pybind.cc 184.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93 94
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
95
#include "paddle/utils/none.h"
96 97 98
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
99
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
100
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
101
#include "paddle/fluid/pybind/box_helper_py.h"
102
#include "paddle/fluid/pybind/communication.h"
103
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
105
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
108
#include "paddle/fluid/pybind/generator_py.h"
109
#include "paddle/fluid/pybind/global_value_getter_setter.h"
110
#include "paddle/fluid/pybind/gloo_context_py.h"
111
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
113
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/ir.h"
115
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
117
#include "paddle/fluid/pybind/pybind_boost_headers.h"
118
#include "paddle/phi/backends/device_manager.h"
119

120
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
121
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
122
#endif
123
#include "paddle/fluid/framework/data_type.h"
124 125
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
126
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
127
#include "paddle/fluid/pybind/tensor_py.h"
128
#include "paddle/fluid/string/to_string.h"
129 130
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
131
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
132
#endif
133
#ifndef PADDLE_WITH_HIP
134
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
135
#endif
136
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
137 138
#endif

139
#ifdef PADDLE_WITH_ASCEND_CL
140
#include "paddle/fluid/platform/collective_helper.h"
141 142
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
143 144
#endif

145
#ifdef PADDLE_WITH_XPU
146
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
147
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
148 149
#endif

150
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
151

J
jianghaicheng 已提交
152
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
153 154
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
155
#endif
156

157 158 159 160
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
161 162 163 164
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
165
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
166 167 168
#include "paddle/fluid/pybind/fleet_py.h"
#endif

169
#include "paddle/fluid/eager/api/utils/global_utils.h"
170
#include "paddle/fluid/imperative/layout_autotune.h"
171 172
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
173 174
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
175 176
#include "pybind11/stl.h"

177
DECLARE_bool(use_mkldnn);
178

Q
Qiao Longfei 已提交
179 180
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
181 182 183
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
184

185
namespace paddle {
186
namespace pybind {
187 188

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
189
PyTypeObject *g_framework_scope_pytype = nullptr;
190 191 192 193 194
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
195
PyTypeObject *g_mluplace_pytype = nullptr;
196
PyTypeObject *g_framework_tensor_pytype = nullptr;
197
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
198
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
199

200
bool IsCompiledWithCUDA() {
201 202 203 204 205 206 207
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

216 217
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
218 219 220 221 222 223
  return false;
#else
  return true;
#endif
}

224 225 226 227 228 229 230 231
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

232 233 234 235 236 237 238 239
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

240 241 242 243 244 245 246 247
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
248 249 250 251 252 253 254 255
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

256 257 258 259 260 261 262 263
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

264 265 266 267 268 269 270 271
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

272 273 274 275 276 277 278 279
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

280 281 282 283 284 285 286 287
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

288 289 290 291 292 293 294 295 296 297 298
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

299 300 301 302 303 304 305 306 307 308 309
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

327
bool IsCompiledWithBrpc() {
328
#ifndef PADDLE_WITH_DISTRIBUTE
329 330
  return false;
#endif
331
  return true;
332 333
}

Y
update  
Yancey1989 已提交
334
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
335
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
336 337 338 339 340 341
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
342 343 344 345 346 347 348
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
349
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
350 351
}

H
hong 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
374 375 376
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
390 391
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
392 393
    }
    vec_res.emplace_back(
394
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
395 396 397 398 399 400 401 402 403 404 405 406
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
407 408
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
409 410 411 412 413 414 415 416 417 418 419 420
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
421 422 423
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
424 425 426 427
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
428 429
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
430 431 432 433
  }
  return vec_res;
}

434 435 436 437 438 439 440 441
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
442 443
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
444 445 446 447 448 449 450 451 452 453 454 455 456
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
457 458 459
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
460 461 462 463 464
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
465 466 467 468 469
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
470 471
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
472 473 474
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
475 476 477 478
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
479
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
480 481
        tensor_temp->mutable_data(
            exe->GetPlace(),
482
            framework::TransToPhiDataType(var_desc.GetDataType()));
483 484 485
      }
    }
  } else {
486 487
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
488 489 490 491 492
  }

  return;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
517 518 519 520
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
521
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
522 523 524 525 526 527 528 529
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
530 531 532 533 534 535 536 537 538 539 540
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

541 542 543 544 545 546
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
547
  BindImperative(&m);
548
  BindEager(&m);
J
Jack Zhou 已提交
549
  BindEagerStringTensor(&m);
550 551
  BindCudaStream(&m);

Y
Yu Yang 已提交
552 553 554
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
555
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
556

557 558
  AssertStaticGraphAndDygraphGradMakerNoDiff();

559
  m.doc() = "C++ core of PaddlePaddle";
560

561 562 563 564
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

565
  BindException(&m);
Y
Yu Yang 已提交
566

567 568
  m.def("set_num_threads", &platform::SetNumThreads);

569 570
  m.def("disable_signal_handler", &DisableSignalHandler);

571 572 573 574 575 576 577 578
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

579
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
580
  m.def("cudnn_version", &platform::DnnVersion);
581 582 583 584 585 586
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
587
#endif
588

Z
Zeng Jinle 已提交
589 590 591 592
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

593 594 595 596 597 598 599 600 601 602
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
603 604
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
605 606
#endif

Z
Zeng Jinle 已提交
607 608 609 610
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
611 612 613
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
614 615 616 617 618 619

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
620 621
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
622
    framework::Tensor tensor;
6
633WHU 已提交
623

S
Siming Dai 已提交
624
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
625 626
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
627
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
628
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
629 630 631 632 633
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
634

635 636 637 638 639 640
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

641 642 643 644 645 646
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
647 648
  });

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
674 675
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
676 677
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
678 679
  });

S
sneaxiy 已提交
680
  m.def(
S
sneaxiy 已提交
681
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
682 683 684 685
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
686 687 688
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
706 707
            }
          }
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
727 728
                }
              }
729 730 731
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
732 733 734
            }
          }

735 736 737 738
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
739 740 741
           Return the registered kernels in paddle.

           Args:
742
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
743
           )DOC");
744

745 746 747 748 749 750
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
751 752 753 754 755
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
756

S
sneaxiy 已提交
757 758 759
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
760
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
761

762
  m.def("_set_fuse_parameter_group_size",
763
        &paddle::framework::ir::SetFuseParameterGroupsSize);
764
  m.def("_set_fuse_parameter_memory_size",
765
        &paddle::framework::ir::SetFuseParameterMemorySize);
766

S
sneaxiy 已提交
767 768 769
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

770 771
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

772 773 774
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          bool attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          float attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int64_t attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          const std::vector<std::string> &attr) {
        self.EmplaceBackAttr(attr);
      });

826 827 828 829 830
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
831 832
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
833 834 835 836
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
837 838
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
839
      .def("_is_initialized",
840
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
841
      .def("_get_dims",
842
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
843
      .def("_set_dims",
844
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
845
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
846
           })
Y
yuyang18 已提交
847
      .def("_set_layout",
848
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
849 850
             self.set_layout(StringToDataLayout(layout));
           })
R
ronnywang 已提交
851 852 853 854
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
855
      .def("_alloc_float",
856
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
857
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
858
           })
859
      .def("_alloc_float",
860
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
861 862
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
863
      .def("_alloc_float",
864
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
865
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
866
           })
867 868 869 870
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
871 872 873 874
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
875
      .def("_alloc_double",
876
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
877 878
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
879
      .def("_alloc_int",
880
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
881
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
882
           })
R
ronnywang 已提交
883 884 885 886
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<int>(place);
           })
887
      .def("_alloc_int",
888
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
889 890
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
891
      .def("_alloc_int",
892
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
893
             self.mutable_data<int>(place);
Q
qijun 已提交
894
           })
895 896 897 898
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
899
      .def("_alloc_int",
900 901
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
902 903
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
904
      .def("_alloc_float",
905 906
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
907 908
             self.mutable_data<float>(place);
           })
909
      .def("_mutable_data",
910
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
911
              paddle::framework::proto::VarType::Type type) {
912 913
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
914
           })
R
ronnywang 已提交
915 916 917 918 919 920
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
921
      .def("_mutable_data",
922
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
923
              paddle::framework::proto::VarType::Type type) {
924 925
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
926
           })
927
      .def("_mutable_data",
928
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
929
              paddle::framework::proto::VarType::Type type) {
930 931
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
932 933
           })
      .def("_mutable_data",
934
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
935
              paddle::framework::proto::VarType::Type type) {
936 937
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
938
           })
939 940 941
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
942 943
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
944
           })
945
      .def("_clear", &framework::Tensor::clear)
946 947 948
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
949 950
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
951
           })
Z
Zeng Jinle 已提交
952 953
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
R
ronnywang 已提交
954 955
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
956 957 958 959 960 961 962 963
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
964 965
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
966
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
967
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
968
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
969
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
R
ronnywang 已提交
970 971
      .def("set", SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
972 973
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
974
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
975
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
976 977
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
978 979
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
980 981
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
982
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
983 984
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
985
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
986 987 988
        
        Args:
          lod (numpy.ndarray): The data to set.
989
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
990
          Tensor is to be set.
991 992
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
993 994 995 996 997 998 999 1000 1001 1002

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1003
                t = fluid.Tensor()
L
Leo Chen 已提交
1004 1005
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1006

1007 1008 1009
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
1010
           Return the shape of Tensor.
L
Leo Chen 已提交
1011 1012

           Returns:
1013
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1014 1015 1016 1017 1018 1019 1020 1021


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1022
                  t = fluid.Tensor()
L
Leo Chen 已提交
1023 1024 1025
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1026
      .def("_to_dlpack",
1027
           [](framework::Tensor &self) {
6
633WHU 已提交
1028
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1029
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1047 1048 1049 1050
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1051
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1052 1053 1054 1055
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1056
      .def("_layout",
1057 1058 1059 1060
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1061
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1081 1082
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1083 1084 1085 1086
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1087
      .def("__init__",
1088 1089
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1090
           })
G
gongweibao 已提交
1091
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1092 1093
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1094 1095 1096
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1097
      .def("set_lod",
1098 1099
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1100
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1101
             LoD new_lod;
1102 1103
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1104 1105
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1106 1107
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1108
             self.set_lod(new_lod);
S
sneaxiy 已提交
1109 1110
           },
           py::arg("lod"), R"DOC(
1111
           Set LoD of the Tensor.
S
sneaxiy 已提交
1112 1113

           Args:
L
Leo Chen 已提交
1114 1115 1116 1117
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1118 1119 1120 1121 1122 1123 1124

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1125
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1126 1127
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1128
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1129
           )DOC")
1130
      .def("set_recursive_sequence_lengths",
1131 1132
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1133 1134 1135 1136 1137 1138 1139 1140
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1141 1142
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1143
                 platform::errors::InvalidArgument(
1144 1145
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1146 1147 1148
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1149
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1150 1151
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1152
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1153

L
Leo Chen 已提交
1154
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1155
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1156
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1157 1158

           Args:
L
Leo Chen 已提交
1159 1160 1161 1162
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1163 1164 1165 1166 1167 1168 1169

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1170
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1171 1172
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1173
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1174
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1175
           )DOC")
1176
      .def("lod",
1177
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1178 1179 1180 1181 1182 1183
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1184 1185
           },
           R"DOC(
1186
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1187 1188

           Returns:
1189
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1190
           
Z
Zeng Jinle 已提交
1191 1192 1193 1194 1195 1196
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1197
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1198 1199 1200
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1201
           )DOC")
G
gongweibao 已提交
1202
      // Set above comments of set_lod.
1203
      .def("recursive_sequence_lengths",
1204
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1205
             // output the length-based lod info
1206
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1207 1208 1209 1210
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1211 1212
           },
           R"DOC(
L
Leo Chen 已提交
1213
           Return the recursive sequence lengths corresponding to of the LodD 
1214
           of the Tensor.
S
sneaxiy 已提交
1215 1216

           Returns:
L
Leo Chen 已提交
1217
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1218 1219 1220 1221 1222 1223 1224

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1225
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1226 1227 1228
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1229 1230
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1231
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1232
             // Check that the lod info is valid and match the outermost
1233
             // dimension of the Tensor data
S
sneaxiy 已提交
1234 1235 1236
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1237
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1238 1239

           Returns:
L
Leo Chen 已提交
1240
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1241 1242 1243 1244 1245 1246 1247

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1248
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1249 1250 1251
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1252
           )DOC")
L
Leo Chen 已提交
1253
      .def("_as_type",
1254
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1255
              paddle::framework::proto::VarType::Type type) {
1256
             framework::Tensor dst;
L
Leo Chen 已提交
1257 1258 1259 1260 1261
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1275
#ifdef _WIN32
1276
           });
1277 1278
#else
           })
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1560
      .def(py::pickle(
1561
          [](const framework::Tensor &t) {  // __getstate__
1562
            auto holder = t.Holder();
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1575 1576 1577
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1578 1579
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1580 1581 1582
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1583
              throw std::runtime_error("Invalid Tensor state!");
1584 1585

            // 1. Create a new C++ instance
1586
            framework::Tensor tensor;
1587 1588 1589 1590 1591

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1592 1593
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1594 1595

            // 3. Maintain global fd set
1596
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1597 1598
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1599 1600 1601
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1602
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1603
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1604 1605 1606 1607 1608
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1609

1610
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1611
      .def("__init__",
1612 1613
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1614
           })
Q
qijun 已提交
1615
      .def("__init__",
1616
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1617
              const int64_t &height) {
1618
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1619 1620
           })
      .def("get_tensor",
1621
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1622
           py::return_value_policy::reference)
1623
      .def("numel",
1624
           [](phi::SelectedRows &self) -> int64_t {
1625 1626
             return self.value().numel();
           })
1627 1628
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1629
      .def("set_rows",
1630
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1631
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1632 1633 1634 1635 1636 1637
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1638
      .def("sync_index",
1639 1640
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1641 1642 1643 1644 1645
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1646
      });
Q
qijun 已提交
1647

1648
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1649 1650 1651

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1652
      .def(py::init<>())
1653
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1654
      .def("set_int",
1655 1656
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1657 1658 1659 1660 1661 1662 1663
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1664
      .def("get_tensor",
1665 1666
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1667 1668
           },
           py::return_value_policy::reference)
1669 1670 1671 1672
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1685 1686 1687
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1688
      .def("get_selected_rows",
1689 1690
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1691 1692
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1693 1694 1695
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1696 1697 1698
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1699
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1700 1701 1702 1703 1704
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1705
#endif
Y
Refine  
Yu Yang 已提交
1706 1707
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1708 1709 1710 1711
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1712 1713
             return self.GetMutable<framework::ReaderHolder>();
           },
1714
           py::return_value_policy::reference)
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1726 1727 1728 1729
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1730

S
sneaxiy 已提交
1731
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1732

0
0x45f 已提交
1733
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1747
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1748 1749 1750 1751 1752
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1753 1754 1755
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1756 1757
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1758
      .def("var",
1759
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1760
             return self.Var(name);
Y
Yu Yang 已提交
1761
           },
S
sneaxiy 已提交
1762 1763
           py::arg("name"),
           R"DOC(
1764
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1765

1766
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1767
           current scope, the variable would be created. Otherwise,
1768
           return the existing variable.
S
sneaxiy 已提交
1769 1770

           Args:
1771 1772
               name (str): the variable name.

S
sneaxiy 已提交
1773
           Returns:
1774
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1775 1776 1777 1778
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1779
           Find variable named :code:`name` in the current scope or
1780
           its parent scope. Return None if not found. 
1781

S
sneaxiy 已提交
1782 1783
           Args:
               name (str): the variable name.
1784

S
sneaxiy 已提交
1785
           Returns:
1786
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1787
           )DOC",
1788
           py::return_value_policy::reference)
1789
      .def("size", &Scope::Size)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1802
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1803 1804 1805 1806 1807 1808
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1809
           py::return_value_policy::reference)
S
sneaxiy 已提交
1810 1811 1812
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1813 1814
           )DOC")
      .def("_kids", &Scope::kids);
1815

S
sneaxiy 已提交
1816 1817 1818 1819 1820 1821
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1822 1823
        R"DOC(
        Create a new scope.
1824

S
sneaxiy 已提交
1825 1826 1827
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1828 1829
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1830 1831
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1832 1833
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1834 1835 1836 1837
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1838 1839
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1840 1841
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1842 1843 1844
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1845 1846
    return ret_values;
  });
1847 1848 1849 1850 1851 1852 1853 1854
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1855
              res = op_checker->GetDefaultAttrsMap();
1856 1857 1858 1859
            }
          }
          return res;
        });
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1876 1877 1878
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1879 1880 1881 1882 1883
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1884 1885 1886
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1901
  m.def("prune", [](const ProgramDesc &origin,
1902
                    const std::set<std::string> &feeded_var_names,
1903
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1904
    ProgramDesc prog_with_targets(origin);
1905

1906
    for (const auto &t : targets) {
1907
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1908
    }
1909
    proto::ProgramDesc pruned_desc;
1910 1911 1912 1913
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1914
  });
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1932 1933 1934 1935
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1936 1937 1938
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1939 1940
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1941

Q
qijun 已提交
1942
  // clang-format off
Y
Yu Yang 已提交
1943
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1944 1945
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1946
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1961
                  })
1962 1963 1964 1965 1966 1967 1968 1969 1970
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1997 1998
#endif
                  })
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
2022 2023
#endif
        })
Q
qijun 已提交
2024
      .def_static("create",
D
dzhwinter 已提交
2025
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2026
                      -> paddle::platform::DeviceContext* {
2027
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2028 2029 2030 2031
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2032
#else
W
Wilber 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2046 2047 2048 2049
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2050 2051
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2052
#endif
C
chengduoZH 已提交
2053 2054 2055 2056
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2057
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2058 2059 2060 2061
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2062 2063 2064 2065
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2066
// clang-format on
2067
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2068 2069
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2070 2071 2072
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2073
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2087
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2101
    devices = phi::DeviceManager::GetAllDeviceList();
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2115
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

2152 2153
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2154
               int dev_count = static_cast<int>(
2155
                   phi::DeviceManager::GetDeviceCount(device_type));
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2203
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2204 2205 2206 2207 2208

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2209
    The memory of CUDAPlace with different dev_id is not accessible.
2210 2211 2212 2213 2214 2215 2216 2217
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2218 2219 2220 2221

    Examples:
        .. code-block:: python

2222 2223 2224
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2225

2226 2227 2228
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2229 2230
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2231
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2232 2233 2234 2235 2236 2237 2238 2239
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2240 2241
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2242 2243 2244 2245 2246 2247 2248 2249
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
2250 2251
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
2252 2253 2254 2255
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2256 2257
             new (&self) platform::CUDAPlace(dev_id);
#else
2258 2259 2260 2261 2262 2263 2264 2265 2266
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2267 2268
#endif
           })
2269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2270 2271
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2272 2273 2274 2275
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2276
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2277
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2278
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2279 2280
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2281 2282 2283
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2284
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2285
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2286

2287
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2288 2289 2290 2291 2292
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2293 2294 2295
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2334
#ifdef PADDLE_WITH_XPU
2335 2336 2337 2338 2339 2340 2341
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2342 2343 2344
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2345
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2346
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2347
#ifdef PADDLE_WITH_XPU
2348 2349 2350
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2351
      .export_values();
2352
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2353 2354
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2355 2356 2357 2358 2359 2360
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2361 2362 2363 2364
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2365
#endif
2366
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2367 2368
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2369 2370
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2371
    return platform::get_xpu_version(place.device) >
2372
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2373 2374 2375
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2376
    return platform::get_xpu_version(place.device) >
2377
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2378
  });
2379
#endif
2380

2381
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2382
    CPUPlace is a descriptor of a device.
2383
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2384 2385 2386 2387

    Examples:
        .. code-block:: python

2388 2389
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2390

2391 2392 2393
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2394 2395
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2396
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2397
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2398 2399 2400 2401
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2402
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2403
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2404

2405 2406
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2407 2408 2409 2410 2411 2412
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2413 2414 2415 2416

    Examples:
        .. code-block:: python

2417 2418
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2419

2420 2421 2422 2423
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2424
      .def("__init__",
S
sneaxiy 已提交
2425
           [](platform::CUDAPinnedPlace &self) {
2426
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2427 2428 2429
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2430
#endif
S
sneaxiy 已提交
2431
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2432
           })
S
sneaxiy 已提交
2433 2434 2435 2436
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2437 2438
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2439 2440
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2441 2442 2443 2444
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2445
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2446 2447
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2448
  // NPUPlace
2449
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2450 2451 2452 2453 2454 2455 2456 2457
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2458 2459 2460
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2492
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2507 2508
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2509 2510
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2632 2633 2634
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2635 2636 2637 2638
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2639
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2640
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2641
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2642
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2643
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2644 2645
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2646 2647
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2648 2649
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2650 2651
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2652 2653
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2654 2655 2656 2657
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2658 2659
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2660 2661 2662
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2663 2664 2665 2666 2667
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2668 2669
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2670 2671
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2672 2673 2674 2675
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2676 2677 2678 2679
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2680
      .def("set_place",
D
dzhwinter 已提交
2681
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2682
             self = gpu_place;
C
chengduoZH 已提交
2683
           })
2684 2685 2686 2687 2688
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2689 2690 2691 2692
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2693 2694 2695 2696
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2697 2698 2699 2700
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2701 2702 2703 2704
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2705 2706
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2707

Y
Yu Yang 已提交
2708
  py::class_<OperatorBase>(m, "Operator")
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2723
      .def("run",
2724
           [](OperatorBase &self, const Scope &scope,
2725 2726 2727 2728
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2729 2730
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2731 2732 2733 2734
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2735 2736
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2737 2738 2739 2740
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2741 2742
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2743 2744 2745 2746
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2747 2748 2749
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2750
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2751 2752
             self.Run(scope, place);
           })
2753 2754 2755 2756 2757 2758
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
2759 2760 2761 2762 2763 2764
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2765 2766 2767 2768 2769 2770 2771
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2772 2773
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2774
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2775
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2776 2777 2778 2779
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2780

2781 2782 2783
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2784 2785 2786 2787 2788 2789 2790
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2791 2792
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2793

2794 2795
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2796
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2797
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2798
      .def("close", &Executor::Close)
2799 2800
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2801 2802
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2803 2804 2805 2806
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2807
             pybind11::gil_scoped_release release;
2808 2809 2810 2811 2812 2813 2814
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2815 2816 2817
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2818
              std::map<std::string, FetchType *> *fetch_targets,
2819 2820 2821 2822 2823 2824 2825 2826
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2827
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2828 2829 2830 2831 2832 2833 2834
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2845
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2846 2847
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2848
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2849 2850
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2851
      });
S
sneaxiy 已提交
2852

2853
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2854
      .def(py::init<>())
2855 2856 2857 2858 2859
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2860

2861
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2862 2863 2864
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2865
           [](StandaloneExecutor &self,
H
hong 已提交
2866
              const std::unordered_map<std::string, py::array> &input_dict,
2867
              std::vector<std::string> fetch_names) {
2868
             std::vector<framework::LoDTensor> feed_tensors;
2869
             std::vector<std::string> feed_names;
H
hong 已提交
2870 2871 2872 2873 2874

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2875 2876
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2877 2878
             }

2879 2880 2881 2882 2883 2884 2885 2886 2887
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2888
              const std::unordered_map<std::string, framework::LoDTensor>
2889 2890
                  &input_dict,
              std::vector<std::string> fetch_names) {
2891
             std::vector<framework::LoDTensor> feed_tensors;
2892 2893 2894 2895 2896 2897 2898
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2899 2900 2901 2902
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2903
             }
W
wanghuancoder 已提交
2904
             return py::cast(std::move(ret));
2905
           })
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2916 2917 2918
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2919
             std::vector<framework::LoDTensor> feed_tensors;
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2930
             framework::interpreter::CostInfo cost_info;
2931 2932 2933 2934 2935
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2936 2937
           });

D
dzhwinter 已提交
2938
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2939
  m.def("init_glog", framework::InitGLOG);
2940 2941 2942 2943
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2944
  m.def("init_devices", []() { framework::InitDevices(); });
2945 2946
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2947
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2948
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2949
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2950
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2951
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2952
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2953
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2954
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2955
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2956
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2957
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2958
  m.def("supports_bfloat16", SupportsBfloat16);
2959
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2960 2961
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2962
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2963
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2964
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2965 2966 2967
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2987 2988
  m.def("memory_stat_get_current", memory::StatGetCurrentValue);
  m.def("memory_stat_get_peak", memory::StatGetPeakValue);
H
hutuxian 已提交
2989 2990 2991 2992 2993 2994 2995
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

3005
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3006 3007
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3008
    return platform::GetGPUComputeCapability(place.device) >= 53;
3009 3010
  });
#endif
3011

S
Steffy-zxf 已提交
3012 3013 3014 3015 3016 3017
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
3018 3019 3020 3021 3022
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3023
            return py::cast(BOOST_GET(LoDTensor, var));
3024
          } else {
3025
            return py::cast(BOOST_GET(LoDTensorArray, var));
3026 3027
          }
        });
3028
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3029

X
Xin Pan 已提交
3030 3031
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3032 3033 3034 3035
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3036
  BindCostModel(&m);
3037
  BindConstValue(&m);
3038
  BindGlobalValueGetterSetter(&m);
3039
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3040
  BindFleetExecutor(&m);
3041
  BindTCPStore(&m);
Y
Yu Yang 已提交
3042

Y
Yu Yang 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3052
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3053
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3054 3055 3056

    Examples:
        .. code-block:: python
3057

Z
Zeng Jinle 已提交
3058 3059 3060
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3061 3062 3063 3064
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3065 3066
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
3067 3068 3069 3070 3071 3072
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
3073 3074 3075 3076
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3077 3078 3079
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
3080 3081 3082 3083 3084 3085
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
3086 3087
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
3088 3089 3090 3091 3092 3093
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3116

3117 3118 3119 3120 3121 3122 3123 3124
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
3125
                 auto &data = BOOST_GET(LoDTensor, self[i]);
3126 3127
                 res[i] = py::cast(std::move(data));
               } else {
3128
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
3144
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
3145 3146 3147 3148 3149 3150 3151 3152
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
3153
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
3154 3155 3156 3157 3158 3159 3160 3161 3162
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3163 3164
        )DOC")
      .def("_move_to_list",
3165
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
3166 3167 3168 3169
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
3170
                 if (data_is_lod_tensor(self[i][j])) {
3171
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
3172 3173
                   tmp[j] = py::cast(std::move(var));
                 } else {
3174
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
3175 3176 3177 3178 3179 3180
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
3190
  m.def("op_support_gpu", OpSupportGPU);
3191
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3192
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3193
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3194 3195 3196 3197 3198 3199 3200 3201
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
3202 3203 3204 3205 3206 3207 3208
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3234
      });
D
dangqingqing 已提交
3235

3236
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3237 3238 3239
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3240 3241 3242 3243
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3244
#endif
P
peizhilin 已提交
3245
#endif
Y
Yu Yang 已提交
3246

3247 3248
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3249
  m.def("npu_finalize", []() {
3250 3251
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3252 3253 3254
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3255
      platform::NPUDeviceGuard guard(devices[i]);
3256 3257 3258 3259
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3280 3281 3282 3283
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3284 3285 3286 3287
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3288 3289 3290 3291 3292 3293
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3294 3295 3296 3297
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3298
      .value("kAll", platform::ProfilerState::kAll)
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3310
  m.def("set_tracer_option", platform::SetTracerOption);
3311 3312
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3313
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3314
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3315
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3316 3317
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
3318 3319 3320
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3321
    callable.inc_ref();
3322 3323 3324 3325 3326 3327 3328 3329
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
3330
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3331 3332 3333
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3334

3335
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3375
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
3376 3377
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
L
liutiexing 已提交
3387 3388 3389 3390
             auto result = profiler->Stop();
             framework::StaticGraphExecutorPerfStatistics(
                 result->GetNodeTrees());
             return result;
C
chenjian 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3424

3425
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3426 3427
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3428 3429
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3430
#endif  // PADDLE_WITH_CUDA
3431 3432
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3433

3434 3435 3436
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3437 3438
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3439
      .def("has", &ir::Pass::Has)
3440 3441 3442
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3443
           })
3444
      .def(
3445
          "set",
3446 3447 3448
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3449 3450
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3451 3452
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3453 3454 3455 3456 3457
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3472 3473
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3474
        self.Apply(graph.get());
F
flame 已提交
3475
      });
3476

X
fix  
Xin Pan 已提交
3477 3478
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3493
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3494
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3495 3496 3497 3498
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3499 3500 3501
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3502 3503 3504
    Examples:
        .. code-block:: python

3505 3506 3507 3508 3509 3510 3511 3512 3513
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3514

3515 3516
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3517

3518
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3519 3520
          sgd_optimizer.minimize(avg_loss)

3521
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3522 3523
          exec_strategy.num_threads = 4

3524 3525 3526
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3527 3528
        )DOC");

3529 3530 3531 3532
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3533

Y
yuyang18 已提交
3534
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3535 3536 3537 3538 3539
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3540
          },
3541 3542
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3543 3544 3545 3546 3547 3548 3549
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3563
      .def_property(
3564 3565
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3566
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3567 3568 3569
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3570 3571 3572 3573 3574
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3575 3576 3577
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3578 3579
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3580 3581 3582 3583 3584 3585 3586
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3587 3588 3589 3590
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3591
                because the temp variable's shape maybe the same between two iterations.
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3602

3603 3604 3605 3606 3607 3608 3609
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3610
              )DOC")
Q
Qiao Longfei 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3632
              )DOC")
3633 3634 3635 3636 3637 3638 3639 3640
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3641 3642 3643 3644 3645
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3646

Y
yuyang18 已提交
3647
  exec_strategy.def_property(
Y
yuyang18 已提交
3648 3649 3650 3651 3652 3653 3654
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3655 3656
      });

C
chengduo 已提交
3657 3658 3659 3660
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3661 3662 3663
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3664 3665 3666
    Examples:
        .. code-block:: python

3667
            import os
3668 3669 3670 3671
            import paddle
            import paddle.static as static

            paddle.enable_static()
3672

3673 3674
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3675

3676 3677 3678 3679
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3680

3681
            build_strategy = static.BuildStrategy()
3682 3683
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3684 3685
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3686
            program = program.with_data_parallel(loss_name=loss.name,
3687 3688
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3689
)DOC");
Y
yuyang18 已提交
3690 3691 3692

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3693 3694
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3695 3696 3697 3698 3699 3700 3701 3702
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3703
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3704 3705 3706 3707
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3708 3709 3710 3711
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3712
            self.reduce_ = strategy;
C
chengduo 已提交
3713
          },
3714
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3715 3716
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3717
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3718 3719
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3720
                Default is 'AllReduce'.
F
flame 已提交
3721 3722 3723 3724

                Examples:
                    .. code-block:: python

3725 3726 3727 3728 3729 3730 3731
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3732
                  )DOC")
Y
yuyang18 已提交
3733 3734 3735 3736 3737
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3738 3739 3740 3741
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3742
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3743
          },
3744
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3745
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3746 3747
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3748
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3749 3750 3751 3752

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3753 3754
                        import numpy
                        import os
3755 3756 3757 3758
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3759 3760

                        use_cuda = True
3761 3762
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3763 3764

                        # NOTE: If you use CPU to run the program, you need
3765
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3766 3767 3768 3769 3770 3771
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3772
                            places = static.cpu_places()
C
chengduo 已提交
3773
                        else:
3774
                            places = static.cuda_places()
C
chengduo 已提交
3775

3776 3777 3778 3779
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3780

3781
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3782

3783
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3784
                        build_strategy.gradient_scale_strategy = \
3785 3786 3787
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3788
                                          loss_name=loss.name, build_strategy=build_strategy,
3789
                                          places=places)
C
chengduo 已提交
3790 3791 3792 3793 3794 3795

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3796 3797
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3798
                   )DOC")
Y
yuyang18 已提交
3799 3800 3801 3802
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3803 3804 3805 3806
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3807
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3808
          },
3809
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3810
                writing the SSA Graph to file in the form of graphviz.
3811
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3812 3813 3814 3815

                Examples:
                    .. code-block:: python

3816 3817 3818 3819
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3820

3821 3822
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3823
                    )DOC")
S
sneaxiy 已提交
3824 3825 3826 3827 3828 3829
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3830 3831 3832 3833
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3834 3835
            self.enable_sequential_execution_ = b;
          },
3836 3837
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3838 3839 3840 3841

                Examples:
                    .. code-block:: python

3842 3843 3844 3845 3846 3847
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3848 3849
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3850 3851 3852 3853 3854 3855
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3856 3857 3858 3859
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3860 3861
            self.remove_unnecessary_lock_ = b;
          },
3862 3863
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3864 3865 3866 3867

                Examples:
                    .. code-block:: python

3868 3869 3870 3871 3872 3873
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3874 3875
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3876 3877 3878 3879
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3880
#ifdef WIN32
3881
            PADDLE_THROW(platform::errors::Unavailable(
3882
                "Distribution mode is not supported on Windows platform."));
3883
#endif
3884 3885
            self.num_trainers_ = num_trainers;
          })
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3898 3899 3900 3901 3902 3903
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3904 3905 3906 3907 3908 3909
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3910
      .def_property("use_hierarchical_allreduce",
3911 3912 3913 3914 3915 3916
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3917
      .def_property("hierarchical_allreduce_inter_nranks",
3918 3919 3920 3921 3922 3923 3924
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3925 3926 3927 3928 3929 3930
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3931 3932 3933 3934
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3935 3936
            self.fuse_elewise_add_act_ops_ = b;
          },
3937
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3938
                to fuse elementwise_add_op and activation_op,
3939
                it may make the execution faster. Default is False.
F
flame 已提交
3940 3941 3942 3943

                Examples:
                    .. code-block:: python

3944 3945 3946 3947 3948 3949
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3950 3951
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3977 3978 3979 3980
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3981
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3982
                              platform::errors::PreconditionNotMet(
3983 3984
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3994 3995 3996 3997 3998 3999
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
4000 4001
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4027 4028 4029 4030
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
4031
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
4032
                              platform::errors::PreconditionNotMet(
4033 4034
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4045 4046 4047 4048 4049 4050
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4051 4052
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4053 4054 4055 4056 4057 4058
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
4059 4060 4061 4062
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4063 4064
            self.fuse_relu_depthwise_conv_ = b;
          },
4065
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4066 4067 4068
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4069
                Default is False.
F
flame 已提交
4070 4071 4072 4073

                Examples:
                    .. code-block:: python

4074 4075 4076 4077 4078 4079
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4080 4081
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
4082 4083 4084
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
4085
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
4086 4087
                    },
                    [](BuildStrategy &self, bool b) {
4088 4089 4090 4091
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4092 4093
                      self.fuse_broadcast_ops_ = b;
                    },
4094
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
4095 4096 4097 4098
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4099 4100 4101 4102 4103
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4104 4105 4106 4107 4108 4109
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4110 4111
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
4112 4113
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
4114
                      return self.fuse_all_optimizer_ops_ == true ||
4115
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
4116 4117
                    },
                    [](BuildStrategy &self, bool b) {
4118 4119 4120 4121
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4122 4123
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
4124 4125 4126 4127
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
4128 4129 4130 4131
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4132 4133
            self.sync_batch_norm_ = b;
          },
4134
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4135 4136 4137
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4138 4139
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4140 4141 4142 4143

                Examples:
                    .. code-block:: python

4144 4145 4146 4147 4148 4149
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4150 4151
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4152 4153
      .def_property(
          "memory_optimize",
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4164
              self.memory_optimize_ = paddle::none;
4165 4166 4167
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4168
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4169 4170
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4171 4172
            }
          },
4173
          R"DOC((bool, optional): memory opitimize aims to save total memory
4174
                consumption, set to True to enable it.
4175

4176 4177 4178
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4193 4194 4195
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4196 4197 4198
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4199
              PADDLE_THROW(platform::errors::Unavailable(
4200
                  "Distribution mode is not supported on Windows platform."));
4201 4202 4203 4204 4205
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
4206 4207 4208
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4209
      .def_property(
D
dzhwinter 已提交
4210 4211 4212
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4213 4214 4215 4216
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4217 4218
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4219 4220
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4221
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4222
          },
C
chengduo 已提交
4223
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
4224 4225 4226 4227 4228 4229 4230
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
4231 4232 4233 4234
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4235 4236 4237 4238 4239 4240 4241 4242 4243
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4244 4245 4246 4247 4248 4249
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
4250 4251 4252 4253 4254 4255 4256
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
4257 4258 4259 4260 4261 4262
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
4263
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
4264
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
4265 4266 4267 4268 4269
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4270

4271 4272 4273 4274 4275 4276
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4277
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
4278
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
4279
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
4280
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
4281 4282 4283 4284
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
4285 4286 4287 4288 4289
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
4290 4291 4292
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4293 4294 4295 4296
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4297 4298
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4299 4300 4301 4302 4303 4304 4305 4306
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
4307
               return py::cast(
4308
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
4309 4310
             } else {
               return py::cast(std::move(
4311
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
4312
             }
4313 4314
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4315

J
jianghaicheng 已提交
4316 4317
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4318 4319 4320 4321 4322 4323 4324 4325 4326
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
A
Allen Guo 已提交
4327
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4328 4329
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4330
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
A
Allen Guo 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4461 4462
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4463 4464 4465
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4466 4467
#endif

4468 4469 4470 4471 4472 4473 4474 4475
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

4476
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
4477 4478 4479 4480 4481 4482 4483 4484 4485
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
4486
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
4487 4488 4489 4490 4491 4492 4493
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
4508
  BindFleetWrapper(&m);
4509
  BindIO(&m);
T
Thunderbrook 已提交
4510

T
Thunderbrook 已提交
4511
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4512
  BindHeterWrapper(&m);
4513
  BindMetrics(&m);
T
Thunderbrook 已提交
4514
#endif
T
Thunderbrook 已提交
4515
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4516
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4517 4518 4519
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
4520
#endif
4521
  BindGlooWrapper(&m);
H
hutuxian 已提交
4522
  BindBoxHelper(&m);
H
hutuxian 已提交
4523 4524 4525
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4526
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4527
  BindNCCLWrapper(&m);
4528 4529 4530
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4531
#endif
F
flame 已提交
4532 4533
  BindGraph(&m);
  BindNode(&m);
4534
  BindPass(&m);
F
flame 已提交
4535
  BindInferenceApi(&m);
4536
  BindCompatible(&m);
4537
  BindDataset(&m);
Y
yaoxuefeng 已提交
4538
  BindGenerator(&m);
4539 4540 4541
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4542 4543 4544
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4545
  BindAscendDevice(&m);
4546
#endif
Y
Yanghello 已提交
4547 4548 4549
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4550

T
tangwei12 已提交
4551
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4552 4553
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4554
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4555 4556
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4557 4558 4559 4560 4561
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4562 4563 4564 4565
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4566
#endif
L
Luo Tao 已提交
4567
}
4568
}  // namespace pybind
4569
}  // namespace paddle