pybind.cc 137.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/fluid/pybind/eager.h"
79
#include "paddle/fluid/pybind/io.h"
80
#include "paddle/utils/none.h"
81 82 83
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
84
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
85
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
86
#include "paddle/fluid/pybind/box_helper_py.h"
87
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
88
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
90
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
91
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
92
#include "paddle/fluid/pybind/generator_py.h"
93
#include "paddle/fluid/pybind/global_value_getter_setter.h"
94
#include "paddle/fluid/pybind/gloo_context_py.h"
95
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
96
#include "paddle/fluid/pybind/heter_wrapper_py.h"
97
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
98
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
99
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
100
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
101
#include "paddle/fluid/pybind/pybind_boost_headers.h"
102

103
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
104
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
105
#endif
106
#include "paddle/fluid/framework/data_type.h"
107 108
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
109
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/tensor_py.h"
111
#include "paddle/fluid/string/to_string.h"
112 113
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
114
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
115
#endif
116
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
117
#include "paddle/fluid/platform/cuda_profiler.h"
118
#endif
Y
Yi Wang 已提交
119
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
120 121
#endif

122
#ifdef PADDLE_WITH_ASCEND_CL
123
#include "paddle/fluid/platform/collective_helper.h"
124 125
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
126 127
#endif

128
#ifdef PADDLE_WITH_XPU
129
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
130 131
#endif

132 133
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
134 135 136 137
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
138
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
139 140 141
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
142 143
#include "pybind11/stl.h"

144
DECLARE_bool(use_mkldnn);
145

Q
Qiao Longfei 已提交
146 147
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
148 149 150
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
151

152
namespace paddle {
153
namespace pybind {
154 155 156 157 158 159 160 161

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;

162
bool IsCompiledWithCUDA() {
163 164 165 166 167 168 169 170 171
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
172 173 174 175 176 177
  return false;
#else
  return true;
#endif
}

178 179 180 181 182 183 184 185
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

186 187 188 189 190 191 192 193
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

194 195 196 197 198 199 200 201
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

202 203 204 205 206 207 208 209
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

210 211 212 213 214 215 216 217
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

218 219 220 221 222 223 224 225 226 227 228
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

229 230 231 232 233 234 235 236 237 238 239
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
275 276 277
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
278
      {"NPU", &platform::is_npu_place},
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

318
bool IsCompiledWithBrpc() {
319
#ifndef PADDLE_WITH_DISTRIBUTE
320 321
  return false;
#endif
322
  return true;
323 324
}

Y
update  
Yancey1989 已提交
325
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
326
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
327 328 329 330 331 332
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
333 334 335 336 337 338 339 340 341 342
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
365 366 367
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
381 382
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
383 384
    }
    vec_res.emplace_back(
385
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
386 387 388 389 390 391 392 393 394 395 396 397
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
398 399
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
400 401 402 403 404 405 406 407 408 409 410 411
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
412 413 414
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
415 416 417 418
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
419 420
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
421 422 423 424
  }
  return vec_res;
}

425 426 427 428 429 430 431 432
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
433 434
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
435 436 437 438 439 440 441 442 443 444 445 446 447
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
448 449 450
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
451 452 453 454 455
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
456 457 458 459 460
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
461 462
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
463 464 465
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
466 467 468 469 470 471 472 473 474
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
475 476
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
477 478 479 480 481
  }

  return;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
519 520 521 522 523 524 525 526 527 528 529
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

530 531 532 533 534 535
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

536
  BindEager(&m);
537 538
  BindCudaStream(&m);

Y
Yu Yang 已提交
539 540 541
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
542
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
543

544 545
  AssertStaticGraphAndDygraphGradMakerNoDiff();

546
  m.doc() = "C++ core of PaddlePaddle";
547

548 549 550 551
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

552
  BindException(&m);
Y
Yu Yang 已提交
553

554 555
  m.def("set_num_threads", &platform::SetNumThreads);

556 557
  m.def("disable_signal_handler", &DisableSignalHandler);

558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
559
  m.def("cudnn_version", &platform::CudnnVersion);
560 561 562 563 564 565
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
566
#endif
Z
Zeng Jinle 已提交
567 568 569 570
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

571 572 573 574 575 576 577 578 579 580
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
581 582
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
583 584
#endif

Z
Zeng Jinle 已提交
585 586 587 588
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
589 590 591
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
592 593 594 595 596 597

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
598 599
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
600
    framework::Tensor tensor;
6
633WHU 已提交
601

S
Siming Dai 已提交
602
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
603 604
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
605
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
606
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
607 608 609 610 611
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
612

613 614 615 616 617 618
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

619 620 621 622 623 624
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
625 626
  });

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
652 653 654 655 656 657
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
658
  m.def(
S
sneaxiy 已提交
659
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
660 661 662 663
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
664 665 666
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
683 684 685
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
686
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
687

688
  m.def("_set_fuse_parameter_group_size",
689
        &paddle::framework::ir::SetFuseParameterGroupsSize);
690
  m.def("_set_fuse_parameter_memory_size",
691
        &paddle::framework::ir::SetFuseParameterMemorySize);
692

S
sneaxiy 已提交
693 694 695
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

696 697
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

698 699 700
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

701
  BindImperative(&m);
702

703 704 705
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
706
      .def("_is_initialized",
707
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
708
      .def("_get_dims",
709
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
710
      .def("_set_dims",
711
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
712
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
713
           })
Y
yuyang18 已提交
714
      .def("_set_layout",
715
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
716 717
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
718
      .def("_alloc_float",
719
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
720
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
721
           })
722
      .def("_alloc_float",
723
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
724 725
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
726
      .def("_alloc_float",
727
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
728
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
729
           })
730 731 732 733
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
734
      .def("_alloc_double",
735
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
736 737
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
738
      .def("_alloc_int",
739
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
740
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
741
           })
742
      .def("_alloc_int",
743
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
744 745
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
746
      .def("_alloc_int",
747
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
748
             self.mutable_data<int>(place);
Q
qijun 已提交
749
           })
Y
yuyang18 已提交
750
      .def("_alloc_int",
751 752
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
753 754
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
755
      .def("_alloc_float",
756 757
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
758 759
             self.mutable_data<float>(place);
           })
760
      .def("_mutable_data",
761
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
762 763 764
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
765
      .def("_mutable_data",
766
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
767 768 769
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
770
      .def("_mutable_data",
771
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
772 773 774 775
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
776
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
777 778 779
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
780
      .def("_clear", &framework::Tensor::clear)
781 782 783 784 785
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
786 787 788 789 790 791 792 793 794 795 796
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
797
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
798
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
799
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
800 801
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
802
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
803
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
804 805
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
806
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
807 808
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
809 810 811 812
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
813
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
814
          LoDTensor is to be set.
815 816
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
830

831 832 833
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
850
      .def("_to_dlpack",
851
           [](framework::Tensor &self) {
6
633WHU 已提交
852
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
853
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
871 872 873 874
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
875 876
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
877
      .def("_layout",
878 879 880 881
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
882
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
883
      .def("__str__", [](const framework::Tensor &self) {
884 885 886 887
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
888

L
Leo Chen 已提交
889
  // TODO(cql): add reference: en_user_guide_lod_tensor
890
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
965 966 967 968 969 970 971

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
972 973

        )DOC")
974 975
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
976 977 978 979 980 981 982 983 984
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
985 986
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
987 988 989 990
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
991 992
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
993
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
994
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
995 996
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
997 998 999
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1000
      .def("set_lod",
1001
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
1002
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1003
             LoD new_lod;
1004 1005
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1006 1007
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1008 1009
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1010
             self.set_lod(new_lod);
S
sneaxiy 已提交
1011 1012 1013 1014 1015
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
1016 1017 1018 1019
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1030
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1031
           )DOC")
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1043 1044
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1045 1046 1047 1048 1049
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1050
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1051 1052
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1053
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1054

L
Leo Chen 已提交
1055
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1056
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1057
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1058 1059

           Args:
L
Leo Chen 已提交
1060 1061 1062 1063
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1074 1075
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1076
           )DOC")
1077 1078 1079 1080 1081 1082 1083 1084
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1085 1086 1087 1088 1089
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1090 1091
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1102
           )DOC")
G
gongweibao 已提交
1103
      // Set above comments of set_lod.
1104 1105 1106 1107 1108 1109 1110 1111
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1112 1113
           },
           R"DOC(
L
Leo Chen 已提交
1114 1115
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1116 1117

           Returns:
L
Leo Chen 已提交
1118
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1130 1131 1132 1133 1134 1135 1136 1137
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1138
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1139 1140

           Returns:
L
Leo Chen 已提交
1141
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1153 1154 1155 1156 1157 1158 1159
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1160
           )DOC")
1161 1162 1163 1164 1165 1166
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
L
Leo Chen 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175
      .def("_as_type",
           [](const LoDTensor &self,
              paddle::framework::proto::VarType::Type type) {
             LoDTensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1188
#ifdef _WIN32
1189
      });
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1240

Q
qijun 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1252 1253
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1254 1255
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1256 1257
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1258
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1259 1260 1261 1262 1263 1264
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1265
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1266
      .def("rows", [](SelectedRows &self) {
1267 1268 1269 1270 1271
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1272
      });
Q
qijun 已提交
1273

1274
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1275 1276 1277

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1278
      .def(py::init<>())
1279
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1280
      .def("set_int",
1281 1282
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1283 1284 1285 1286 1287 1288 1289
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1290
      .def("get_tensor",
1291 1292
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1293 1294
           },
           py::return_value_policy::reference)
1295 1296 1297 1298
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1311 1312 1313
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1314 1315 1316 1317 1318
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1319 1320 1321
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1322 1323 1324
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1325
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1326 1327 1328 1329 1330
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1331
#endif
Y
Refine  
Yu Yang 已提交
1332 1333
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1334 1335 1336 1337
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1338 1339
             return self.GetMutable<framework::ReaderHolder>();
           },
1340
           py::return_value_policy::reference)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1352 1353 1354 1355
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1356

S
sneaxiy 已提交
1357
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1358

S
sneaxiy 已提交
1359
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1373
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1374 1375 1376 1377 1378 1379
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1380 1381
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1382
      .def("var",
1383
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1384
             return self.Var(name);
Y
Yu Yang 已提交
1385
           },
S
sneaxiy 已提交
1386 1387
           py::arg("name"),
           R"DOC(
1388
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1389

1390
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1391
           current scope, the variable would be created. Otherwise,
1392
           return the existing variable.
S
sneaxiy 已提交
1393 1394

           Args:
1395 1396
               name (str): the variable name.

S
sneaxiy 已提交
1397
           Returns:
1398
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1399 1400 1401 1402
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1403
           Find variable named :code:`name` in the current scope or
1404
           its parent scope. Return None if not found. 
1405

S
sneaxiy 已提交
1406 1407
           Args:
               name (str): the variable name.
1408

S
sneaxiy 已提交
1409
           Returns:
1410
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1411
           )DOC",
1412
           py::return_value_policy::reference)
1413
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1414 1415 1416 1417 1418 1419
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1420
           py::return_value_policy::reference)
S
sneaxiy 已提交
1421 1422 1423
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1424 1425
           )DOC")
      .def("_kids", &Scope::kids);
1426

S
sneaxiy 已提交
1427 1428 1429 1430 1431 1432
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1433 1434
        R"DOC(
        Create a new scope.
1435

S
sneaxiy 已提交
1436 1437 1438
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1439 1440
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1441 1442
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1443 1444
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1445 1446 1447 1448
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1449 1450
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1451 1452
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1453 1454 1455
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1456 1457
    return ret_values;
  });
1458 1459 1460 1461 1462 1463 1464 1465
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1466
              res = op_checker->GetDefaultAttrsMap();
1467 1468 1469 1470
            }
          }
          return res;
        });
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1487 1488 1489
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1490 1491 1492 1493 1494
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1495 1496 1497
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1512
  m.def("prune", [](const ProgramDesc &origin,
1513
                    const std::set<std::string> &feeded_var_names,
1514
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1515
    ProgramDesc prog_with_targets(origin);
1516

1517
    for (const auto &t : targets) {
1518
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1519
    }
1520
    proto::ProgramDesc pruned_desc;
1521 1522 1523 1524
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1525
  });
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1543 1544 1545 1546
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1547 1548 1549
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1550 1551
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1552

Q
qijun 已提交
1553
  // clang-format off
Y
Yu Yang 已提交
1554
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1555 1556
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1557
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1558 1559
                    return new paddle::platform::CPUDeviceContext();
                  })
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1584
      .def_static("create",
D
dzhwinter 已提交
1585
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1586
                      -> paddle::platform::DeviceContext* {
1587
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1588 1589 1590 1591
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1592
#else
Q
qijun 已提交
1593
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1594
#endif
C
chengduoZH 已提交
1595 1596 1597 1598
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1599
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1600 1601 1602 1603
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1604 1605 1606 1607
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1608
// clang-format on
1609
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1610 1611
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1612
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1613 1614 1615 1616 1617

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1618
    The memory of CUDAPlace with different dev_id is not accessible.
1619 1620 1621 1622 1623 1624 1625 1626
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1627 1628 1629 1630

    Examples:
        .. code-block:: python

1631 1632 1633
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1634

1635 1636 1637
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1638 1639
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1640
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1665 1666
             new (&self) platform::CUDAPlace(dev_id);
#else
1667 1668 1669 1670 1671 1672 1673 1674 1675
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1676 1677
#endif
           })
1678
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1679 1680
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1681 1682 1683 1684
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1685
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1686
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1687 1688
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1689 1690 1691
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1692
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1693
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1694

1695
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1696 1697 1698 1699 1700
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1701 1702 1703
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1742
#ifdef PADDLE_WITH_XPU
1743 1744 1745 1746 1747 1748 1749
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1750 1751 1752
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1753
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1754
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1755
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1756 1757 1758 1759
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1760
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1761 1762
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
taixiurong 已提交
1763 1764 1765 1766 1767 1768 1769 1770
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1771
#endif
1772

1773
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1774
    CPUPlace is a descriptor of a device.
1775
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1776 1777 1778 1779

    Examples:
        .. code-block:: python

1780 1781
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1782

1783 1784 1785
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1786 1787
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1788
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1789
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1790 1791 1792 1793
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1794
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1795
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1796

1797 1798
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1799 1800 1801 1802 1803 1804
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1805 1806 1807 1808

    Examples:
        .. code-block:: python

1809 1810
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1811

1812 1813 1814 1815
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1816
      .def("__init__",
S
sneaxiy 已提交
1817
           [](platform::CUDAPinnedPlace &self) {
1818
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1819 1820 1821
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1822
#endif
S
sneaxiy 已提交
1823
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1824
           })
S
sneaxiy 已提交
1825 1826 1827 1828
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1829 1830
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1831 1832
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1833 1834 1835 1836
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1837
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1838 1839
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1840
  // NPUPlace
1841
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1842 1843 1844 1845 1846 1847 1848 1849
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1850 1851 1852
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1884
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1899 1900
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1901 1902
      .def("__str__", string::to_string<const platform::NPUPlace &>);

1903 1904 1905
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
1906 1907 1908 1909
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1910
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1911
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1912
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1913 1914
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1915 1916
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1917 1918
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1919 1920
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1921 1922 1923 1924
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1925 1926
      .def("gpu_device_id",
           [](platform::Place &self) {
1927
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1928
           })
1929 1930 1931 1932
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1933 1934 1935 1936
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1937 1938
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1939 1940 1941 1942
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1943 1944 1945 1946
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1947
      .def("set_place",
D
dzhwinter 已提交
1948
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1949
             self = gpu_place;
C
chengduoZH 已提交
1950
           })
1951 1952 1953 1954 1955
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1956 1957 1958 1959
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1960 1961
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1962

Y
Yu Yang 已提交
1963
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1978
      .def("run",
1979
           [](OperatorBase &self, const Scope &scope,
1980 1981 1982 1983
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1984 1985
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1986 1987 1988 1989
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1990 1991
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1992 1993 1994 1995
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1996 1997
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1998 1999 2000 2001
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2002 2003 2004
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2005
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2006 2007
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2008 2009 2010 2011 2012 2013 2014
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2015 2016
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2017
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2018
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2019 2020 2021 2022
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2023

2024 2025 2026
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2027 2028 2029 2030 2031 2032 2033
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2034 2035
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2036

2037 2038
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2039
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2040
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2041
      .def("close", &Executor::Close)
2042 2043
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2044 2045
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2046 2047 2048 2049
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2050
             pybind11::gil_scoped_release release;
2051 2052 2053 2054 2055 2056 2057
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2058 2059 2060
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2061
              std::map<std::string, FetchType *> *fetch_targets,
2062 2063 2064 2065 2066 2067 2068 2069
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2070
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2071 2072 2073 2074 2075 2076 2077
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2088
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2089 2090
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2091
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2092 2093
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2094
      });
S
sneaxiy 已提交
2095

2096
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2097
      .def(py::init<>())
2098 2099 2100 2101 2102
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2103

2104
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2105 2106 2107
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2108
           [](StandaloneExecutor &self,
H
hong 已提交
2109
              const std::unordered_map<std::string, py::array> &input_dict,
2110
              std::vector<std::string> fetch_names) {
2111
             std::vector<framework::LoDTensor> feed_tensors;
2112
             std::vector<std::string> feed_names;
H
hong 已提交
2113 2114 2115 2116 2117

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2118 2119
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2120 2121
             }

2122 2123 2124 2125 2126 2127 2128 2129 2130
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2131
              const std::unordered_map<std::string, framework::LoDTensor>
2132 2133
                  &input_dict,
              std::vector<std::string> fetch_names) {
2134
             std::vector<framework::LoDTensor> feed_tensors;
2135 2136 2137 2138 2139 2140 2141
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2142 2143 2144 2145
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2146
             }
W
wanghuancoder 已提交
2147
             return py::cast(std::move(ret));
2148
           })
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2159 2160 2161
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2162
             std::vector<framework::LoDTensor> feed_tensors;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2173
             framework::interpreter::CostInfo cost_info;
2174 2175 2176 2177 2178
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2179 2180
           });

D
dzhwinter 已提交
2181
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2182
  m.def("init_glog", framework::InitGLOG);
2183 2184
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2185
  m.def("init_devices", []() { framework::InitDevices(); });
2186

2187
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2188
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2189
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2190
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2191
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2192
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2193
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2194
  m.def("supports_bfloat16", SupportsBfloat16);
2195
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2196 2197
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2198
  m.def("op_supported_infos", OpSupportedInfos);
2199
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2200
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2201 2202 2203
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2223 2224 2225 2226 2227 2228 2229
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2239
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2240 2241 2242 2243 2244
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2245

S
Steffy-zxf 已提交
2246 2247 2248 2249 2250 2251
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2252 2253 2254 2255 2256
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2257
            return py::cast(BOOST_GET(LoDTensor, var));
2258
          } else {
2259
            return py::cast(BOOST_GET(LoDTensorArray, var));
2260 2261
          }
        });
2262
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2263

X
Xin Pan 已提交
2264 2265
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2266 2267 2268 2269
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2270
  BindCostModel(&m);
2271
  BindConstValue(&m);
2272
  BindGlobalValueGetterSetter(&m);
2273
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2274
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2275

Y
Yu Yang 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2285
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2286
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2287 2288 2289

    Examples:
        .. code-block:: python
2290

Z
Zeng Jinle 已提交
2291 2292 2293 2294
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2295 2296
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2297 2298 2299 2300 2301 2302
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2303 2304 2305 2306
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2307 2308 2309
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2310 2311 2312 2313 2314 2315
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2316 2317
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2318 2319 2320 2321 2322 2323
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2346

2347 2348 2349 2350 2351 2352 2353 2354
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2355
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2356 2357
                 res[i] = py::cast(std::move(data));
               } else {
2358
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2374
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2375 2376 2377 2378 2379 2380 2381 2382
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2383
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2384 2385 2386 2387 2388 2389 2390 2391 2392
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2393 2394
        )DOC")
      .def("_move_to_list",
2395
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2396 2397 2398 2399
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2400
                 if (data_is_lod_tensor(self[i][j])) {
2401
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2402 2403
                   tmp[j] = py::cast(std::move(var));
                 } else {
2404
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2405 2406 2407 2408 2409 2410
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2420
  m.def("op_support_gpu", OpSupportGPU);
2421
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2422
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2423 2424 2425 2426 2427 2428 2429 2430
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2431 2432 2433 2434 2435 2436 2437
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2463
      });
D
dangqingqing 已提交
2464

2465
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2466 2467 2468
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2469 2470 2471 2472
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2473
#endif
P
peizhilin 已提交
2474
#endif
Y
Yu Yang 已提交
2475

2476 2477
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2478
  m.def("npu_finalize", []() {
2479 2480
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2481 2482 2483
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2484
      platform::NPUDeviceGuard guard(devices[i]);
2485 2486 2487 2488
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2509 2510 2511 2512 2513 2514
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2515 2516 2517 2518
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2519
      .value("kAll", platform::ProfilerState::kAll)
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2531
  m.def("set_tracer_option", platform::SetTracerOption);
2532 2533
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2534
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2535
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2536
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2537 2538 2539 2540 2541
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2542
    callable.inc_ref();
2543 2544 2545 2546 2547 2548 2549 2550
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2551
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2552 2553 2554
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2555

2556 2557
  m.def("size_of_dtype", framework::SizeOfType);

2558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2559 2560
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2561 2562
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2563
#endif  // PADDLE_WITH_CUDA
2564 2565
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2566

2567 2568 2569
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2570 2571
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2572
      .def("has", &ir::Pass::Has)
2573 2574 2575
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2576
           })
2577
      .def(
2578
          "set",
2579 2580 2581
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2582 2583
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2584 2585
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2600 2601
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2602
        self.Apply(graph.get());
F
flame 已提交
2603
      });
2604

X
fix  
Xin Pan 已提交
2605 2606
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2621
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2622
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2623 2624 2625 2626
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2627 2628 2629
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2630 2631 2632
    Examples:
        .. code-block:: python

2633 2634 2635 2636 2637 2638 2639 2640 2641
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2642

2643 2644
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2645

2646
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2647 2648
          sgd_optimizer.minimize(avg_loss)

2649
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2650 2651
          exec_strategy.num_threads = 4

2652 2653 2654
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2655 2656
        )DOC");

2657 2658 2659 2660
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2661

Y
yuyang18 已提交
2662
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2663 2664 2665 2666 2667
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2668
          },
2669 2670
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2671 2672 2673 2674 2675 2676 2677
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2691
      .def_property(
2692 2693
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2694
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2695 2696 2697
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2698 2699 2700 2701 2702
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2703 2704 2705
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2706 2707
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2708 2709 2710 2711 2712 2713 2714
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2715 2716 2717 2718
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2719
                because the temp variable's shape maybe the same between two iterations.
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2730

2731 2732 2733 2734 2735 2736 2737
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2738
              )DOC")
Q
Qiao Longfei 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2760
              )DOC")
2761 2762 2763 2764 2765 2766 2767 2768
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2769 2770 2771 2772 2773
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2774

Y
yuyang18 已提交
2775
  exec_strategy.def_property(
Y
yuyang18 已提交
2776 2777 2778 2779 2780 2781 2782
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2783 2784
      });

C
chengduo 已提交
2785 2786 2787 2788
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2789 2790 2791
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2792 2793 2794
    Examples:
        .. code-block:: python

2795
            import os
2796 2797 2798 2799
            import paddle
            import paddle.static as static

            paddle.enable_static()
2800

2801 2802
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2803

2804 2805 2806 2807
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2808

2809
            build_strategy = static.BuildStrategy()
2810 2811
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2812 2813
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2814
            program = program.with_data_parallel(loss_name=loss.name,
2815 2816
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2817
)DOC");
Y
yuyang18 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2830
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2831 2832 2833 2834
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2835 2836 2837 2838
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2839
            self.reduce_ = strategy;
C
chengduo 已提交
2840
          },
2841
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2842 2843
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2844
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2845 2846
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2847
                Default is 'AllReduce'.
F
flame 已提交
2848 2849 2850 2851

                Examples:
                    .. code-block:: python

2852 2853 2854 2855 2856 2857 2858
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2859
                  )DOC")
Y
yuyang18 已提交
2860 2861 2862 2863 2864
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2865 2866 2867 2868
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2869
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2870
          },
2871
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2872
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2873 2874
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2875
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2876 2877 2878 2879

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2880 2881
                        import numpy
                        import os
2882 2883 2884 2885
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2886 2887

                        use_cuda = True
2888 2889
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2890 2891

                        # NOTE: If you use CPU to run the program, you need
2892
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2893 2894 2895 2896 2897 2898
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2899
                            places = static.cpu_places()
C
chengduo 已提交
2900
                        else:
2901
                            places = static.cuda_places()
C
chengduo 已提交
2902

2903 2904 2905 2906
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2907

2908
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2909

2910
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2911
                        build_strategy.gradient_scale_strategy = \
2912 2913 2914
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2915
                                          loss_name=loss.name, build_strategy=build_strategy,
2916
                                          places=places)
C
chengduo 已提交
2917 2918 2919 2920 2921 2922

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2923 2924
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2925
                   )DOC")
Y
yuyang18 已提交
2926 2927 2928 2929
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2930 2931 2932 2933
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2934
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2935
          },
2936
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2937
                writing the SSA Graph to file in the form of graphviz.
2938
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2939 2940 2941 2942

                Examples:
                    .. code-block:: python

2943 2944 2945 2946
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2947

2948 2949
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2950
                    )DOC")
S
sneaxiy 已提交
2951 2952 2953 2954 2955 2956
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2957 2958 2959 2960
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2961 2962
            self.enable_sequential_execution_ = b;
          },
2963 2964
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2965 2966 2967 2968

                Examples:
                    .. code-block:: python

2969 2970 2971 2972 2973 2974
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2975 2976
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2977 2978 2979 2980 2981 2982
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2983 2984 2985 2986
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2987 2988
            self.remove_unnecessary_lock_ = b;
          },
2989 2990
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2991 2992 2993 2994

                Examples:
                    .. code-block:: python

2995 2996 2997 2998 2999 3000
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3001 3002
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3003 3004 3005 3006
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3007
#ifdef WIN32
3008
            PADDLE_THROW(platform::errors::Unavailable(
3009
                "Distribution mode is not supported on Windows platform."));
3010
#endif
3011 3012
            self.num_trainers_ = num_trainers;
          })
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3025 3026 3027 3028 3029 3030
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3031 3032 3033 3034 3035 3036
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3037
      .def_property("use_hierarchical_allreduce",
3038 3039 3040 3041 3042 3043
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3044
      .def_property("hierarchical_allreduce_inter_nranks",
3045 3046 3047 3048 3049 3050 3051
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3052 3053 3054 3055 3056 3057
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3058 3059 3060 3061
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3062 3063
            self.fuse_elewise_add_act_ops_ = b;
          },
3064
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3065
                to fuse elementwise_add_op and activation_op,
3066
                it may make the execution faster. Default is False.
F
flame 已提交
3067 3068 3069 3070

                Examples:
                    .. code-block:: python

3071 3072 3073 3074 3075 3076
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3077 3078
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3079 3080 3081 3082
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3083
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3084
                              platform::errors::PreconditionNotMet(
3085 3086
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3096 3097 3098 3099 3100 3101
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3102 3103
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3129 3130 3131 3132
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3133
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3134
                              platform::errors::PreconditionNotMet(
3135 3136
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3147 3148 3149 3150 3151 3152
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3153 3154
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3155 3156 3157 3158 3159 3160
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3161 3162 3163 3164
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3165 3166
            self.fuse_relu_depthwise_conv_ = b;
          },
3167
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3168 3169 3170
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3171
                Default is False.
F
flame 已提交
3172 3173 3174 3175

                Examples:
                    .. code-block:: python

3176 3177 3178 3179 3180 3181
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3182 3183
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3184 3185 3186
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3187
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3188 3189
                    },
                    [](BuildStrategy &self, bool b) {
3190 3191 3192 3193
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3194 3195
                      self.fuse_broadcast_ops_ = b;
                    },
3196
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3197 3198 3199 3200
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3201 3202 3203 3204 3205
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3206 3207 3208 3209 3210 3211
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3212 3213
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3214 3215
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3216
                      return self.fuse_all_optimizer_ops_ == true ||
3217
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3218 3219
                    },
                    [](BuildStrategy &self, bool b) {
3220 3221 3222 3223
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3224 3225
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3226 3227 3228 3229
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3230 3231 3232 3233
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3234 3235
            self.sync_batch_norm_ = b;
          },
3236
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3237 3238 3239
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3240 3241
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3242 3243 3244 3245

                Examples:
                    .. code-block:: python

3246 3247 3248 3249 3250 3251
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3252 3253
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3254 3255
      .def_property(
          "memory_optimize",
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3266
              self.memory_optimize_ = paddle::none;
3267 3268 3269
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3270
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3271 3272
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3273 3274
            }
          },
3275
          R"DOC((bool, optional): memory opitimize aims to save total memory
3276
                consumption, set to True to enable it.
3277

3278 3279 3280
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3295 3296 3297
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3298 3299 3300
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3301
              PADDLE_THROW(platform::errors::Unavailable(
3302
                  "Distribution mode is not supported on Windows platform."));
3303 3304 3305 3306 3307
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3308 3309 3310
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3311
      .def_property(
D
dzhwinter 已提交
3312 3313 3314
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3315 3316 3317 3318
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3319 3320
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3321 3322
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3323
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3324
          },
C
chengduo 已提交
3325
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3326 3327 3328 3329 3330 3331 3332
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3333 3334 3335 3336
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3337 3338 3339 3340 3341 3342 3343 3344 3345
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3346 3347 3348 3349 3350 3351
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3352 3353 3354 3355 3356 3357 3358
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3359 3360 3361 3362 3363 3364
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3365
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3366
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3367 3368 3369 3370 3371
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3372

3373 3374 3375 3376 3377 3378
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3379
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3380
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3381
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3382
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3383 3384 3385 3386
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3387 3388 3389 3390 3391
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3392 3393 3394
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3395 3396 3397 3398
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3399 3400
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3401 3402 3403 3404 3405 3406 3407 3408
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3409
               return py::cast(
3410
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3411 3412
             } else {
               return py::cast(std::move(
3413
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3414
             }
3415 3416
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3417

D
dongdaxiang 已提交
3418
  BindFleetWrapper(&m);
3419
  BindIO(&m);
T
Thunderbrook 已提交
3420

T
Thunderbrook 已提交
3421 3422
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3423
#endif
T
Thunderbrook 已提交
3424
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3425
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3426
#endif
3427
  BindGlooWrapper(&m);
H
hutuxian 已提交
3428
  BindBoxHelper(&m);
H
hutuxian 已提交
3429 3430 3431
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3432
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3433
  BindNCCLWrapper(&m);
3434 3435 3436
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3437
#endif
F
flame 已提交
3438 3439
  BindGraph(&m);
  BindNode(&m);
3440
  BindPass(&m);
F
flame 已提交
3441
  BindInferenceApi(&m);
3442
  BindCompatible(&m);
3443
  BindDataset(&m);
Y
yaoxuefeng 已提交
3444
  BindGenerator(&m);
3445 3446 3447
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3448
  BindAscendDevice(&m);
3449
#endif
Y
Yanghello 已提交
3450 3451 3452
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3453

T
tangwei12 已提交
3454
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3455 3456
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3457
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3458 3459
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3460 3461 3462 3463 3464
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3465 3466 3467 3468
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3469
  BindSparseShardingTools(&m);
3470
#endif
L
Luo Tao 已提交
3471
}
3472
}  // namespace pybind
3473
}  // namespace paddle