data));
               } else {
2517
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2533
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2534 2535 2536 2537 2538 2539 2540 2541
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2542
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2543 2544 2545 2546 2547 2548 2549 2550 2551
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2552 2553
        )DOC")
      .def("_move_to_list",
2554
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2555 2556 2557 2558
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2559
                 if (data_is_lod_tensor(self[i][j])) {
2560
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2561 2562
                   tmp[j] = py::cast(std::move(var));
                 } else {
2563
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2564 2565 2566 2567 2568 2569
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2579
  m.def("op_support_gpu", OpSupportGPU);
2580
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2581
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2582 2583 2584 2585 2586 2587 2588 2589
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2590 2591 2592 2593 2594 2595 2596
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2622
      });
D
dangqingqing 已提交
2623

2624
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2625 2626 2627
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2628 2629 2630 2631
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2632
#endif
P
peizhilin 已提交
2633
#endif
Y
Yu Yang 已提交
2634

2635 2636
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2637
  m.def("npu_finalize", []() {
2638 2639
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2640 2641 2642
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2643
      platform::NPUDeviceGuard guard(devices[i]);
2644 2645 2646 2647
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2668 2669 2670 2671
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2672 2673 2674 2675
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2676 2677 2678 2679 2680 2681
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2682 2683 2684 2685
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2686
      .value("kAll", platform::ProfilerState::kAll)
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2698
  m.def("set_tracer_option", platform::SetTracerOption);
2699 2700
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2701
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2702
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2703
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2704 2705 2706 2707 2708
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2709
    callable.inc_ref();
2710 2711 2712 2713 2714 2715 2716 2717
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2718
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2719 2720 2721
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2722

2723 2724
  m.def("size_of_dtype", framework::SizeOfType);

2725
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2726 2727
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2728 2729
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2730
#endif  // PADDLE_WITH_CUDA
2731 2732
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2733

2734 2735 2736
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2737 2738
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2739
      .def("has", &ir::Pass::Has)
2740 2741 2742
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2743
           })
2744
      .def(
2745
          "set",
2746 2747 2748
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2749 2750
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2751 2752
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2753 2754 2755 2756 2757
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2772 2773
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2774
        self.Apply(graph.get());
F
flame 已提交
2775
      });
2776

X
fix  
Xin Pan 已提交
2777 2778
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2793
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2794
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2795 2796 2797 2798
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2799 2800 2801
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2802 2803 2804
    Examples:
        .. code-block:: python

2805 2806 2807 2808 2809 2810 2811 2812 2813
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2814

2815 2816
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2817

2818
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2819 2820
          sgd_optimizer.minimize(avg_loss)

2821
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2822 2823
          exec_strategy.num_threads = 4

2824 2825 2826
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2827 2828
        )DOC");

2829 2830 2831 2832
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2833

Y
yuyang18 已提交
2834
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2835 2836 2837 2838 2839
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2840
          },
2841 2842
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2843 2844 2845 2846 2847 2848 2849
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2863
      .def_property(
2864 2865
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2866
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2867 2868 2869
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2870 2871 2872 2873 2874
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2875 2876 2877
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2878 2879
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2880 2881 2882 2883 2884 2885 2886
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2887 2888 2889 2890
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2891
                because the temp variable's shape maybe the same between two iterations.
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2902

2903 2904 2905 2906 2907 2908 2909
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2910
              )DOC")
Q
Qiao Longfei 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2932
              )DOC")
2933 2934 2935 2936 2937 2938 2939 2940
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2941 2942 2943 2944 2945
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2946

Y
yuyang18 已提交
2947
  exec_strategy.def_property(
Y
yuyang18 已提交
2948 2949 2950 2951 2952 2953 2954
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2955 2956
      });

C
chengduo 已提交
2957 2958 2959 2960
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2961 2962 2963
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2964 2965 2966
    Examples:
        .. code-block:: python

2967
            import os
2968 2969 2970 2971
            import paddle
            import paddle.static as static

            paddle.enable_static()
2972

2973 2974
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2975

2976 2977 2978 2979
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2980

2981
            build_strategy = static.BuildStrategy()
2982 2983
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2984 2985
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2986
            program = program.with_data_parallel(loss_name=loss.name,
2987 2988
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2989
)DOC");
Y
yuyang18 已提交
2990 2991 2992

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
2993 2994
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
2995 2996 2997 2998 2999 3000 3001 3002
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3003
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3004 3005 3006 3007
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3008 3009 3010 3011
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3012
            self.reduce_ = strategy;
C
chengduo 已提交
3013
          },
3014
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3015 3016
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3017
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3018 3019
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3020
                Default is 'AllReduce'.
F
flame 已提交
3021 3022 3023 3024

                Examples:
                    .. code-block:: python

3025 3026 3027 3028 3029 3030 3031
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3032
                  )DOC")
Y
yuyang18 已提交
3033 3034 3035 3036 3037
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3038 3039 3040 3041
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3042
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3043
          },
3044
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3045
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3046 3047
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3048
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3049 3050 3051 3052

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3053 3054
                        import numpy
                        import os
3055 3056 3057 3058
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3059 3060

                        use_cuda = True
3061 3062
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3063 3064

                        # NOTE: If you use CPU to run the program, you need
3065
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3066 3067 3068 3069 3070 3071
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3072
                            places = static.cpu_places()
C
chengduo 已提交
3073
                        else:
3074
                            places = static.cuda_places()
C
chengduo 已提交
3075

3076 3077 3078 3079
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3080

3081
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3082

3083
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3084
                        build_strategy.gradient_scale_strategy = \
3085 3086 3087
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3088
                                          loss_name=loss.name, build_strategy=build_strategy,
3089
                                          places=places)
C
chengduo 已提交
3090 3091 3092 3093 3094 3095

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3096 3097
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3098
                   )DOC")
Y
yuyang18 已提交
3099 3100 3101 3102
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3103 3104 3105 3106
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3107
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3108
          },
3109
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3110
                writing the SSA Graph to file in the form of graphviz.
3111
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3112 3113 3114 3115

                Examples:
                    .. code-block:: python

3116 3117 3118 3119
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3120

3121 3122
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3123
                    )DOC")
S
sneaxiy 已提交
3124 3125 3126 3127 3128 3129
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3130 3131 3132 3133
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3134 3135
            self.enable_sequential_execution_ = b;
          },
3136 3137
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3138 3139 3140 3141

                Examples:
                    .. code-block:: python

3142 3143 3144 3145 3146 3147
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3148 3149
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3150 3151 3152 3153 3154 3155
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3156 3157 3158 3159
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3160 3161
            self.remove_unnecessary_lock_ = b;
          },
3162 3163
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3164 3165 3166 3167

                Examples:
                    .. code-block:: python

3168 3169 3170 3171 3172 3173
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3174 3175
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3176 3177 3178 3179
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3180
#ifdef WIN32
3181
            PADDLE_THROW(platform::errors::Unavailable(
3182
                "Distribution mode is not supported on Windows platform."));
3183
#endif
3184 3185
            self.num_trainers_ = num_trainers;
          })
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3198 3199 3200 3201 3202 3203
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3204 3205 3206 3207 3208 3209
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3210
      .def_property("use_hierarchical_allreduce",
3211 3212 3213 3214 3215 3216
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3217
      .def_property("hierarchical_allreduce_inter_nranks",
3218 3219 3220 3221 3222 3223 3224
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3225 3226 3227 3228 3229 3230
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3231 3232 3233 3234
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3235 3236
            self.fuse_elewise_add_act_ops_ = b;
          },
3237
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3238
                to fuse elementwise_add_op and activation_op,
3239
                it may make the execution faster. Default is False.
F
flame 已提交
3240 3241 3242 3243

                Examples:
                    .. code-block:: python

3244 3245 3246 3247 3248 3249
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3250 3251
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3252 3253 3254 3255
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3256
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3257
                              platform::errors::PreconditionNotMet(
3258 3259
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3269 3270 3271 3272 3273 3274
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3275 3276
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3302 3303 3304 3305
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3306
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3307
                              platform::errors::PreconditionNotMet(
3308 3309
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3320 3321 3322 3323 3324 3325
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3326 3327
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3328 3329 3330 3331 3332 3333
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3334 3335 3336 3337
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3338 3339
            self.fuse_relu_depthwise_conv_ = b;
          },
3340
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3341 3342 3343
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3344
                Default is False.
F
flame 已提交
3345 3346 3347 3348

                Examples:
                    .. code-block:: python

3349 3350 3351 3352 3353 3354
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3355 3356
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3357 3358 3359
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3360
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3361 3362
                    },
                    [](BuildStrategy &self, bool b) {
3363 3364 3365 3366
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3367 3368
                      self.fuse_broadcast_ops_ = b;
                    },
3369
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3370 3371 3372 3373
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3374 3375 3376 3377 3378
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3379 3380 3381 3382 3383 3384
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3385 3386
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3387 3388
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3389
                      return self.fuse_all_optimizer_ops_ == true ||
3390
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3391 3392
                    },
                    [](BuildStrategy &self, bool b) {
3393 3394 3395 3396
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3397 3398
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3399 3400 3401 3402
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3403 3404 3405 3406
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3407 3408
            self.sync_batch_norm_ = b;
          },
3409
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3410 3411 3412
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3413 3414
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3415 3416 3417 3418

                Examples:
                    .. code-block:: python

3419 3420 3421 3422 3423 3424
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3425 3426
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3427 3428
      .def_property(
          "memory_optimize",
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3439
              self.memory_optimize_ = paddle::none;
3440 3441 3442
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3443
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3444 3445
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3446 3447
            }
          },
3448
          R"DOC((bool, optional): memory opitimize aims to save total memory
3449
                consumption, set to True to enable it.
3450

3451 3452 3453
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3468 3469 3470
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3471 3472 3473
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3474
              PADDLE_THROW(platform::errors::Unavailable(
3475
                  "Distribution mode is not supported on Windows platform."));
3476 3477 3478 3479 3480
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3481 3482 3483
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3484
      .def_property(
D
dzhwinter 已提交
3485 3486 3487
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3488 3489 3490 3491
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3492 3493
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3494 3495
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3496
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3497
          },
C
chengduo 已提交
3498
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3499 3500 3501 3502 3503 3504 3505
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3506 3507 3508 3509
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3510 3511 3512 3513 3514 3515 3516 3517 3518
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3519 3520 3521 3522 3523 3524
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3525 3526 3527 3528 3529 3530 3531
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3532 3533 3534 3535 3536 3537
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3538
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3539
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3540 3541 3542 3543 3544
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3545

3546 3547 3548 3549 3550 3551
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3552
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3553
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3554
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3555
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3556 3557 3558 3559
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3560 3561 3562 3563 3564
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3565 3566 3567
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3568 3569 3570 3571
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3572 3573
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3574 3575 3576 3577 3578 3579 3580 3581
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3582
               return py::cast(
3583
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3584 3585
             } else {
               return py::cast(std::move(
3586
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3587
             }
3588 3589
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3590

J
jianghaicheng 已提交
3591 3592 3593 3594 3595 3596 3597 3598
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3599 3600
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3601 3602 3603 3604 3605
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3606
          })
J
jianghaicheng 已提交
3607 3608 3609 3610 3611 3612 3613
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3614
          })
J
jianghaicheng 已提交
3615 3616 3617 3618 3619 3620
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3621
                    })
J
jianghaicheng 已提交
3622 3623 3624 3625 3626 3627
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3628
                    })
J
jianghaicheng 已提交
3629 3630 3631 3632 3633 3634 3635
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3636
          })
J
jianghaicheng 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3651
          })
J
jianghaicheng 已提交
3652 3653 3654 3655 3656 3657
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3658
                    })
J
jianghaicheng 已提交
3659 3660 3661 3662 3663 3664
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3665
                    })
J
jianghaicheng 已提交
3666 3667 3668 3669 3670 3671
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3672
                    });
J
jianghaicheng 已提交
3673 3674
#endif

D
dongdaxiang 已提交
3675
  BindFleetWrapper(&m);
3676
  BindIO(&m);
T
Thunderbrook 已提交
3677

T
Thunderbrook 已提交
3678 3679
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3680
#endif
T
Thunderbrook 已提交
3681
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3682
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3683
#endif
3684
  BindGlooWrapper(&m);
H
hutuxian 已提交
3685
  BindBoxHelper(&m);
H
hutuxian 已提交
3686 3687 3688
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3689
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3690
  BindNCCLWrapper(&m);
3691 3692 3693
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3694
#endif
F
flame 已提交
3695 3696
  BindGraph(&m);
  BindNode(&m);
3697
  BindPass(&m);
F
flame 已提交
3698
  BindInferenceApi(&m);
3699
  BindCompatible(&m);
3700
  BindDataset(&m);
Y
yaoxuefeng 已提交
3701
  BindGenerator(&m);
3702 3703 3704
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3705
  BindAscendDevice(&m);
3706
#endif
Y
Yanghello 已提交
3707 3708 3709
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3710

T
tangwei12 已提交
3711
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3712 3713
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3714
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3715 3716
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3717 3718 3719 3720 3721
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3722 3723 3724 3725
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3726
  BindSparseShardingTools(&m);
3727
#endif
L
Luo Tao 已提交
3728
}
3729
}  // namespace pybind
3730
}  // namespace paddle