pybind.cc 151.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/pten/core/compat/convert_utils.h"
79
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
80
#ifndef PADDLE_ON_INFERENCE
81
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
82
#endif
83
#include "paddle/fluid/pybind/io.h"
84
#include "paddle/utils/none.h"
85 86 87
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
88
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
89
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
90
#include "paddle/fluid/pybind/box_helper_py.h"
91
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
92
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
95
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
96
#include "paddle/fluid/pybind/generator_py.h"
97
#include "paddle/fluid/pybind/global_value_getter_setter.h"
98
#include "paddle/fluid/pybind/gloo_context_py.h"
99
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
100
#include "paddle/fluid/pybind/heter_wrapper_py.h"
101
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
102
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
103
#include "paddle/fluid/pybind/ir.h"
104
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
105
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
106
#include "paddle/fluid/pybind/pybind_boost_headers.h"
107

108
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
110
#endif
111
#include "paddle/fluid/framework/data_type.h"
112 113
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
114
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
115
#include "paddle/fluid/pybind/tensor_py.h"
116
#include "paddle/fluid/string/to_string.h"
117 118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
119
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
120
#endif
121
#ifndef PADDLE_WITH_HIP
122
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
123
#endif
124
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
125 126
#endif

127
#ifdef PADDLE_WITH_ASCEND_CL
128
#include "paddle/fluid/platform/collective_helper.h"
129 130
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
131 132
#endif

133
#ifdef PADDLE_WITH_XPU
134
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
135
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
136 137
#endif

138
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
139

J
jianghaicheng 已提交
140
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
141 142
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
143
#endif
144

145 146 147 148
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
149 150 151 152
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
153
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
154 155 156
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
157 158
#include "pybind11/stl.h"

159
DECLARE_bool(use_mkldnn);
160

Q
Qiao Longfei 已提交
161 162
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
163 164 165
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
166

167
namespace paddle {
168
namespace pybind {
169 170 171 172 173 174 175

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
176
PyTypeObject *g_mluplace_pytype = nullptr;
177
PyTypeObject *g_framework_tensor_pytype = nullptr;
178
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
179

180
bool IsCompiledWithCUDA() {
181 182 183 184 185 186 187 188 189
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
190 191 192 193 194 195
  return false;
#else
  return true;
#endif
}

196 197 198 199 200 201 202 203
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

204 205 206 207 208 209 210 211
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

212 213 214 215 216 217 218 219
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
220 221 222 223 224 225 226 227
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

252 253 254 255 256 257 258 259
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267 268 269 270
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

271 272 273 274 275 276 277 278 279 280 281
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
317 318 319
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

359
bool IsCompiledWithBrpc() {
360
#ifndef PADDLE_WITH_DISTRIBUTE
361 362
  return false;
#endif
363
  return true;
364 365
}

Y
update  
Yancey1989 已提交
366
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
367
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
368 369 370 371 372 373
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
374 375 376 377 378 379 380
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
381
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
382 383
}

H
hong 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
406 407 408
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
422 423
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
424 425
    }
    vec_res.emplace_back(
426
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
427 428 429 430 431 432 433 434 435 436 437 438
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
439 440
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
441 442 443 444 445 446 447 448 449 450 451 452
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
453 454 455
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
456 457 458 459
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
460 461
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
462 463 464 465
  }
  return vec_res;
}

466 467 468 469 470 471 472 473
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
474 475
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
476 477 478 479 480 481 482 483 484 485 486 487 488
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
489 490 491
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
492 493 494 495 496
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
497 498 499 500 501
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
502 503
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
504 505 506
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
507 508 509 510 511 512 513 514 515
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
516 517
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
518 519 520 521 522
  }

  return;
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
547 548 549 550
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
551
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
552 553 554 555 556 557 558 559
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
560 561 562 563 564 565 566 567 568 569 570
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

571 572 573 574 575 576
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
577
#ifndef PADDLE_ON_INFERENCE
578
  BindEager(&m);
W
wanghuancoder 已提交
579
#endif
580 581
  BindCudaStream(&m);

Y
Yu Yang 已提交
582 583 584
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
585
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
586

587 588
  AssertStaticGraphAndDygraphGradMakerNoDiff();

589
  m.doc() = "C++ core of PaddlePaddle";
590

591 592 593 594
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

595
  BindException(&m);
Y
Yu Yang 已提交
596

597 598
  m.def("set_num_threads", &platform::SetNumThreads);

599 600
  m.def("disable_signal_handler", &DisableSignalHandler);

601 602 603 604 605 606 607 608
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

609
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
610
  m.def("cudnn_version", &platform::DnnVersion);
611 612 613 614 615 616
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
617
#endif
618

Z
Zeng Jinle 已提交
619 620 621 622
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

623 624 625 626 627 628 629 630 631 632
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
633 634
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
635 636
#endif

Z
Zeng Jinle 已提交
637 638 639 640
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
641 642 643
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
644 645 646 647 648 649

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
650 651
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
652
    framework::Tensor tensor;
6
633WHU 已提交
653

S
Siming Dai 已提交
654
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
655 656
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
657
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
658
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
659 660 661 662 663
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
664

665 666 667 668 669 670
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

671 672 673 674 675 676
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
677 678
  });

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
704 705 706 707 708 709
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
710
  m.def(
S
sneaxiy 已提交
711
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
712 713 714 715
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
716 717 718
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
            }
            all_kernels_info.emplace(op_type, kernel_types);
          }
        }
        if (lib == "pten" || lib == "all") {
          auto pten_kernels = pten::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : pten_kernels) {
            auto op_type = pten::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
                }
              } else {
                kernel_types.emplace_back(kernel_type_str);
              }
            }
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
          }
        }

        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
           Return the registered kernels in paddle.

           Args:
               lib[string]: the libarary, could be 'pten', 'fluid' and 'all'.
           )DOC");
774

S
sneaxiy 已提交
775 776 777
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
778
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
779

780
  m.def("_set_fuse_parameter_group_size",
781
        &paddle::framework::ir::SetFuseParameterGroupsSize);
782
  m.def("_set_fuse_parameter_memory_size",
783
        &paddle::framework::ir::SetFuseParameterMemorySize);
784

S
sneaxiy 已提交
785 786 787
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

788 789
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

790 791 792
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

793
  BindImperative(&m);
794

795 796 797 798 799
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
800 801
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
802 803 804 805
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
806
      .def("_is_initialized",
807
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
808
      .def("_get_dims",
809
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
810
      .def("_set_dims",
811
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
812
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
813
           })
Y
yuyang18 已提交
814
      .def("_set_layout",
815
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
816 817
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
818
      .def("_alloc_float",
819
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
820
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
821
           })
822
      .def("_alloc_float",
823
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
824 825
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
826
      .def("_alloc_float",
827
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
828
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
829
           })
830 831 832 833
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
834 835 836 837
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
838
      .def("_alloc_double",
839
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
840 841
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
842
      .def("_alloc_int",
843
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
844
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
845
           })
846
      .def("_alloc_int",
847
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
848 849
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
850
      .def("_alloc_int",
851
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
852
             self.mutable_data<int>(place);
Q
qijun 已提交
853
           })
854 855 856 857
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
858
      .def("_alloc_int",
859 860
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
861 862
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
863
      .def("_alloc_float",
864 865
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
866 867
             self.mutable_data<float>(place);
           })
868
      .def("_mutable_data",
869
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
870 871 872
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
873
      .def("_mutable_data",
874
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
875 876 877
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
878
      .def("_mutable_data",
879
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
880 881 882 883
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
884
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
885 886 887
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
888 889 890 891 892
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
893
      .def("_clear", &framework::Tensor::clear)
894 895 896 897 898
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
899 900 901 902 903 904 905 906 907 908
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
909 910
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
911
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
912
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
913
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
914
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
915 916
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
917
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
918
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
919 920
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
921 922
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
923 924
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
925
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
926 927
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
928
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
929 930 931
        
        Args:
          lod (numpy.ndarray): The data to set.
932
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
933
          Tensor is to be set.
934 935
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
936 937 938 939 940 941 942 943 944 945

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

946
                t = fluid.Tensor()
L
Leo Chen 已提交
947 948
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
949

950 951 952
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
953
           Return the shape of Tensor.
L
Leo Chen 已提交
954 955

           Returns:
956
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
957 958 959 960 961 962 963 964


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

965
                  t = fluid.Tensor()
L
Leo Chen 已提交
966 967 968
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
969
      .def("_to_dlpack",
970
           [](framework::Tensor &self) {
6
633WHU 已提交
971
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
972
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
990 991 992 993
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
994 995
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
996
      .def("_layout",
997 998 999 1000
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1001
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1021 1022
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1023 1024 1025 1026
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1027
      .def("__init__",
1028 1029
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1030
           })
G
gongweibao 已提交
1031
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1032 1033
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1034 1035 1036
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1037
      .def("set_lod",
1038 1039
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1040
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1041
             LoD new_lod;
1042 1043
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1044 1045
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1046 1047
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1048
             self.set_lod(new_lod);
S
sneaxiy 已提交
1049 1050
           },
           py::arg("lod"), R"DOC(
1051
           Set LoD of the Tensor.
S
sneaxiy 已提交
1052 1053

           Args:
L
Leo Chen 已提交
1054 1055 1056 1057
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1058 1059 1060 1061 1062 1063 1064

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1065
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1066 1067
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1068
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1069
           )DOC")
1070
      .def("set_recursive_sequence_lengths",
1071 1072
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1073 1074 1075 1076 1077 1078 1079 1080
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1081 1082
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1083
                 platform::errors::InvalidArgument(
1084 1085
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1086 1087 1088
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1089
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1090 1091
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1092
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1093

L
Leo Chen 已提交
1094
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1095
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1096
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1097 1098

           Args:
L
Leo Chen 已提交
1099 1100 1101 1102
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1103 1104 1105 1106 1107 1108 1109

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1110
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1111 1112
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1113
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1114
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1115
           )DOC")
1116
      .def("lod",
1117
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1118 1119 1120 1121 1122 1123
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1124 1125
           },
           R"DOC(
1126
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1127 1128

           Returns:
1129
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1130
           
Z
Zeng Jinle 已提交
1131 1132 1133 1134 1135 1136
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1137
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1138 1139 1140
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1141
           )DOC")
G
gongweibao 已提交
1142
      // Set above comments of set_lod.
1143
      .def("recursive_sequence_lengths",
1144
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1145
             // output the length-based lod info
1146
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1147 1148 1149 1150
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1151 1152
           },
           R"DOC(
L
Leo Chen 已提交
1153
           Return the recursive sequence lengths corresponding to of the LodD 
1154
           of the Tensor.
S
sneaxiy 已提交
1155 1156

           Returns:
L
Leo Chen 已提交
1157
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1158 1159 1160 1161 1162 1163 1164

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1165
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1166 1167 1168
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1169 1170
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1171
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1172
             // Check that the lod info is valid and match the outermost
1173
             // dimension of the Tensor data
S
sneaxiy 已提交
1174 1175 1176
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1177
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1178 1179

           Returns:
L
Leo Chen 已提交
1180
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1181 1182 1183 1184 1185 1186 1187

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1188
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1189 1190 1191
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1192
           )DOC")
L
Leo Chen 已提交
1193
      .def("_as_type",
1194
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1195
              paddle::framework::proto::VarType::Type type) {
1196
             framework::Tensor dst;
L
Leo Chen 已提交
1197 1198 1199 1200 1201
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1215
#ifdef _WIN32
1216
           });
1217 1218 1219
#else
           })
      .def(py::pickle(
1220
          [](const framework::Tensor &t) {  // __getstate__
1221
            auto holder = t.Holder();
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1234 1235 1236
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1237 1238
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1239 1240 1241
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1242
              throw std::runtime_error("Invalid Tensor state!");
1243 1244

            // 1. Create a new C++ instance
1245
            framework::Tensor tensor;
1246 1247 1248 1249 1250

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1251 1252
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1253 1254

            // 3. Maintain global fd set
1255
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1256 1257
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1258 1259 1260 1261
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1262 1263 1264 1265 1266 1267
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1268

1269
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1270
      .def("__init__",
1271 1272 1273
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1274
      .def("__init__",
1275
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1276
              const int64_t &height) {
1277
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1278 1279
           })
      .def("get_tensor",
1280
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1281
           py::return_value_policy::reference)
1282
      .def("numel",
1283 1284 1285 1286 1287
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1288
      .def("set_rows",
1289
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1290
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1291 1292 1293 1294 1295 1296
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1297 1298 1299
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1300 1301 1302 1303 1304
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1305
      });
Q
qijun 已提交
1306

1307
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1308 1309 1310

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1311
      .def(py::init<>())
1312
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1313
      .def("set_int",
1314 1315
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1316 1317 1318 1319 1320 1321 1322
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1323
      .def("get_tensor",
1324 1325
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1326 1327
           },
           py::return_value_policy::reference)
1328 1329 1330 1331
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1344 1345 1346
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1347
      .def("get_selected_rows",
1348 1349
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1350 1351
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1352 1353 1354
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1355 1356 1357
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1358
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1359 1360 1361 1362 1363
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1364
#endif
Y
Refine  
Yu Yang 已提交
1365 1366
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1367 1368 1369 1370
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1371 1372
             return self.GetMutable<framework::ReaderHolder>();
           },
1373
           py::return_value_policy::reference)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1385 1386 1387 1388
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1389

S
sneaxiy 已提交
1390
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1391

S
sneaxiy 已提交
1392
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1406
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1407 1408 1409 1410 1411 1412
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1413 1414
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1415
      .def("var",
1416
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1417
             return self.Var(name);
Y
Yu Yang 已提交
1418
           },
S
sneaxiy 已提交
1419 1420
           py::arg("name"),
           R"DOC(
1421
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1422

1423
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1424
           current scope, the variable would be created. Otherwise,
1425
           return the existing variable.
S
sneaxiy 已提交
1426 1427

           Args:
1428 1429
               name (str): the variable name.

S
sneaxiy 已提交
1430
           Returns:
1431
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1432 1433 1434 1435
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1436
           Find variable named :code:`name` in the current scope or
1437
           its parent scope. Return None if not found. 
1438

S
sneaxiy 已提交
1439 1440
           Args:
               name (str): the variable name.
1441

S
sneaxiy 已提交
1442
           Returns:
1443
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1444
           )DOC",
1445
           py::return_value_policy::reference)
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1458
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1459 1460 1461 1462 1463 1464
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1465
           py::return_value_policy::reference)
S
sneaxiy 已提交
1466 1467 1468
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1469 1470
           )DOC")
      .def("_kids", &Scope::kids);
1471

S
sneaxiy 已提交
1472 1473 1474 1475 1476 1477
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1478 1479
        R"DOC(
        Create a new scope.
1480

S
sneaxiy 已提交
1481 1482 1483
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1484 1485
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1486 1487
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1488 1489
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1490 1491 1492 1493
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1494 1495
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1496 1497
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1498 1499 1500
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1501 1502
    return ret_values;
  });
1503 1504 1505 1506 1507 1508 1509 1510
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1511
              res = op_checker->GetDefaultAttrsMap();
1512 1513 1514 1515
            }
          }
          return res;
        });
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1532 1533 1534
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1535 1536 1537 1538 1539
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1540 1541 1542
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1557
  m.def("prune", [](const ProgramDesc &origin,
1558
                    const std::set<std::string> &feeded_var_names,
1559
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1560
    ProgramDesc prog_with_targets(origin);
1561

1562
    for (const auto &t : targets) {
1563
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1564
    }
1565
    proto::ProgramDesc pruned_desc;
1566 1567 1568 1569
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1570
  });
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1588 1589 1590 1591
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1592 1593 1594
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1595 1596
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1597

Q
qijun 已提交
1598
  // clang-format off
Y
Yu Yang 已提交
1599
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1600 1601
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1602
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1617
                  })
1618 1619 1620 1621 1622 1623 1624 1625 1626
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1653 1654
#endif
                  })
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1667
      .def_static("create",
D
dzhwinter 已提交
1668
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1669
                      -> paddle::platform::DeviceContext* {
1670
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1671 1672 1673 1674
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1675
#else
W
Wilber 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1691
#endif
C
chengduoZH 已提交
1692 1693 1694 1695
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1696
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1697 1698 1699 1700
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1701 1702 1703 1704
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1705
// clang-format on
1706
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1707 1708
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1709
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1710 1711 1712 1713 1714

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1715
    The memory of CUDAPlace with different dev_id is not accessible.
1716 1717 1718 1719 1720 1721 1722 1723
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1724 1725 1726 1727

    Examples:
        .. code-block:: python

1728 1729 1730
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1731

1732 1733 1734
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1735 1736
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1737
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1738 1739 1740 1741 1742 1743 1744 1745
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1746 1747
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1748 1749 1750 1751 1752 1753 1754 1755
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1756 1757
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1758 1759 1760 1761
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1762 1763
             new (&self) platform::CUDAPlace(dev_id);
#else
1764 1765 1766 1767 1768 1769 1770 1771 1772
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1773 1774
#endif
           })
1775
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1776 1777
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1778 1779 1780 1781
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1782
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1783
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1784
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1785 1786
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1787 1788 1789
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1790
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1791
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1792

1793
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1794 1795 1796 1797 1798
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1799 1800 1801
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1840
#ifdef PADDLE_WITH_XPU
1841 1842 1843 1844 1845 1846 1847
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1848 1849 1850
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1851
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1852
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1853
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1854 1855 1856
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1857
      .export_values();
1858
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1859 1860
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1861 1862 1863 1864 1865 1866
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1867 1868
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1869 1870
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1871 1872
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1873 1874 1875
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1876 1877
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1878
  });
1879
#endif
1880

1881
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1882
    CPUPlace is a descriptor of a device.
1883
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1884 1885 1886 1887

    Examples:
        .. code-block:: python

1888 1889
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1890

1891 1892 1893
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1894 1895
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1896
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1897
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1898 1899 1900 1901
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1902
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1903
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1904

1905 1906
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1907 1908 1909 1910 1911 1912
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1913 1914 1915 1916

    Examples:
        .. code-block:: python

1917 1918
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1919

1920 1921 1922 1923
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1924
      .def("__init__",
S
sneaxiy 已提交
1925
           [](platform::CUDAPinnedPlace &self) {
1926
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1927 1928 1929
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1930
#endif
S
sneaxiy 已提交
1931
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1932
           })
S
sneaxiy 已提交
1933 1934 1935 1936
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1937 1938
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1939 1940
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1941 1942 1943 1944
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1945
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1946 1947
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1948
  // NPUPlace
1949
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1950 1951 1952 1953 1954 1955 1956 1957
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1958 1959 1960
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1992
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2007 2008
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2009 2010
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2132 2133 2134
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2135 2136 2137 2138
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2139
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2140
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2141
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2142
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2143
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2144 2145
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2146 2147
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2148 2149
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2150 2151
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2152 2153
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2154 2155 2156 2157
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2158 2159
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2160 2161 2162 2163 2164
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2165 2166
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2167 2168 2169 2170
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2171 2172 2173 2174
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2175
      .def("set_place",
D
dzhwinter 已提交
2176
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2177
             self = gpu_place;
C
chengduoZH 已提交
2178
           })
2179 2180 2181 2182 2183
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2184 2185 2186 2187
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2188 2189 2190 2191
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2192 2193 2194 2195
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2196 2197
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2198

Y
Yu Yang 已提交
2199
  py::class_<OperatorBase>(m, "Operator")
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2214
      .def("run",
2215
           [](OperatorBase &self, const Scope &scope,
2216 2217 2218 2219
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2220 2221
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2222 2223 2224 2225
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2226 2227
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2228 2229 2230 2231
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2232 2233
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2234 2235 2236 2237
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2238 2239 2240
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2241
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2242 2243
             self.Run(scope, place);
           })
2244 2245 2246 2247 2248 2249
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2250 2251 2252 2253 2254 2255 2256
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2257 2258
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2259
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2260
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2261 2262 2263 2264
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2265

2266 2267 2268
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2269 2270 2271 2272 2273 2274 2275
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2276 2277
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2278

2279 2280
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2281
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2282
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2283
      .def("close", &Executor::Close)
2284 2285
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2286 2287
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2288 2289 2290 2291
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2292
             pybind11::gil_scoped_release release;
2293 2294 2295 2296 2297 2298 2299
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2300 2301 2302
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2303
              std::map<std::string, FetchType *> *fetch_targets,
2304 2305 2306 2307 2308 2309 2310 2311
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2312
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2313 2314 2315 2316 2317 2318 2319
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2330
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2331 2332
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2333
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2334 2335
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2336
      });
S
sneaxiy 已提交
2337

2338
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2339
      .def(py::init<>())
2340 2341 2342 2343 2344
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2345

2346
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2347 2348 2349
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2350
           [](StandaloneExecutor &self,
H
hong 已提交
2351
              const std::unordered_map<std::string, py::array> &input_dict,
2352
              std::vector<std::string> fetch_names) {
2353
             std::vector<framework::LoDTensor> feed_tensors;
2354
             std::vector<std::string> feed_names;
H
hong 已提交
2355 2356 2357 2358 2359

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2360 2361
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2362 2363
             }

2364 2365 2366 2367 2368 2369 2370 2371 2372
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2373
              const std::unordered_map<std::string, framework::LoDTensor>
2374 2375
                  &input_dict,
              std::vector<std::string> fetch_names) {
2376
             std::vector<framework::LoDTensor> feed_tensors;
2377 2378 2379 2380 2381 2382 2383
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2384 2385 2386 2387
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2388
             }
W
wanghuancoder 已提交
2389
             return py::cast(std::move(ret));
2390
           })
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2401 2402 2403
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2404
             std::vector<framework::LoDTensor> feed_tensors;
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2415
             framework::interpreter::CostInfo cost_info;
2416 2417 2418 2419 2420
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2421 2422
           });

D
dzhwinter 已提交
2423
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2424
  m.def("init_glog", framework::InitGLOG);
2425 2426
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2427
  m.def("init_devices", []() { framework::InitDevices(); });
2428

2429
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2430
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2431
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2432
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2433
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2434
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2435
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2436
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2437
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2438
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2439
  m.def("supports_bfloat16", SupportsBfloat16);
2440
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2441 2442
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2443
  m.def("op_supported_infos", OpSupportedInfos);
2444
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2445
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2446 2447 2448
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2468 2469 2470 2471 2472 2473 2474
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2484
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2485 2486
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2487
    return platform::GetGPUComputeCapability(place.device) >= 53;
2488 2489
  });
#endif
2490

S
Steffy-zxf 已提交
2491 2492 2493 2494 2495 2496
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2497 2498 2499 2500 2501
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2502
            return py::cast(BOOST_GET(LoDTensor, var));
2503
          } else {
2504
            return py::cast(BOOST_GET(LoDTensorArray, var));
2505 2506
          }
        });
2507
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2508

X
Xin Pan 已提交
2509 2510
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2511 2512 2513 2514
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2515
  BindCostModel(&m);
2516
  BindConstValue(&m);
2517
  BindGlobalValueGetterSetter(&m);
2518
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2519
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2520

Y
Yu Yang 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2530
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2531
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2532 2533 2534

    Examples:
        .. code-block:: python
2535

Z
Zeng Jinle 已提交
2536 2537 2538
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2539 2540 2541 2542
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2543 2544
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2545 2546 2547 2548 2549 2550
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2551 2552 2553 2554
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2555 2556 2557
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2558 2559 2560 2561 2562 2563
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2564 2565
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2566 2567 2568 2569 2570 2571
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2594

2595 2596 2597 2598 2599 2600 2601 2602
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2603
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2604 2605
                 res[i] = py::cast(std::move(data));
               } else {
2606
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2622
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2623 2624 2625 2626 2627 2628 2629 2630
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2631
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2632 2633 2634 2635 2636 2637 2638 2639 2640
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2641 2642
        )DOC")
      .def("_move_to_list",
2643
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2644 2645 2646 2647
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2648
                 if (data_is_lod_tensor(self[i][j])) {
2649
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2650 2651
                   tmp[j] = py::cast(std::move(var));
                 } else {
2652
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2653 2654 2655 2656 2657 2658
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2668
  m.def("op_support_gpu", OpSupportGPU);
2669
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2670
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2671 2672 2673 2674 2675 2676 2677 2678
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2679 2680 2681 2682 2683 2684 2685
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2711
      });
D
dangqingqing 已提交
2712

2713
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2714 2715 2716
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2717 2718 2719 2720
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2721
#endif
P
peizhilin 已提交
2722
#endif
Y
Yu Yang 已提交
2723

2724 2725
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2726
  m.def("npu_finalize", []() {
2727 2728
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2729 2730 2731
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2732
      platform::NPUDeviceGuard guard(devices[i]);
2733 2734 2735 2736
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2757 2758 2759 2760
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2761 2762 2763 2764
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2765 2766 2767 2768 2769 2770
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2771 2772 2773 2774
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2775
      .value("kAll", platform::ProfilerState::kAll)
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2787
  m.def("set_tracer_option", platform::SetTracerOption);
2788 2789
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2790
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2791
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2792
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2793 2794
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2795 2796 2797
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2798
    callable.inc_ref();
2799 2800 2801 2802 2803 2804 2805 2806
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2807
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2808 2809 2810
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2811

2812 2813
  m.def("size_of_dtype", framework::SizeOfType);

2814
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2815 2816
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2817 2818
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2819
#endif  // PADDLE_WITH_CUDA
2820 2821
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2822

2823 2824 2825
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2826 2827
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2828
      .def("has", &ir::Pass::Has)
2829 2830 2831
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2832
           })
2833
      .def(
2834
          "set",
2835 2836 2837
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2838 2839
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2840 2841
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2842 2843 2844 2845 2846
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2861 2862
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2863
        self.Apply(graph.get());
F
flame 已提交
2864
      });
2865

X
fix  
Xin Pan 已提交
2866 2867
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2882
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2883
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2884 2885 2886 2887
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2888 2889 2890
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2891 2892 2893
    Examples:
        .. code-block:: python

2894 2895 2896 2897 2898 2899 2900 2901 2902
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2903

2904 2905
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2906

2907
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2908 2909
          sgd_optimizer.minimize(avg_loss)

2910
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2911 2912
          exec_strategy.num_threads = 4

2913 2914 2915
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2916 2917
        )DOC");

2918 2919 2920 2921
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2922

Y
yuyang18 已提交
2923
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2924 2925 2926 2927 2928
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2929
          },
2930 2931
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2932 2933 2934 2935 2936 2937 2938
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2952
      .def_property(
2953 2954
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2955
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2956 2957 2958
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2959 2960 2961 2962 2963
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2964 2965 2966
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2967 2968
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2969 2970 2971 2972 2973 2974 2975
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2976 2977 2978 2979
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2980
                because the temp variable's shape maybe the same between two iterations.
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2991

2992 2993 2994 2995 2996 2997 2998
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2999
              )DOC")
Q
Qiao Longfei 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3021
              )DOC")
3022 3023 3024 3025 3026 3027 3028 3029
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3030 3031 3032 3033 3034
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3035

Y
yuyang18 已提交
3036
  exec_strategy.def_property(
Y
yuyang18 已提交
3037 3038 3039 3040 3041 3042 3043
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3044 3045
      });

C
chengduo 已提交
3046 3047 3048 3049
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3050 3051 3052
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3053 3054 3055
    Examples:
        .. code-block:: python

3056
            import os
3057 3058 3059 3060
            import paddle
            import paddle.static as static

            paddle.enable_static()
3061

3062 3063
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3064

3065 3066 3067 3068
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3069

3070
            build_strategy = static.BuildStrategy()
3071 3072
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3073 3074
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3075
            program = program.with_data_parallel(loss_name=loss.name,
3076 3077
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3078
)DOC");
Y
yuyang18 已提交
3079 3080 3081

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3082 3083
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3084 3085 3086 3087 3088 3089 3090 3091
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3092
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3093 3094 3095 3096
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3097 3098 3099 3100
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3101
            self.reduce_ = strategy;
C
chengduo 已提交
3102
          },
3103
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3104 3105
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3106
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3107 3108
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3109
                Default is 'AllReduce'.
F
flame 已提交
3110 3111 3112 3113

                Examples:
                    .. code-block:: python

3114 3115 3116 3117 3118 3119 3120
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3121
                  )DOC")
Y
yuyang18 已提交
3122 3123 3124 3125 3126
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3127 3128 3129 3130
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3131
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3132
          },
3133
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3134
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3135 3136
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3137
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3138 3139 3140 3141

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3142 3143
                        import numpy
                        import os
3144 3145 3146 3147
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3148 3149

                        use_cuda = True
3150 3151
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3152 3153

                        # NOTE: If you use CPU to run the program, you need
3154
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3155 3156 3157 3158 3159 3160
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3161
                            places = static.cpu_places()
C
chengduo 已提交
3162
                        else:
3163
                            places = static.cuda_places()
C
chengduo 已提交
3164

3165 3166 3167 3168
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3169

3170
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3171

3172
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3173
                        build_strategy.gradient_scale_strategy = \
3174 3175 3176
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3177
                                          loss_name=loss.name, build_strategy=build_strategy,
3178
                                          places=places)
C
chengduo 已提交
3179 3180 3181 3182 3183 3184

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3185 3186
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3187
                   )DOC")
Y
yuyang18 已提交
3188 3189 3190 3191
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3192 3193 3194 3195
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3196
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3197
          },
3198
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3199
                writing the SSA Graph to file in the form of graphviz.
3200
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3201 3202 3203 3204

                Examples:
                    .. code-block:: python

3205 3206 3207 3208
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3209

3210 3211
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3212
                    )DOC")
S
sneaxiy 已提交
3213 3214 3215 3216 3217 3218
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3219 3220 3221 3222
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3223 3224
            self.enable_sequential_execution_ = b;
          },
3225 3226
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3227 3228 3229 3230

                Examples:
                    .. code-block:: python

3231 3232 3233 3234 3235 3236
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3237 3238
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3239 3240 3241 3242 3243 3244
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3245 3246 3247 3248
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3249 3250
            self.remove_unnecessary_lock_ = b;
          },
3251 3252
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3253 3254 3255 3256

                Examples:
                    .. code-block:: python

3257 3258 3259 3260 3261 3262
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3263 3264
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3265 3266 3267 3268
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3269
#ifdef WIN32
3270
            PADDLE_THROW(platform::errors::Unavailable(
3271
                "Distribution mode is not supported on Windows platform."));
3272
#endif
3273 3274
            self.num_trainers_ = num_trainers;
          })
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3287 3288 3289 3290 3291 3292
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3293 3294 3295 3296 3297 3298
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3299
      .def_property("use_hierarchical_allreduce",
3300 3301 3302 3303 3304 3305
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3306
      .def_property("hierarchical_allreduce_inter_nranks",
3307 3308 3309 3310 3311 3312 3313
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3314 3315 3316 3317 3318 3319
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3320 3321 3322 3323
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3324 3325
            self.fuse_elewise_add_act_ops_ = b;
          },
3326
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3327
                to fuse elementwise_add_op and activation_op,
3328
                it may make the execution faster. Default is False.
F
flame 已提交
3329 3330 3331 3332

                Examples:
                    .. code-block:: python

3333 3334 3335 3336 3337 3338
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3339 3340
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3341 3342 3343 3344
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3345
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3346
                              platform::errors::PreconditionNotMet(
3347 3348
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3358 3359 3360 3361 3362 3363
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3364 3365
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3391 3392 3393 3394
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3395
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3396
                              platform::errors::PreconditionNotMet(
3397 3398
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3409 3410 3411 3412 3413 3414
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3415 3416
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3417 3418 3419 3420 3421 3422
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3423 3424 3425 3426
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3427 3428
            self.fuse_relu_depthwise_conv_ = b;
          },
3429
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3430 3431 3432
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3433
                Default is False.
F
flame 已提交
3434 3435 3436 3437

                Examples:
                    .. code-block:: python

3438 3439 3440 3441 3442 3443
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3444 3445
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3446 3447 3448
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3449
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3450 3451
                    },
                    [](BuildStrategy &self, bool b) {
3452 3453 3454 3455
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3456 3457
                      self.fuse_broadcast_ops_ = b;
                    },
3458
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3459 3460 3461 3462
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3463 3464 3465 3466 3467
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3468 3469 3470 3471 3472 3473
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3474 3475
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3476 3477
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3478
                      return self.fuse_all_optimizer_ops_ == true ||
3479
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3480 3481
                    },
                    [](BuildStrategy &self, bool b) {
3482 3483 3484 3485
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3486 3487
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3488 3489 3490 3491
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3492 3493 3494 3495
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3496 3497
            self.sync_batch_norm_ = b;
          },
3498
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3499 3500 3501
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3502 3503
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3504 3505 3506 3507

                Examples:
                    .. code-block:: python

3508 3509 3510 3511 3512 3513
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3514 3515
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3516 3517
      .def_property(
          "memory_optimize",
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3528
              self.memory_optimize_ = paddle::none;
3529 3530 3531
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3532
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3533 3534
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3535 3536
            }
          },
3537
          R"DOC((bool, optional): memory opitimize aims to save total memory
3538
                consumption, set to True to enable it.
3539

3540 3541 3542
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3557 3558 3559
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3560 3561 3562
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3563
              PADDLE_THROW(platform::errors::Unavailable(
3564
                  "Distribution mode is not supported on Windows platform."));
3565 3566 3567 3568 3569
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3570 3571 3572
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3573
      .def_property(
D
dzhwinter 已提交
3574 3575 3576
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3577 3578 3579 3580
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3581 3582
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3583 3584
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3585
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3586
          },
C
chengduo 已提交
3587
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3588 3589 3590 3591 3592 3593 3594
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3595 3596 3597 3598
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3599 3600 3601 3602 3603 3604 3605 3606 3607
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3608 3609 3610 3611 3612 3613
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3614 3615 3616 3617 3618 3619 3620
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3621 3622 3623 3624 3625 3626
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3627
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3628
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3629 3630 3631 3632 3633
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3634

3635 3636 3637 3638 3639 3640
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3641
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3642
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3643
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3644
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3645 3646 3647 3648
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3649 3650 3651 3652 3653
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3654 3655 3656
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3657 3658 3659 3660
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3661 3662
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3663 3664 3665 3666 3667 3668 3669 3670
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3671
               return py::cast(
3672
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3673 3674
             } else {
               return py::cast(std::move(
3675
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3676
             }
3677 3678
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3679

J
jianghaicheng 已提交
3680 3681 3682 3683 3684 3685 3686 3687
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3688 3689
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3690 3691 3692 3693 3694
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3695
          })
J
jianghaicheng 已提交
3696 3697 3698 3699 3700 3701 3702
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3703
          })
J
jianghaicheng 已提交
3704 3705 3706 3707 3708 3709
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3710
                    })
J
jianghaicheng 已提交
3711 3712 3713 3714 3715 3716
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3717
                    })
J
jianghaicheng 已提交
3718 3719 3720 3721 3722 3723 3724
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3725
          })
J
jianghaicheng 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3740
          })
J
jianghaicheng 已提交
3741 3742 3743 3744 3745 3746
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3747
                    })
J
jianghaicheng 已提交
3748 3749 3750 3751 3752 3753
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3754
                    })
J
jianghaicheng 已提交
3755 3756 3757 3758 3759 3760
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3761
                    });
J
jianghaicheng 已提交
3762 3763
#endif

D
dongdaxiang 已提交
3764
  BindFleetWrapper(&m);
3765
  BindIO(&m);
T
Thunderbrook 已提交
3766

T
Thunderbrook 已提交
3767
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3768
  BindHeterWrapper(&m);
3769
  BindMetrics(&m);
T
Thunderbrook 已提交
3770
#endif
T
Thunderbrook 已提交
3771
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3772
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3773
#endif
3774
  BindGlooWrapper(&m);
H
hutuxian 已提交
3775
  BindBoxHelper(&m);
H
hutuxian 已提交
3776 3777 3778
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3779
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3780
  BindNCCLWrapper(&m);
3781 3782 3783
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3784
#endif
F
flame 已提交
3785 3786
  BindGraph(&m);
  BindNode(&m);
3787
  BindPass(&m);
F
flame 已提交
3788
  BindInferenceApi(&m);
3789
  BindCompatible(&m);
3790
  BindDataset(&m);
Y
yaoxuefeng 已提交
3791
  BindGenerator(&m);
3792 3793 3794
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3795
  BindAscendDevice(&m);
3796
#endif
Y
Yanghello 已提交
3797 3798 3799
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3800

T
tangwei12 已提交
3801
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3802 3803
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3804
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3805 3806
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3807 3808 3809 3810 3811
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3812 3813 3814 3815
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3816
  BindSparseShardingTools(&m);
3817
#endif
L
Luo Tao 已提交
3818
}
3819
}  // namespace pybind
3820
}  // namespace paddle