pybind.cc 151.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/pten/core/compat/convert_utils.h"
79
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
80
#ifndef PADDLE_ON_INFERENCE
81
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
82
#endif
83
#include "paddle/fluid/pybind/io.h"
84
#include "paddle/utils/none.h"
85 86 87
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
88
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
89
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
90
#include "paddle/fluid/pybind/box_helper_py.h"
91
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
92
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
95
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
96
#include "paddle/fluid/pybind/generator_py.h"
97
#include "paddle/fluid/pybind/global_value_getter_setter.h"
98
#include "paddle/fluid/pybind/gloo_context_py.h"
99
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
100
#include "paddle/fluid/pybind/heter_wrapper_py.h"
101
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
102
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
103
#include "paddle/fluid/pybind/ir.h"
104
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
105
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
106
#include "paddle/fluid/pybind/pybind_boost_headers.h"
107

108
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
110
#endif
111
#include "paddle/fluid/framework/data_type.h"
112 113
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
114
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
115
#include "paddle/fluid/pybind/tensor_py.h"
116
#include "paddle/fluid/string/to_string.h"
117 118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
119
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
120
#endif
121
#ifndef PADDLE_WITH_HIP
122
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
123
#endif
124
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
125 126
#endif

127
#ifdef PADDLE_WITH_ASCEND_CL
128
#include "paddle/fluid/platform/collective_helper.h"
129 130
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
131 132
#endif

133
#ifdef PADDLE_WITH_XPU
134
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
135
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
136 137
#endif

138
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
139

J
jianghaicheng 已提交
140
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
141 142
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
143
#endif
144

145 146 147 148
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
149 150 151 152
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
153
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
154 155 156
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
157 158
#include "pybind11/stl.h"

159
DECLARE_bool(use_mkldnn);
160

Q
Qiao Longfei 已提交
161 162
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
163 164 165
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
166

167
namespace paddle {
168
namespace pybind {
169 170 171 172 173 174 175

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
176
PyTypeObject *g_mluplace_pytype = nullptr;
177
PyTypeObject *g_framework_tensor_pytype = nullptr;
178
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
179

180
bool IsCompiledWithCUDA() {
181 182 183 184 185 186 187
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

188 189 190 191 192 193 194 195
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

196 197
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
198 199 200 201 202 203
  return false;
#else
  return true;
#endif
}

204 205 206 207 208 209 210 211
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

212 213 214 215 216 217 218 219
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

220 221 222 223 224 225 226 227
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
228 229 230 231 232 233 234 235
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

252 253 254 255 256 257 258 259
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

268 269 270 271 272 273 274 275 276 277 278
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

279 280 281 282 283 284 285 286 287 288 289
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
325 326 327
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

367
bool IsCompiledWithBrpc() {
368
#ifndef PADDLE_WITH_DISTRIBUTE
369 370
  return false;
#endif
371
  return true;
372 373
}

Y
update  
Yancey1989 已提交
374
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
375
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
376 377 378 379 380 381
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
382 383 384 385 386 387 388
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
389
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
390 391
}

H
hong 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
414 415 416
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
430 431
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
432 433
    }
    vec_res.emplace_back(
434
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
435 436 437 438 439 440 441 442 443 444 445 446
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
447 448
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
449 450 451 452 453 454 455 456 457 458 459 460
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
461 462 463
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
464 465 466 467
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
468 469
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
470 471 472 473
  }
  return vec_res;
}

474 475 476 477 478 479 480 481
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
482 483
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
484 485 486 487 488 489 490 491 492 493 494 495 496
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
497 498 499
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
500 501 502 503 504
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
505 506 507 508 509
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
510 511
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
512 513 514
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
515 516 517 518 519 520 521 522 523
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
524 525
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
526 527 528 529 530
  }

  return;
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
555 556 557 558
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
559
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
560 561 562 563 564 565 566 567
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
568 569 570 571 572 573 574 575 576 577 578
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

579 580 581 582 583 584
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
585
#ifndef PADDLE_ON_INFERENCE
586
  BindEager(&m);
W
wanghuancoder 已提交
587
#endif
588 589
  BindCudaStream(&m);

Y
Yu Yang 已提交
590 591 592
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
593
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
594

595 596
  AssertStaticGraphAndDygraphGradMakerNoDiff();

597
  m.doc() = "C++ core of PaddlePaddle";
598

599 600 601 602
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

603
  BindException(&m);
Y
Yu Yang 已提交
604

605 606
  m.def("set_num_threads", &platform::SetNumThreads);

607 608
  m.def("disable_signal_handler", &DisableSignalHandler);

609 610 611 612 613 614 615 616
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

617
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
618
  m.def("cudnn_version", &platform::DnnVersion);
619 620 621 622 623 624
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
625
#endif
626

Z
Zeng Jinle 已提交
627 628 629 630
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

631 632 633 634 635 636 637 638 639 640
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
641 642
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
643 644
#endif

Z
Zeng Jinle 已提交
645 646 647 648
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
649 650 651
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
652 653 654 655 656 657

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
658 659
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
660
    framework::Tensor tensor;
6
633WHU 已提交
661

S
Siming Dai 已提交
662
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
663 664
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
665
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
666
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
667 668 669 670 671
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
672

673 674 675 676 677 678
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

679 680 681 682 683 684
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
685 686
  });

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
712 713 714 715 716 717
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
718
  m.def(
S
sneaxiy 已提交
719
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
720 721 722 723
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
724 725 726
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
            }
            all_kernels_info.emplace(op_type, kernel_types);
          }
        }
        if (lib == "pten" || lib == "all") {
          auto pten_kernels = pten::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : pten_kernels) {
            auto op_type = pten::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
                }
              } else {
                kernel_types.emplace_back(kernel_type_str);
              }
            }
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
          }
        }

        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
           Return the registered kernels in paddle.

           Args:
               lib[string]: the libarary, could be 'pten', 'fluid' and 'all'.
           )DOC");
782

S
sneaxiy 已提交
783 784 785
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
786
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
787

788
  m.def("_set_fuse_parameter_group_size",
789
        &paddle::framework::ir::SetFuseParameterGroupsSize);
790
  m.def("_set_fuse_parameter_memory_size",
791
        &paddle::framework::ir::SetFuseParameterMemorySize);
792

S
sneaxiy 已提交
793 794 795
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

796 797
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

798 799 800
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

801
  BindImperative(&m);
802

803 804 805 806 807
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
808 809
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
810 811 812 813
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
814
      .def("_is_initialized",
815
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
816
      .def("_get_dims",
817
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
818
      .def("_set_dims",
819
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
820
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
821
           })
Y
yuyang18 已提交
822
      .def("_set_layout",
823
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
824 825
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
826
      .def("_alloc_float",
827
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
828
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
829
           })
830
      .def("_alloc_float",
831
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
832 833
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
834
      .def("_alloc_float",
835
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
836
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
837
           })
838 839 840 841
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
842 843 844 845
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
846
      .def("_alloc_double",
847
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
848 849
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
850
      .def("_alloc_int",
851
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
852
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
853
           })
854
      .def("_alloc_int",
855
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
856 857
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
858
      .def("_alloc_int",
859
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
860
             self.mutable_data<int>(place);
Q
qijun 已提交
861
           })
862 863 864 865
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
866
      .def("_alloc_int",
867 868
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
869 870
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
871
      .def("_alloc_float",
872 873
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
874 875
             self.mutable_data<float>(place);
           })
876
      .def("_mutable_data",
877
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
878 879 880
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
881
      .def("_mutable_data",
882
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
883 884 885
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
886
      .def("_mutable_data",
887
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
888 889 890 891
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
892
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
893 894 895
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
896 897 898 899 900
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
901
      .def("_clear", &framework::Tensor::clear)
902 903 904 905 906
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
907 908 909 910 911 912 913 914 915 916
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
917 918
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
919
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
920
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
921
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
922
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
923 924
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
925
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
926
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
927 928
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
929 930
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
931 932
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
933
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
934 935
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
936
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
937 938 939
        
        Args:
          lod (numpy.ndarray): The data to set.
940
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
941
          Tensor is to be set.
942 943
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
944 945 946 947 948 949 950 951 952 953

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

954
                t = fluid.Tensor()
L
Leo Chen 已提交
955 956
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
957

958 959 960
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
961
           Return the shape of Tensor.
L
Leo Chen 已提交
962 963

           Returns:
964
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
965 966 967 968 969 970 971 972


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

973
                  t = fluid.Tensor()
L
Leo Chen 已提交
974 975 976
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
977
      .def("_to_dlpack",
978
           [](framework::Tensor &self) {
6
633WHU 已提交
979
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
980
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
998 999 1000 1001
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1002 1003
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
1004
      .def("_layout",
1005 1006 1007 1008
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1009
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1029 1030
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1031 1032 1033 1034
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1035
      .def("__init__",
1036 1037
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1038
           })
G
gongweibao 已提交
1039
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1040 1041
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1042 1043 1044
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1045
      .def("set_lod",
1046 1047
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1048
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1049
             LoD new_lod;
1050 1051
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1052 1053
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1054 1055
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1056
             self.set_lod(new_lod);
S
sneaxiy 已提交
1057 1058
           },
           py::arg("lod"), R"DOC(
1059
           Set LoD of the Tensor.
S
sneaxiy 已提交
1060 1061

           Args:
L
Leo Chen 已提交
1062 1063 1064 1065
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1066 1067 1068 1069 1070 1071 1072

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1073
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1074 1075
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1076
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1077
           )DOC")
1078
      .def("set_recursive_sequence_lengths",
1079 1080
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1081 1082 1083 1084 1085 1086 1087 1088
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1089 1090
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1091
                 platform::errors::InvalidArgument(
1092 1093
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1094 1095 1096
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1097
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1098 1099
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1100
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1101

L
Leo Chen 已提交
1102
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1103
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1104
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1105 1106

           Args:
L
Leo Chen 已提交
1107 1108 1109 1110
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1111 1112 1113 1114 1115 1116 1117

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1118
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1119 1120
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1121
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1122
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1123
           )DOC")
1124
      .def("lod",
1125
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1126 1127 1128 1129 1130 1131
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1132 1133
           },
           R"DOC(
1134
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1135 1136

           Returns:
1137
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1138
           
Z
Zeng Jinle 已提交
1139 1140 1141 1142 1143 1144
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1145
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1146 1147 1148
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1149
           )DOC")
G
gongweibao 已提交
1150
      // Set above comments of set_lod.
1151
      .def("recursive_sequence_lengths",
1152
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1153
             // output the length-based lod info
1154
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1155 1156 1157 1158
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1159 1160
           },
           R"DOC(
L
Leo Chen 已提交
1161
           Return the recursive sequence lengths corresponding to of the LodD 
1162
           of the Tensor.
S
sneaxiy 已提交
1163 1164

           Returns:
L
Leo Chen 已提交
1165
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1166 1167 1168 1169 1170 1171 1172

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1173
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1174 1175 1176
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1177 1178
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1179
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1180
             // Check that the lod info is valid and match the outermost
1181
             // dimension of the Tensor data
S
sneaxiy 已提交
1182 1183 1184
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1185
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1186 1187

           Returns:
L
Leo Chen 已提交
1188
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1189 1190 1191 1192 1193 1194 1195

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1196
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1197 1198 1199
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1200
           )DOC")
L
Leo Chen 已提交
1201
      .def("_as_type",
1202
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1203
              paddle::framework::proto::VarType::Type type) {
1204
             framework::Tensor dst;
L
Leo Chen 已提交
1205 1206 1207 1208 1209
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1223
#ifdef _WIN32
1224
           });
1225 1226 1227
#else
           })
      .def(py::pickle(
1228
          [](const framework::Tensor &t) {  // __getstate__
1229
            auto holder = t.Holder();
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1242 1243 1244
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1245 1246
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1247 1248 1249
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1250
              throw std::runtime_error("Invalid Tensor state!");
1251 1252

            // 1. Create a new C++ instance
1253
            framework::Tensor tensor;
1254 1255 1256 1257 1258

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1259 1260
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1261 1262

            // 3. Maintain global fd set
1263
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1264 1265
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1266 1267 1268 1269
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1270 1271 1272 1273 1274 1275
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1276

1277
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1278
      .def("__init__",
1279 1280 1281
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1282
      .def("__init__",
1283
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1284
              const int64_t &height) {
1285
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1286 1287
           })
      .def("get_tensor",
1288
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1289
           py::return_value_policy::reference)
1290
      .def("numel",
1291 1292 1293 1294 1295
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1296
      .def("set_rows",
1297
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1298
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1299 1300 1301 1302 1303 1304
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1305 1306 1307
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1308 1309 1310 1311 1312
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1313
      });
Q
qijun 已提交
1314

1315
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1316 1317 1318

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1319
      .def(py::init<>())
1320
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1321
      .def("set_int",
1322 1323
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1324 1325 1326 1327 1328 1329 1330
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1331
      .def("get_tensor",
1332 1333
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1334 1335
           },
           py::return_value_policy::reference)
1336 1337 1338 1339
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1352 1353 1354
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1355
      .def("get_selected_rows",
1356 1357
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1358 1359
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1360 1361 1362
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1363 1364 1365
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1366
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1367 1368 1369 1370 1371
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1372
#endif
Y
Refine  
Yu Yang 已提交
1373 1374
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1375 1376 1377 1378
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1379 1380
             return self.GetMutable<framework::ReaderHolder>();
           },
1381
           py::return_value_policy::reference)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1393 1394 1395 1396
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1397

S
sneaxiy 已提交
1398
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1399

S
sneaxiy 已提交
1400
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1414
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1415 1416 1417 1418 1419 1420
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1421 1422
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1423
      .def("var",
1424
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1425
             return self.Var(name);
Y
Yu Yang 已提交
1426
           },
S
sneaxiy 已提交
1427 1428
           py::arg("name"),
           R"DOC(
1429
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1430

1431
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1432
           current scope, the variable would be created. Otherwise,
1433
           return the existing variable.
S
sneaxiy 已提交
1434 1435

           Args:
1436 1437
               name (str): the variable name.

S
sneaxiy 已提交
1438
           Returns:
1439
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1440 1441 1442 1443
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1444
           Find variable named :code:`name` in the current scope or
1445
           its parent scope. Return None if not found. 
1446

S
sneaxiy 已提交
1447 1448
           Args:
               name (str): the variable name.
1449

S
sneaxiy 已提交
1450
           Returns:
1451
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1452
           )DOC",
1453
           py::return_value_policy::reference)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1466
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1467 1468 1469 1470 1471 1472
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1473
           py::return_value_policy::reference)
S
sneaxiy 已提交
1474 1475 1476
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1477 1478
           )DOC")
      .def("_kids", &Scope::kids);
1479

S
sneaxiy 已提交
1480 1481 1482 1483 1484 1485
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1486 1487
        R"DOC(
        Create a new scope.
1488

S
sneaxiy 已提交
1489 1490 1491
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1492 1493
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1494 1495
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1496 1497
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1498 1499 1500 1501
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1502 1503
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1504 1505
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1506 1507 1508
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1509 1510
    return ret_values;
  });
1511 1512 1513 1514 1515 1516 1517 1518
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1519
              res = op_checker->GetDefaultAttrsMap();
1520 1521 1522 1523
            }
          }
          return res;
        });
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1540 1541 1542
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1543 1544 1545 1546 1547
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1548 1549 1550
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1565
  m.def("prune", [](const ProgramDesc &origin,
1566
                    const std::set<std::string> &feeded_var_names,
1567
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1568
    ProgramDesc prog_with_targets(origin);
1569

1570
    for (const auto &t : targets) {
1571
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1572
    }
1573
    proto::ProgramDesc pruned_desc;
1574 1575 1576 1577
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1578
  });
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1596 1597 1598 1599
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1600 1601 1602
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1603 1604
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1605

Q
qijun 已提交
1606
  // clang-format off
Y
Yu Yang 已提交
1607
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1608 1609
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1610
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1625
                  })
1626 1627 1628 1629 1630 1631 1632 1633 1634
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1661 1662
#endif
                  })
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1675
      .def_static("create",
D
dzhwinter 已提交
1676
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1677
                      -> paddle::platform::DeviceContext* {
1678
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1679 1680 1681 1682
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1683
#else
W
Wilber 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1699
#endif
C
chengduoZH 已提交
1700 1701 1702 1703
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1704
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1705 1706 1707 1708
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1709 1710 1711 1712
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1713
// clang-format on
1714
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1715 1716
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1717
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1718 1719 1720 1721 1722

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1723
    The memory of CUDAPlace with different dev_id is not accessible.
1724 1725 1726 1727 1728 1729 1730 1731
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1732 1733 1734 1735

    Examples:
        .. code-block:: python

1736 1737 1738
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1739

1740 1741 1742
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1743 1744
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1745
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1746 1747 1748 1749 1750 1751 1752 1753
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1754 1755
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1756 1757 1758 1759 1760 1761 1762 1763
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1764 1765
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1766 1767 1768 1769
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1770 1771
             new (&self) platform::CUDAPlace(dev_id);
#else
1772 1773 1774 1775 1776 1777 1778 1779 1780
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1781 1782
#endif
           })
1783
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1784 1785
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1786 1787 1788 1789
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1790
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1791
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1792
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1793 1794
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1795 1796 1797
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1798
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1799
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1800

1801
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1802 1803 1804 1805 1806
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1807 1808 1809
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1848
#ifdef PADDLE_WITH_XPU
1849 1850 1851 1852 1853 1854 1855
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1856 1857 1858
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1859
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1860
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1861
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1862 1863 1864
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1865
      .export_values();
1866
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1867 1868
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1869 1870 1871 1872 1873 1874
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1875 1876
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1877 1878
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1879 1880
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1881 1882 1883
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1884 1885
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1886
  });
1887
#endif
1888

1889
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1890
    CPUPlace is a descriptor of a device.
1891
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1892 1893 1894 1895

    Examples:
        .. code-block:: python

1896 1897
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1898

1899 1900 1901
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1902 1903
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1904
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1905
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1906 1907 1908 1909
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1910
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1911
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1912

1913 1914
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1915 1916 1917 1918 1919 1920
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1921 1922 1923 1924

    Examples:
        .. code-block:: python

1925 1926
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1927

1928 1929 1930 1931
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1932
      .def("__init__",
S
sneaxiy 已提交
1933
           [](platform::CUDAPinnedPlace &self) {
1934
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1935 1936 1937
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1938
#endif
S
sneaxiy 已提交
1939
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1940
           })
S
sneaxiy 已提交
1941 1942 1943 1944
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1945 1946
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1947 1948
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1949 1950 1951 1952
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1953
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1954 1955
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1956
  // NPUPlace
1957
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1958 1959 1960 1961 1962 1963 1964 1965
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1966 1967 1968
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2000
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2015 2016
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2017 2018
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2140 2141 2142
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2143 2144 2145 2146
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2147
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2148
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2149
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2150
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2151
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2152 2153
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2154 2155
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2156 2157
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2158 2159
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2160 2161
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2162 2163 2164 2165
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2166 2167
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2168 2169 2170 2171 2172
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2173 2174
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2175 2176 2177 2178
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2179 2180 2181 2182
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2183
      .def("set_place",
D
dzhwinter 已提交
2184
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2185
             self = gpu_place;
C
chengduoZH 已提交
2186
           })
2187 2188 2189 2190 2191
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2192 2193 2194 2195
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2196 2197 2198 2199
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2200 2201 2202 2203
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2204 2205
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2206

Y
Yu Yang 已提交
2207
  py::class_<OperatorBase>(m, "Operator")
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2222
      .def("run",
2223
           [](OperatorBase &self, const Scope &scope,
2224 2225 2226 2227
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2228 2229
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2230 2231 2232 2233
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2234 2235
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2236 2237 2238 2239
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2240 2241
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2242 2243 2244 2245
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2246 2247 2248
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2249
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2250 2251
             self.Run(scope, place);
           })
2252 2253 2254 2255 2256 2257
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2258 2259 2260 2261 2262 2263 2264
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2265 2266
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2267
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2268
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2269 2270 2271 2272
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2273

2274 2275 2276
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2277 2278 2279 2280 2281 2282 2283
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2284 2285
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2286

2287 2288
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2289
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2290
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2291
      .def("close", &Executor::Close)
2292 2293
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2294 2295
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2296 2297 2298 2299
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2300
             pybind11::gil_scoped_release release;
2301 2302 2303 2304 2305 2306 2307
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2308 2309 2310
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2311
              std::map<std::string, FetchType *> *fetch_targets,
2312 2313 2314 2315 2316 2317 2318 2319
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2320
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2321 2322 2323 2324 2325 2326 2327
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2338
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2339 2340
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2341
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2342 2343
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2344
      });
S
sneaxiy 已提交
2345

2346
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2347
      .def(py::init<>())
2348 2349 2350 2351 2352
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2353

2354
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2355 2356 2357
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2358
           [](StandaloneExecutor &self,
H
hong 已提交
2359
              const std::unordered_map<std::string, py::array> &input_dict,
2360
              std::vector<std::string> fetch_names) {
2361
             std::vector<framework::LoDTensor> feed_tensors;
2362
             std::vector<std::string> feed_names;
H
hong 已提交
2363 2364 2365 2366 2367

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2368 2369
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2370 2371
             }

2372 2373 2374 2375 2376 2377 2378 2379 2380
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2381
              const std::unordered_map<std::string, framework::LoDTensor>
2382 2383
                  &input_dict,
              std::vector<std::string> fetch_names) {
2384
             std::vector<framework::LoDTensor> feed_tensors;
2385 2386 2387 2388 2389 2390 2391
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2392 2393 2394 2395
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2396
             }
W
wanghuancoder 已提交
2397
             return py::cast(std::move(ret));
2398
           })
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2409 2410 2411
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2412
             std::vector<framework::LoDTensor> feed_tensors;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2423
             framework::interpreter::CostInfo cost_info;
2424 2425 2426 2427 2428
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2429 2430
           });

D
dzhwinter 已提交
2431
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2432
  m.def("init_glog", framework::InitGLOG);
2433 2434
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2435
  m.def("init_devices", []() { framework::InitDevices(); });
2436

2437
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2438
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2439
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2440
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2441
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2442
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2443
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2444
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2445
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2446
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2447
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2448
  m.def("supports_bfloat16", SupportsBfloat16);
2449
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2450 2451
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2452
  m.def("op_supported_infos", OpSupportedInfos);
2453
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2454
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2455 2456 2457
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2477 2478 2479 2480 2481 2482 2483
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2493
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2494 2495
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2496
    return platform::GetGPUComputeCapability(place.device) >= 53;
2497 2498
  });
#endif
2499

S
Steffy-zxf 已提交
2500 2501 2502 2503 2504 2505
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2506 2507 2508 2509 2510
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2511
            return py::cast(BOOST_GET(LoDTensor, var));
2512
          } else {
2513
            return py::cast(BOOST_GET(LoDTensorArray, var));
2514 2515
          }
        });
2516
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2517

X
Xin Pan 已提交
2518 2519
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2520 2521 2522 2523
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2524
  BindCostModel(&m);
2525
  BindConstValue(&m);
2526
  BindGlobalValueGetterSetter(&m);
2527
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2528
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2529

Y
Yu Yang 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2539
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2540
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2541 2542 2543

    Examples:
        .. code-block:: python
2544

Z
Zeng Jinle 已提交
2545 2546 2547
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2548 2549 2550 2551
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2552 2553
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2554 2555 2556 2557 2558 2559
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2560 2561 2562 2563
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2564 2565 2566
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2567 2568 2569 2570 2571 2572
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2573 2574
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2575 2576 2577 2578 2579 2580
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2603

2604 2605 2606 2607 2608 2609 2610 2611
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2612
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2613 2614
                 res[i] = py::cast(std::move(data));
               } else {
2615
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2631
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2632 2633 2634 2635 2636 2637 2638 2639
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2640
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2641 2642 2643 2644 2645 2646 2647 2648 2649
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2650 2651
        )DOC")
      .def("_move_to_list",
2652
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2653 2654 2655 2656
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2657
                 if (data_is_lod_tensor(self[i][j])) {
2658
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2659 2660
                   tmp[j] = py::cast(std::move(var));
                 } else {
2661
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2662 2663 2664 2665 2666 2667
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2677
  m.def("op_support_gpu", OpSupportGPU);
2678
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2679
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2680 2681 2682 2683 2684 2685 2686 2687
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2688 2689 2690 2691 2692 2693 2694
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2720
      });
D
dangqingqing 已提交
2721

2722
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2723 2724 2725
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2726 2727 2728 2729
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2730
#endif
P
peizhilin 已提交
2731
#endif
Y
Yu Yang 已提交
2732

2733 2734
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2735
  m.def("npu_finalize", []() {
2736 2737
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2738 2739 2740
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2741
      platform::NPUDeviceGuard guard(devices[i]);
2742 2743 2744 2745
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2766 2767 2768 2769
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2770 2771 2772 2773
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2774 2775 2776 2777 2778 2779
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2780 2781 2782 2783
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2784
      .value("kAll", platform::ProfilerState::kAll)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2796
  m.def("set_tracer_option", platform::SetTracerOption);
2797 2798
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2799
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2800
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2801
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2802 2803
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2804 2805 2806
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2807
    callable.inc_ref();
2808 2809 2810 2811 2812 2813 2814 2815
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2816
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2817 2818 2819
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2820

2821 2822
  m.def("size_of_dtype", framework::SizeOfType);

2823
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2824 2825
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2826 2827
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2828
#endif  // PADDLE_WITH_CUDA
2829 2830
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2831

2832 2833 2834
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2835 2836
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2837
      .def("has", &ir::Pass::Has)
2838 2839 2840
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2841
           })
2842
      .def(
2843
          "set",
2844 2845 2846
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2847 2848
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2849 2850
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2851 2852 2853 2854 2855
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2870 2871
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2872
        self.Apply(graph.get());
F
flame 已提交
2873
      });
2874

X
fix  
Xin Pan 已提交
2875 2876
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2891
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2892
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2893 2894 2895 2896
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2897 2898 2899
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2900 2901 2902
    Examples:
        .. code-block:: python

2903 2904 2905 2906 2907 2908 2909 2910 2911
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2912

2913 2914
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2915

2916
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2917 2918
          sgd_optimizer.minimize(avg_loss)

2919
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2920 2921
          exec_strategy.num_threads = 4

2922 2923 2924
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2925 2926
        )DOC");

2927 2928 2929 2930
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2931

Y
yuyang18 已提交
2932
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2933 2934 2935 2936 2937
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2938
          },
2939 2940
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2941 2942 2943 2944 2945 2946 2947
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2961
      .def_property(
2962 2963
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2964
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2965 2966 2967
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2968 2969 2970 2971 2972
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2973 2974 2975
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2976 2977
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2978 2979 2980 2981 2982 2983 2984
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2985 2986 2987 2988
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2989
                because the temp variable's shape maybe the same between two iterations.
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3000

3001 3002 3003 3004 3005 3006 3007
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3008
              )DOC")
Q
Qiao Longfei 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3030
              )DOC")
3031 3032 3033 3034 3035 3036 3037 3038
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3039 3040 3041 3042 3043
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3044

Y
yuyang18 已提交
3045
  exec_strategy.def_property(
Y
yuyang18 已提交
3046 3047 3048 3049 3050 3051 3052
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3053 3054
      });

C
chengduo 已提交
3055 3056 3057 3058
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3059 3060 3061
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3062 3063 3064
    Examples:
        .. code-block:: python

3065
            import os
3066 3067 3068 3069
            import paddle
            import paddle.static as static

            paddle.enable_static()
3070

3071 3072
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3073

3074 3075 3076 3077
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3078

3079
            build_strategy = static.BuildStrategy()
3080 3081
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3082 3083
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3084
            program = program.with_data_parallel(loss_name=loss.name,
3085 3086
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3087
)DOC");
Y
yuyang18 已提交
3088 3089 3090

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3091 3092
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3093 3094 3095 3096 3097 3098 3099 3100
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3101
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3102 3103 3104 3105
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3106 3107 3108 3109
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3110
            self.reduce_ = strategy;
C
chengduo 已提交
3111
          },
3112
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3113 3114
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3115
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3116 3117
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3118
                Default is 'AllReduce'.
F
flame 已提交
3119 3120 3121 3122

                Examples:
                    .. code-block:: python

3123 3124 3125 3126 3127 3128 3129
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3130
                  )DOC")
Y
yuyang18 已提交
3131 3132 3133 3134 3135
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3136 3137 3138 3139
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3140
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3141
          },
3142
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3143
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3144 3145
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3146
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3147 3148 3149 3150

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3151 3152
                        import numpy
                        import os
3153 3154 3155 3156
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3157 3158

                        use_cuda = True
3159 3160
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3161 3162

                        # NOTE: If you use CPU to run the program, you need
3163
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3164 3165 3166 3167 3168 3169
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3170
                            places = static.cpu_places()
C
chengduo 已提交
3171
                        else:
3172
                            places = static.cuda_places()
C
chengduo 已提交
3173

3174 3175 3176 3177
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3178

3179
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3180

3181
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3182
                        build_strategy.gradient_scale_strategy = \
3183 3184 3185
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3186
                                          loss_name=loss.name, build_strategy=build_strategy,
3187
                                          places=places)
C
chengduo 已提交
3188 3189 3190 3191 3192 3193

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3194 3195
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3196
                   )DOC")
Y
yuyang18 已提交
3197 3198 3199 3200
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3201 3202 3203 3204
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3205
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3206
          },
3207
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3208
                writing the SSA Graph to file in the form of graphviz.
3209
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3210 3211 3212 3213

                Examples:
                    .. code-block:: python

3214 3215 3216 3217
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3218

3219 3220
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3221
                    )DOC")
S
sneaxiy 已提交
3222 3223 3224 3225 3226 3227
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3228 3229 3230 3231
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3232 3233
            self.enable_sequential_execution_ = b;
          },
3234 3235
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3236 3237 3238 3239

                Examples:
                    .. code-block:: python

3240 3241 3242 3243 3244 3245
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3246 3247
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3248 3249 3250 3251 3252 3253
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3254 3255 3256 3257
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3258 3259
            self.remove_unnecessary_lock_ = b;
          },
3260 3261
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3262 3263 3264 3265

                Examples:
                    .. code-block:: python

3266 3267 3268 3269 3270 3271
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3272 3273
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3274 3275 3276 3277
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3278
#ifdef WIN32
3279
            PADDLE_THROW(platform::errors::Unavailable(
3280
                "Distribution mode is not supported on Windows platform."));
3281
#endif
3282 3283
            self.num_trainers_ = num_trainers;
          })
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3296 3297 3298 3299 3300 3301
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3302 3303 3304 3305 3306 3307
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3308
      .def_property("use_hierarchical_allreduce",
3309 3310 3311 3312 3313 3314
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3315
      .def_property("hierarchical_allreduce_inter_nranks",
3316 3317 3318 3319 3320 3321 3322
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3323 3324 3325 3326 3327 3328
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3329 3330 3331 3332
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3333 3334
            self.fuse_elewise_add_act_ops_ = b;
          },
3335
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3336
                to fuse elementwise_add_op and activation_op,
3337
                it may make the execution faster. Default is False.
F
flame 已提交
3338 3339 3340 3341

                Examples:
                    .. code-block:: python

3342 3343 3344 3345 3346 3347
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3348 3349
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3350 3351 3352 3353
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3354
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3355
                              platform::errors::PreconditionNotMet(
3356 3357
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3367 3368 3369 3370 3371 3372
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3373 3374
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3400 3401 3402 3403
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3404
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3405
                              platform::errors::PreconditionNotMet(
3406 3407
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3418 3419 3420 3421 3422 3423
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3424 3425
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3426 3427 3428 3429 3430 3431
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3432 3433 3434 3435
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3436 3437
            self.fuse_relu_depthwise_conv_ = b;
          },
3438
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3439 3440 3441
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3442
                Default is False.
F
flame 已提交
3443 3444 3445 3446

                Examples:
                    .. code-block:: python

3447 3448 3449 3450 3451 3452
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3453 3454
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3455 3456 3457
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3458
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3459 3460
                    },
                    [](BuildStrategy &self, bool b) {
3461 3462 3463 3464
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3465 3466
                      self.fuse_broadcast_ops_ = b;
                    },
3467
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3468 3469 3470 3471
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3472 3473 3474 3475 3476
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3477 3478 3479 3480 3481 3482
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3483 3484
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3485 3486
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3487
                      return self.fuse_all_optimizer_ops_ == true ||
3488
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3489 3490
                    },
                    [](BuildStrategy &self, bool b) {
3491 3492 3493 3494
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3495 3496
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3497 3498 3499 3500
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3501 3502 3503 3504
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3505 3506
            self.sync_batch_norm_ = b;
          },
3507
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3508 3509 3510
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3511 3512
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3513 3514 3515 3516

                Examples:
                    .. code-block:: python

3517 3518 3519 3520 3521 3522
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3523 3524
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3525 3526
      .def_property(
          "memory_optimize",
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3537
              self.memory_optimize_ = paddle::none;
3538 3539 3540
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3541
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3542 3543
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3544 3545
            }
          },
3546
          R"DOC((bool, optional): memory opitimize aims to save total memory
3547
                consumption, set to True to enable it.
3548

3549 3550 3551
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3566 3567 3568
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3569 3570 3571
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3572
              PADDLE_THROW(platform::errors::Unavailable(
3573
                  "Distribution mode is not supported on Windows platform."));
3574 3575 3576 3577 3578
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3579 3580 3581
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3582
      .def_property(
D
dzhwinter 已提交
3583 3584 3585
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3586 3587 3588 3589
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3590 3591
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3592 3593
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3594
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3595
          },
C
chengduo 已提交
3596
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3597 3598 3599 3600 3601 3602 3603
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3604 3605 3606 3607
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3608 3609 3610 3611 3612 3613 3614 3615 3616
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3617 3618 3619 3620 3621 3622
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3623 3624 3625 3626 3627 3628 3629
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3630 3631 3632 3633 3634 3635
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3636
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3637
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3638 3639 3640 3641 3642
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3643

3644 3645 3646 3647 3648 3649
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3650
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3651
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3652
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3653
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3654 3655 3656 3657
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3658 3659 3660 3661 3662
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3663 3664 3665
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3666 3667 3668 3669
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3670 3671
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3672 3673 3674 3675 3676 3677 3678 3679
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3680
               return py::cast(
3681
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3682 3683
             } else {
               return py::cast(std::move(
3684
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3685
             }
3686 3687
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3688

J
jianghaicheng 已提交
3689 3690 3691 3692 3693 3694 3695 3696
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3697 3698
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3699 3700 3701 3702 3703
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3704
          })
J
jianghaicheng 已提交
3705 3706 3707 3708 3709 3710 3711
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3712
          })
J
jianghaicheng 已提交
3713 3714 3715 3716 3717 3718
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3719
                    })
J
jianghaicheng 已提交
3720 3721 3722 3723 3724 3725
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3726
                    })
J
jianghaicheng 已提交
3727 3728 3729 3730 3731 3732 3733
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3734
          })
J
jianghaicheng 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3749
          })
J
jianghaicheng 已提交
3750 3751 3752 3753 3754 3755
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3756
                    })
J
jianghaicheng 已提交
3757 3758 3759 3760 3761 3762
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3763
                    })
J
jianghaicheng 已提交
3764 3765 3766 3767 3768 3769
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3770
                    });
J
jianghaicheng 已提交
3771 3772
#endif

D
dongdaxiang 已提交
3773
  BindFleetWrapper(&m);
3774
  BindIO(&m);
T
Thunderbrook 已提交
3775

T
Thunderbrook 已提交
3776
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3777
  BindHeterWrapper(&m);
3778
  BindMetrics(&m);
T
Thunderbrook 已提交
3779
#endif
T
Thunderbrook 已提交
3780
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3781
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3782
#endif
3783
  BindGlooWrapper(&m);
H
hutuxian 已提交
3784
  BindBoxHelper(&m);
H
hutuxian 已提交
3785 3786 3787
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3788
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3789
  BindNCCLWrapper(&m);
3790 3791 3792
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3793
#endif
F
flame 已提交
3794 3795
  BindGraph(&m);
  BindNode(&m);
3796
  BindPass(&m);
F
flame 已提交
3797
  BindInferenceApi(&m);
3798
  BindCompatible(&m);
3799
  BindDataset(&m);
Y
yaoxuefeng 已提交
3800
  BindGenerator(&m);
3801 3802 3803
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3804
  BindAscendDevice(&m);
3805
#endif
Y
Yanghello 已提交
3806 3807 3808
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3809

T
tangwei12 已提交
3810
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3811 3812
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3813
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3814 3815
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3816 3817 3818 3819 3820
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3821 3822 3823 3824
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3825
  BindSparseShardingTools(&m);
3826
#endif
L
Luo Tao 已提交
3827
}
3828
}  // namespace pybind
3829
}  // namespace paddle