pybind.cc 184.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93 94
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
95
#include "paddle/utils/none.h"
96 97 98
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
99
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
100
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
101
#include "paddle/fluid/pybind/box_helper_py.h"
102
#include "paddle/fluid/pybind/communication.h"
103
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
105
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
108
#include "paddle/fluid/pybind/generator_py.h"
109
#include "paddle/fluid/pybind/global_value_getter_setter.h"
110
#include "paddle/fluid/pybind/gloo_context_py.h"
111
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
113
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/ir.h"
115
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
117
#include "paddle/fluid/pybind/pybind_boost_headers.h"
118
#include "paddle/phi/backends/device_manager.h"
119

120
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
121
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
122
#endif
123
#include "paddle/fluid/framework/data_type.h"
124 125
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
126
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
127
#include "paddle/fluid/pybind/tensor_py.h"
128
#include "paddle/fluid/string/to_string.h"
129 130
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
131
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
132
#endif
133
#ifndef PADDLE_WITH_HIP
134
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
135
#endif
136
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
137 138
#endif

139
#ifdef PADDLE_WITH_ASCEND_CL
140
#include "paddle/fluid/platform/collective_helper.h"
141 142
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
143 144
#endif

145
#ifdef PADDLE_WITH_XPU
146
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
147
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
148 149
#endif

150
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
151

J
jianghaicheng 已提交
152
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
153 154
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
155
#endif
156

157 158 159 160
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
161 162 163 164
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
165
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
166 167 168
#include "paddle/fluid/pybind/fleet_py.h"
#endif

169 170 171
#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
172 173
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
174 175
#include "pybind11/stl.h"

176
DECLARE_bool(use_mkldnn);
177

Q
Qiao Longfei 已提交
178 179
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
180 181 182
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
183

184
namespace paddle {
185
namespace pybind {
186 187

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
188
PyTypeObject *g_framework_scope_pytype = nullptr;
189 190 191 192 193
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
194
PyTypeObject *g_mluplace_pytype = nullptr;
195
PyTypeObject *g_framework_tensor_pytype = nullptr;
196
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
197
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
198

199
bool IsCompiledWithCUDA() {
200 201 202 203 204 205 206
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

215 216
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
217 218 219 220 221 222
  return false;
#else
  return true;
#endif
}

223 224 225 226 227 228 229 230
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

231 232 233 234 235 236 237 238
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
247 248 249 250 251 252 253 254
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

255 256 257 258 259 260 261 262
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

279 280 281 282 283 284 285 286
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

287 288 289 290 291 292 293 294 295 296 297
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

298 299 300 301 302 303 304 305 306 307 308
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

326
bool IsCompiledWithBrpc() {
327
#ifndef PADDLE_WITH_DISTRIBUTE
328 329
  return false;
#endif
330
  return true;
331 332
}

Y
update  
Yancey1989 已提交
333
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
334
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
335 336 337 338 339 340
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
341 342 343 344 345 346 347
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
348
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
349 350
}

H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
373 374 375
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
389 390
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
391 392
    }
    vec_res.emplace_back(
393
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
394 395 396 397 398 399 400 401 402 403 404 405
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
406 407
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
408 409 410 411 412 413 414 415 416 417 418 419
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
420 421 422
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
423 424 425 426
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
427 428
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
429 430 431 432
  }
  return vec_res;
}

433 434 435 436 437 438 439 440
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
441 442
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
443 444 445 446 447 448 449 450 451 452 453 454 455
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
456 457 458
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
459 460 461 462 463
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
464 465 466 467 468
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
469 470
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
471 472 473
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
474 475 476 477
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
478
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
479 480
        tensor_temp->mutable_data(
            exe->GetPlace(),
481
            framework::TransToPhiDataType(var_desc.GetDataType()));
482 483 484
      }
    }
  } else {
485 486
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
487 488 489 490 491
  }

  return;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
516 517 518 519
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
520
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
521 522 523 524 525 526 527 528
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
529 530 531 532 533 534 535 536 537 538 539
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

540 541 542 543 544 545
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
546
  BindImperative(&m);
547
  BindEager(&m);
J
Jack Zhou 已提交
548
  BindEagerStringTensor(&m);
549 550
  BindCudaStream(&m);

Y
Yu Yang 已提交
551 552 553
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
554
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
555

556 557
  AssertStaticGraphAndDygraphGradMakerNoDiff();

558
  m.doc() = "C++ core of PaddlePaddle";
559

560 561 562 563
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

564
  BindException(&m);
Y
Yu Yang 已提交
565

566 567
  m.def("set_num_threads", &platform::SetNumThreads);

568 569
  m.def("disable_signal_handler", &DisableSignalHandler);

570 571 572 573 574 575 576 577
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

578
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
579
  m.def("cudnn_version", &platform::DnnVersion);
580 581 582 583 584 585
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
586
#endif
587

Z
Zeng Jinle 已提交
588 589 590 591
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

592 593 594 595 596 597 598 599 600 601
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
602 603
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
604 605
#endif

Z
Zeng Jinle 已提交
606 607 608 609
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
610 611 612
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
613 614 615 616 617 618

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
619 620
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
621
    framework::Tensor tensor;
6
633WHU 已提交
622

S
Siming Dai 已提交
623
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
624 625
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
626
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
627
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
628 629 630 631 632
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
633

634 635 636 637 638 639
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

640 641 642 643 644 645
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
646 647
  });

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
673 674
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
675 676
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
677 678
  });

S
sneaxiy 已提交
679
  m.def(
S
sneaxiy 已提交
680
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
681 682 683 684
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
685 686 687
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
705 706
            }
          }
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
726 727
                }
              }
728 729 730
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
731 732 733
            }
          }

734 735 736 737
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
738 739 740
           Return the registered kernels in paddle.

           Args:
741
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
742
           )DOC");
743

744 745 746 747 748 749
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
750 751 752 753 754
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
755

S
sneaxiy 已提交
756 757 758
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
759
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
760

761
  m.def("_set_fuse_parameter_group_size",
762
        &paddle::framework::ir::SetFuseParameterGroupsSize);
763
  m.def("_set_fuse_parameter_memory_size",
764
        &paddle::framework::ir::SetFuseParameterMemorySize);
765

S
sneaxiy 已提交
766 767 768
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

769 770
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

771 772 773
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          bool attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          float attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int64_t attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          const std::vector<std::string> &attr) {
        self.EmplaceBackAttr(attr);
      });

825 826 827 828 829
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
830 831
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
832 833 834 835
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
836 837
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
838
      .def("_is_initialized",
839
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
840
      .def("_get_dims",
841
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
842
      .def("_set_dims",
843
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
844
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
845
           })
Y
yuyang18 已提交
846
      .def("_set_layout",
847
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
848 849
             self.set_layout(StringToDataLayout(layout));
           })
R
ronnywang 已提交
850 851 852 853
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
854
      .def("_alloc_float",
855
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
856
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
857
           })
858
      .def("_alloc_float",
859
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
860 861
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
862
      .def("_alloc_float",
863
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
864
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
865
           })
866 867 868 869
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
870 871 872 873
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
874
      .def("_alloc_double",
875
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
876 877
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
878
      .def("_alloc_int",
879
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
880
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
881
           })
R
ronnywang 已提交
882 883 884 885
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<int>(place);
           })
886
      .def("_alloc_int",
887
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
888 889
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
890
      .def("_alloc_int",
891
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
892
             self.mutable_data<int>(place);
Q
qijun 已提交
893
           })
894 895 896 897
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
898
      .def("_alloc_int",
899 900
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
901 902
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
903
      .def("_alloc_float",
904 905
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
906 907
             self.mutable_data<float>(place);
           })
908
      .def("_mutable_data",
909
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
910
              paddle::framework::proto::VarType::Type type) {
911 912
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
913
           })
R
ronnywang 已提交
914 915 916 917 918 919
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
920
      .def("_mutable_data",
921
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
922
              paddle::framework::proto::VarType::Type type) {
923 924
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
925
           })
926
      .def("_mutable_data",
927
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
928
              paddle::framework::proto::VarType::Type type) {
929 930
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
931 932
           })
      .def("_mutable_data",
933
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
934
              paddle::framework::proto::VarType::Type type) {
935 936
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
937
           })
938 939 940
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
941 942
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
943
           })
944
      .def("_clear", &framework::Tensor::clear)
945 946 947
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
948 949
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
950
           })
Z
Zeng Jinle 已提交
951 952
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
R
ronnywang 已提交
953 954
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
955 956 957 958 959 960 961 962
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
963 964
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
965
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
966
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
967
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
968
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
R
ronnywang 已提交
969 970
      .def("set", SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
971 972
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
973
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
974
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
975 976
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
977 978
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
979 980
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
981
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
982 983
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
984
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
985 986 987
        
        Args:
          lod (numpy.ndarray): The data to set.
988
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
989
          Tensor is to be set.
990 991
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
992 993 994 995 996 997 998 999 1000 1001

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1002
                t = fluid.Tensor()
L
Leo Chen 已提交
1003 1004
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1005

1006 1007 1008
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
1009
           Return the shape of Tensor.
L
Leo Chen 已提交
1010 1011

           Returns:
1012
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1013 1014 1015 1016 1017 1018 1019 1020


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1021
                  t = fluid.Tensor()
L
Leo Chen 已提交
1022 1023 1024
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1025
      .def("_to_dlpack",
1026
           [](framework::Tensor &self) {
6
633WHU 已提交
1027
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1028
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1046 1047 1048 1049
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1050
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1051 1052 1053 1054
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1055
      .def("_layout",
1056 1057 1058 1059
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1060
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1080 1081
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1082 1083 1084 1085
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1086
      .def("__init__",
1087 1088
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1089
           })
G
gongweibao 已提交
1090
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1091 1092
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1093 1094 1095
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1096
      .def("set_lod",
1097 1098
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1099
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1100
             LoD new_lod;
1101 1102
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1103 1104
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1105 1106
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1107
             self.set_lod(new_lod);
S
sneaxiy 已提交
1108 1109
           },
           py::arg("lod"), R"DOC(
1110
           Set LoD of the Tensor.
S
sneaxiy 已提交
1111 1112

           Args:
L
Leo Chen 已提交
1113 1114 1115 1116
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1117 1118 1119 1120 1121 1122 1123

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1124
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1125 1126
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1127
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1128
           )DOC")
1129
      .def("set_recursive_sequence_lengths",
1130 1131
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1132 1133 1134 1135 1136 1137 1138 1139
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1140 1141
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1142
                 platform::errors::InvalidArgument(
1143 1144
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1145 1146 1147
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1148
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1149 1150
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1151
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1152

L
Leo Chen 已提交
1153
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1154
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1155
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1156 1157

           Args:
L
Leo Chen 已提交
1158 1159 1160 1161
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1162 1163 1164 1165 1166 1167 1168

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1169
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1170 1171
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1172
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1173
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1174
           )DOC")
1175
      .def("lod",
1176
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1177 1178 1179 1180 1181 1182
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1183 1184
           },
           R"DOC(
1185
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1186 1187

           Returns:
1188
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1189
           
Z
Zeng Jinle 已提交
1190 1191 1192 1193 1194 1195
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1196
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1197 1198 1199
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1200
           )DOC")
G
gongweibao 已提交
1201
      // Set above comments of set_lod.
1202
      .def("recursive_sequence_lengths",
1203
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1204
             // output the length-based lod info
1205
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1206 1207 1208 1209
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1210 1211
           },
           R"DOC(
L
Leo Chen 已提交
1212
           Return the recursive sequence lengths corresponding to of the LodD 
1213
           of the Tensor.
S
sneaxiy 已提交
1214 1215

           Returns:
L
Leo Chen 已提交
1216
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1217 1218 1219 1220 1221 1222 1223

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1224
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1225 1226 1227
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1228 1229
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1230
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1231
             // Check that the lod info is valid and match the outermost
1232
             // dimension of the Tensor data
S
sneaxiy 已提交
1233 1234 1235
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1236
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1237 1238

           Returns:
L
Leo Chen 已提交
1239
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1240 1241 1242 1243 1244 1245 1246

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1247
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1248 1249 1250
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1251
           )DOC")
L
Leo Chen 已提交
1252
      .def("_as_type",
1253
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1254
              paddle::framework::proto::VarType::Type type) {
1255
             framework::Tensor dst;
L
Leo Chen 已提交
1256 1257 1258 1259 1260
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1274
#ifdef _WIN32
1275
           });
1276 1277
#else
           })
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1559
      .def(py::pickle(
1560
          [](const framework::Tensor &t) {  // __getstate__
1561
            auto holder = t.Holder();
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1574 1575 1576
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1577 1578
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1579 1580 1581
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1582
              throw std::runtime_error("Invalid Tensor state!");
1583 1584

            // 1. Create a new C++ instance
1585
            framework::Tensor tensor;
1586 1587 1588 1589 1590

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1591 1592
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1593 1594

            // 3. Maintain global fd set
1595
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1596 1597
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1598 1599 1600
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1601
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1602
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1603 1604 1605 1606 1607
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1608

1609
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1610
      .def("__init__",
1611 1612
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1613
           })
Q
qijun 已提交
1614
      .def("__init__",
1615
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1616
              const int64_t &height) {
1617
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1618 1619
           })
      .def("get_tensor",
1620
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1621
           py::return_value_policy::reference)
1622
      .def("numel",
1623
           [](phi::SelectedRows &self) -> int64_t {
1624 1625
             return self.value().numel();
           })
1626 1627
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1628
      .def("set_rows",
1629
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1630
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1631 1632 1633 1634 1635 1636
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1637
      .def("sync_index",
1638 1639
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1640 1641 1642 1643 1644
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1645
      });
Q
qijun 已提交
1646

1647
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1648 1649 1650

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1651
      .def(py::init<>())
1652
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1653
      .def("set_int",
1654 1655
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1656 1657 1658 1659 1660 1661 1662
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1663
      .def("get_tensor",
1664 1665
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1666 1667
           },
           py::return_value_policy::reference)
1668 1669 1670 1671
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1684 1685 1686
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1687
      .def("get_selected_rows",
1688 1689
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1690 1691
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1692 1693 1694
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1695 1696 1697
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1698
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1699 1700 1701 1702 1703
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1704
#endif
Y
Refine  
Yu Yang 已提交
1705 1706
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1707 1708 1709 1710
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1711 1712
             return self.GetMutable<framework::ReaderHolder>();
           },
1713
           py::return_value_policy::reference)
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1725 1726 1727 1728
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1729

S
sneaxiy 已提交
1730
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1731

0
0x45f 已提交
1732
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1746
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1747 1748 1749 1750 1751
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1752 1753 1754
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1755 1756
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1757
      .def("var",
1758
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1759
             return self.Var(name);
Y
Yu Yang 已提交
1760
           },
S
sneaxiy 已提交
1761 1762
           py::arg("name"),
           R"DOC(
1763
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1764

1765
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1766
           current scope, the variable would be created. Otherwise,
1767
           return the existing variable.
S
sneaxiy 已提交
1768 1769

           Args:
1770 1771
               name (str): the variable name.

S
sneaxiy 已提交
1772
           Returns:
1773
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1774 1775 1776 1777
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1778
           Find variable named :code:`name` in the current scope or
1779
           its parent scope. Return None if not found. 
1780

S
sneaxiy 已提交
1781 1782
           Args:
               name (str): the variable name.
1783

S
sneaxiy 已提交
1784
           Returns:
1785
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1786
           )DOC",
1787
           py::return_value_policy::reference)
1788
      .def("size", &Scope::Size)
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1801
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1802 1803 1804 1805 1806 1807
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1808
           py::return_value_policy::reference)
S
sneaxiy 已提交
1809 1810 1811
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1812 1813
           )DOC")
      .def("_kids", &Scope::kids);
1814

S
sneaxiy 已提交
1815 1816 1817 1818 1819 1820
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1821 1822
        R"DOC(
        Create a new scope.
1823

S
sneaxiy 已提交
1824 1825 1826
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1827 1828
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1829 1830
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1831 1832
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1833 1834 1835 1836
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1837 1838
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1839 1840
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1841 1842 1843
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1844 1845
    return ret_values;
  });
1846 1847 1848 1849 1850 1851 1852 1853
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1854
              res = op_checker->GetDefaultAttrsMap();
1855 1856 1857 1858
            }
          }
          return res;
        });
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1875 1876 1877
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1878 1879 1880 1881 1882
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1883 1884 1885
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1900
  m.def("prune", [](const ProgramDesc &origin,
1901
                    const std::set<std::string> &feeded_var_names,
1902
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1903
    ProgramDesc prog_with_targets(origin);
1904

1905
    for (const auto &t : targets) {
1906
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1907
    }
1908
    proto::ProgramDesc pruned_desc;
1909 1910 1911 1912
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1913
  });
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1931 1932 1933 1934
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1935 1936 1937
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1938 1939
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1940

Q
qijun 已提交
1941
  // clang-format off
Y
Yu Yang 已提交
1942
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1943 1944
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1945
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1960
                  })
1961 1962 1963 1964 1965 1966 1967 1968 1969
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1996 1997
#endif
                  })
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
2021 2022
#endif
        })
Q
qijun 已提交
2023
      .def_static("create",
D
dzhwinter 已提交
2024
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2025
                      -> paddle::platform::DeviceContext* {
2026
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2027 2028 2029 2030
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2031
#else
W
Wilber 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2045 2046 2047 2048
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2049 2050
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2051
#endif
C
chengduoZH 已提交
2052 2053 2054 2055
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2056
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2057 2058 2059 2060
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2061 2062 2063 2064
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2065
// clang-format on
2066
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2067 2068
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2069 2070 2071
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2072
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2086
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2100
    devices = phi::DeviceManager::GetAllDeviceList();
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2114
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

2151 2152
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2153
               int dev_count = static_cast<int>(
2154
                   phi::DeviceManager::GetDeviceCount(device_type));
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2202
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2203 2204 2205 2206 2207

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2208
    The memory of CUDAPlace with different dev_id is not accessible.
2209 2210 2211 2212 2213 2214 2215 2216
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2217 2218 2219 2220

    Examples:
        .. code-block:: python

2221 2222 2223
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2224

2225 2226 2227
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2228 2229
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2230
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2231 2232 2233 2234 2235 2236 2237 2238
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2239 2240
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2241 2242 2243 2244 2245 2246 2247 2248
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
2249 2250
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
2251 2252 2253 2254
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2255 2256
             new (&self) platform::CUDAPlace(dev_id);
#else
2257 2258 2259 2260 2261 2262 2263 2264 2265
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2266 2267
#endif
           })
2268
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2269 2270
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2271 2272 2273 2274
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2275
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2276
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2277
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2278 2279
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2280 2281 2282
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2283
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2284
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2285

2286
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2287 2288 2289 2290 2291
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2292 2293 2294
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2333
#ifdef PADDLE_WITH_XPU
2334 2335 2336 2337 2338 2339 2340
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2341 2342 2343
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2344
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2345
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2346
#ifdef PADDLE_WITH_XPU
2347 2348 2349
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2350
      .export_values();
2351
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2352 2353
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2354 2355 2356 2357 2358 2359
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2360 2361 2362 2363
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2364
#endif
2365
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2366 2367
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2368 2369
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2370
    return platform::get_xpu_version(place.device) >
2371
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2372 2373 2374
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2375
    return platform::get_xpu_version(place.device) >
2376
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2377
  });
2378
#endif
2379

2380
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2381
    CPUPlace is a descriptor of a device.
2382
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2383 2384 2385 2386

    Examples:
        .. code-block:: python

2387 2388
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2389

2390 2391 2392
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2393 2394
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2395
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2396
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2397 2398 2399 2400
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2401
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2402
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2403

2404 2405
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2406 2407 2408 2409 2410 2411
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2412 2413 2414 2415

    Examples:
        .. code-block:: python

2416 2417
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2418

2419 2420 2421 2422
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2423
      .def("__init__",
S
sneaxiy 已提交
2424
           [](platform::CUDAPinnedPlace &self) {
2425
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2426 2427 2428
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2429
#endif
S
sneaxiy 已提交
2430
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2431
           })
S
sneaxiy 已提交
2432 2433 2434 2435
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2436 2437
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2438 2439
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2440 2441 2442 2443
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2444
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2445 2446
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2447
  // NPUPlace
2448
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2449 2450 2451 2452 2453 2454 2455 2456
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2457 2458 2459
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2491
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2506 2507
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2508 2509
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2631 2632 2633
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2634 2635 2636 2637
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2638
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2639
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2640
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2641
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2642
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2643 2644
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2645 2646
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2647 2648
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2649 2650
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2651 2652
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2653 2654 2655 2656
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2657 2658
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2659 2660 2661
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2662 2663 2664 2665 2666
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2667 2668
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2669 2670
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2671 2672 2673 2674
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2675 2676 2677 2678
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2679
      .def("set_place",
D
dzhwinter 已提交
2680
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2681
             self = gpu_place;
C
chengduoZH 已提交
2682
           })
2683 2684 2685 2686 2687
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2688 2689 2690 2691
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2692 2693 2694 2695
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2696 2697 2698 2699
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2700 2701 2702 2703
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2704 2705
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2706

Y
Yu Yang 已提交
2707
  py::class_<OperatorBase>(m, "Operator")
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2722
      .def("run",
2723
           [](OperatorBase &self, const Scope &scope,
2724 2725 2726 2727
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2728 2729
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2730 2731 2732 2733
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2734 2735
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2736 2737 2738 2739
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2740 2741
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2742 2743 2744 2745
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2746 2747 2748
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2749
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2750 2751
             self.Run(scope, place);
           })
2752 2753 2754 2755 2756 2757
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
2758 2759 2760 2761 2762 2763
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2764 2765 2766 2767 2768 2769 2770
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2771 2772
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2773
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2774
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2775 2776 2777 2778
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2779

2780 2781 2782
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2783 2784 2785 2786 2787 2788 2789
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2790 2791
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2792

2793 2794
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2795
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2796
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2797
      .def("close", &Executor::Close)
2798 2799
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2800 2801
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2802 2803 2804 2805
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2806
             pybind11::gil_scoped_release release;
2807 2808 2809 2810 2811 2812 2813
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2814 2815 2816
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2817
              std::map<std::string, FetchType *> *fetch_targets,
2818 2819 2820 2821 2822 2823 2824 2825
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2826
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2827 2828 2829 2830 2831 2832 2833
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2844
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2845 2846
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2847
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2848 2849
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2850
      });
S
sneaxiy 已提交
2851

2852
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2853
      .def(py::init<>())
2854 2855 2856 2857 2858
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2859

2860
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2861 2862 2863
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2864
           [](StandaloneExecutor &self,
H
hong 已提交
2865
              const std::unordered_map<std::string, py::array> &input_dict,
2866
              std::vector<std::string> fetch_names) {
2867
             std::vector<framework::LoDTensor> feed_tensors;
2868
             std::vector<std::string> feed_names;
H
hong 已提交
2869 2870 2871 2872 2873

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2874 2875
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2876 2877
             }

2878 2879 2880 2881 2882 2883 2884 2885 2886
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2887
              const std::unordered_map<std::string, framework::LoDTensor>
2888 2889
                  &input_dict,
              std::vector<std::string> fetch_names) {
2890
             std::vector<framework::LoDTensor> feed_tensors;
2891 2892 2893 2894 2895 2896 2897
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2898 2899 2900 2901
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2902
             }
W
wanghuancoder 已提交
2903
             return py::cast(std::move(ret));
2904
           })
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2915 2916 2917
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2918
             std::vector<framework::LoDTensor> feed_tensors;
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2929
             framework::interpreter::CostInfo cost_info;
2930 2931 2932 2933 2934
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2935 2936
           });

D
dzhwinter 已提交
2937
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2938
  m.def("init_glog", framework::InitGLOG);
2939 2940 2941 2942
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2943
  m.def("init_devices", []() { framework::InitDevices(); });
2944 2945
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2946
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2947
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2948
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2949
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2950
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2951
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2952
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2953
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2954
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2955
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2956
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2957
  m.def("supports_bfloat16", SupportsBfloat16);
2958
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2959 2960
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2961
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2962
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2963
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2964 2965 2966
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2986 2987
  m.def("memory_stat_get_current", memory::StatGetCurrentValue);
  m.def("memory_stat_get_peak", memory::StatGetPeakValue);
H
hutuxian 已提交
2988 2989 2990 2991 2992 2993 2994
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

3004
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3005 3006
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3007
    return platform::GetGPUComputeCapability(place.device) >= 53;
3008 3009
  });
#endif
3010

S
Steffy-zxf 已提交
3011 3012 3013 3014 3015 3016
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
3017 3018 3019 3020 3021
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3022
            return py::cast(BOOST_GET(LoDTensor, var));
3023
          } else {
3024
            return py::cast(BOOST_GET(LoDTensorArray, var));
3025 3026
          }
        });
3027
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3028

X
Xin Pan 已提交
3029 3030
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3031 3032 3033 3034
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3035
  BindCostModel(&m);
3036
  BindConstValue(&m);
3037
  BindGlobalValueGetterSetter(&m);
3038
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3039
  BindFleetExecutor(&m);
3040
  BindTCPStore(&m);
Y
Yu Yang 已提交
3041

Y
Yu Yang 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3051
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3052
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3053 3054 3055

    Examples:
        .. code-block:: python
3056

Z
Zeng Jinle 已提交
3057 3058 3059
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3060 3061 3062 3063
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3064 3065
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
3066 3067 3068 3069 3070 3071
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
3072 3073 3074 3075
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3076 3077 3078
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
3079 3080 3081 3082 3083 3084
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
3085 3086
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
3087 3088 3089 3090 3091 3092
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3115

3116 3117 3118 3119 3120 3121 3122 3123
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
3124
                 auto &data = BOOST_GET(LoDTensor, self[i]);
3125 3126
                 res[i] = py::cast(std::move(data));
               } else {
3127
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
3143
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
3144 3145 3146 3147 3148 3149 3150 3151
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
3152
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
3153 3154 3155 3156 3157 3158 3159 3160 3161
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3162 3163
        )DOC")
      .def("_move_to_list",
3164
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
3165 3166 3167 3168
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
3169
                 if (data_is_lod_tensor(self[i][j])) {
3170
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
3171 3172
                   tmp[j] = py::cast(std::move(var));
                 } else {
3173
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
3174 3175 3176 3177 3178 3179
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
3189
  m.def("op_support_gpu", OpSupportGPU);
3190
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3191
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3192
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3193 3194 3195 3196 3197 3198 3199 3200
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
3201 3202 3203 3204 3205 3206 3207
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3233
      });
D
dangqingqing 已提交
3234

3235
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3236 3237 3238
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3239 3240 3241 3242
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3243
#endif
P
peizhilin 已提交
3244
#endif
Y
Yu Yang 已提交
3245

3246 3247
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3248
  m.def("npu_finalize", []() {
3249 3250
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3251 3252 3253
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3254
      platform::NPUDeviceGuard guard(devices[i]);
3255 3256 3257 3258
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3279 3280 3281 3282
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3283 3284 3285 3286
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3287 3288 3289 3290 3291 3292
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3293 3294 3295 3296
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3297
      .value("kAll", platform::ProfilerState::kAll)
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3309
  m.def("set_tracer_option", platform::SetTracerOption);
3310 3311
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3312
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3313
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3314
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3315 3316
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
3317 3318 3319
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3320
    callable.inc_ref();
3321 3322 3323 3324 3325 3326 3327 3328
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
3329
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3330 3331 3332
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3333

3334
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3374
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
3375 3376
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
L
liutiexing 已提交
3386 3387 3388 3389
             auto result = profiler->Stop();
             framework::StaticGraphExecutorPerfStatistics(
                 result->GetNodeTrees());
             return result;
C
chenjian 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3423

3424
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3425 3426
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3427 3428
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3429
#endif  // PADDLE_WITH_CUDA
3430 3431
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3432

3433 3434 3435
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3436 3437
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3438
      .def("has", &ir::Pass::Has)
3439 3440 3441
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3442
           })
3443
      .def(
3444
          "set",
3445 3446 3447
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3448 3449
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3450 3451
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3452 3453 3454 3455 3456
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3471 3472
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3473
        self.Apply(graph.get());
F
flame 已提交
3474
      });
3475

X
fix  
Xin Pan 已提交
3476 3477
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3492
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3493
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3494 3495 3496 3497
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3498 3499 3500
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3501 3502 3503
    Examples:
        .. code-block:: python

3504 3505 3506 3507 3508 3509 3510 3511 3512
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3513

3514 3515
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3516

3517
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3518 3519
          sgd_optimizer.minimize(avg_loss)

3520
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3521 3522
          exec_strategy.num_threads = 4

3523 3524 3525
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3526 3527
        )DOC");

3528 3529 3530 3531
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3532

Y
yuyang18 已提交
3533
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3534 3535 3536 3537 3538
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3539
          },
3540 3541
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3542 3543 3544 3545 3546 3547 3548
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3562
      .def_property(
3563 3564
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3565
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3566 3567 3568
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3569 3570 3571 3572 3573
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3574 3575 3576
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3577 3578
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3579 3580 3581 3582 3583 3584 3585
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3586 3587 3588 3589
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3590
                because the temp variable's shape maybe the same between two iterations.
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3601

3602 3603 3604 3605 3606 3607 3608
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3609
              )DOC")
Q
Qiao Longfei 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3631
              )DOC")
3632 3633 3634 3635 3636 3637 3638 3639
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3640 3641 3642 3643 3644
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3645

Y
yuyang18 已提交
3646
  exec_strategy.def_property(
Y
yuyang18 已提交
3647 3648 3649 3650 3651 3652 3653
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3654 3655
      });

C
chengduo 已提交
3656 3657 3658 3659
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3660 3661 3662
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3663 3664 3665
    Examples:
        .. code-block:: python

3666
            import os
3667 3668 3669 3670
            import paddle
            import paddle.static as static

            paddle.enable_static()
3671

3672 3673
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3674

3675 3676 3677 3678
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3679

3680
            build_strategy = static.BuildStrategy()
3681 3682
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3683 3684
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3685
            program = program.with_data_parallel(loss_name=loss.name,
3686 3687
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3688
)DOC");
Y
yuyang18 已提交
3689 3690 3691

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3692 3693
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3694 3695 3696 3697 3698 3699 3700 3701
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3702
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3703 3704 3705 3706
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3707 3708 3709 3710
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3711
            self.reduce_ = strategy;
C
chengduo 已提交
3712
          },
3713
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3714 3715
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3716
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3717 3718
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3719
                Default is 'AllReduce'.
F
flame 已提交
3720 3721 3722 3723

                Examples:
                    .. code-block:: python

3724 3725 3726 3727 3728 3729 3730
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3731
                  )DOC")
Y
yuyang18 已提交
3732 3733 3734 3735 3736
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3737 3738 3739 3740
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3741
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3742
          },
3743
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3744
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3745 3746
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3747
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3748 3749 3750 3751

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3752 3753
                        import numpy
                        import os
3754 3755 3756 3757
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3758 3759

                        use_cuda = True
3760 3761
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3762 3763

                        # NOTE: If you use CPU to run the program, you need
3764
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3765 3766 3767 3768 3769 3770
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3771
                            places = static.cpu_places()
C
chengduo 已提交
3772
                        else:
3773
                            places = static.cuda_places()
C
chengduo 已提交
3774

3775 3776 3777 3778
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3779

3780
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3781

3782
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3783
                        build_strategy.gradient_scale_strategy = \
3784 3785 3786
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3787
                                          loss_name=loss.name, build_strategy=build_strategy,
3788
                                          places=places)
C
chengduo 已提交
3789 3790 3791 3792 3793 3794

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3795 3796
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3797
                   )DOC")
Y
yuyang18 已提交
3798 3799 3800 3801
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3802 3803 3804 3805
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3806
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3807
          },
3808
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3809
                writing the SSA Graph to file in the form of graphviz.
3810
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3811 3812 3813 3814

                Examples:
                    .. code-block:: python

3815 3816 3817 3818
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3819

3820 3821
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3822
                    )DOC")
S
sneaxiy 已提交
3823 3824 3825 3826 3827 3828
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3829 3830 3831 3832
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3833 3834
            self.enable_sequential_execution_ = b;
          },
3835 3836
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3837 3838 3839 3840

                Examples:
                    .. code-block:: python

3841 3842 3843 3844 3845 3846
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3847 3848
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3849 3850 3851 3852 3853 3854
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3855 3856 3857 3858
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3859 3860
            self.remove_unnecessary_lock_ = b;
          },
3861 3862
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3863 3864 3865 3866

                Examples:
                    .. code-block:: python

3867 3868 3869 3870 3871 3872
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3873 3874
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3875 3876 3877 3878
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3879
#ifdef WIN32
3880
            PADDLE_THROW(platform::errors::Unavailable(
3881
                "Distribution mode is not supported on Windows platform."));
3882
#endif
3883 3884
            self.num_trainers_ = num_trainers;
          })
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3897 3898 3899 3900 3901 3902
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3903 3904 3905 3906 3907 3908
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3909
      .def_property("use_hierarchical_allreduce",
3910 3911 3912 3913 3914 3915
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3916
      .def_property("hierarchical_allreduce_inter_nranks",
3917 3918 3919 3920 3921 3922 3923
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3924 3925 3926 3927 3928 3929
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3930 3931 3932 3933
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3934 3935
            self.fuse_elewise_add_act_ops_ = b;
          },
3936
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3937
                to fuse elementwise_add_op and activation_op,
3938
                it may make the execution faster. Default is False.
F
flame 已提交
3939 3940 3941 3942

                Examples:
                    .. code-block:: python

3943 3944 3945 3946 3947 3948
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3949 3950
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3976 3977 3978 3979
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3980
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3981
                              platform::errors::PreconditionNotMet(
3982 3983
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3993 3994 3995 3996 3997 3998
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3999 4000
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4026 4027 4028 4029
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
4030
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
4031
                              platform::errors::PreconditionNotMet(
4032 4033
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4044 4045 4046 4047 4048 4049
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4050 4051
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4052 4053 4054 4055 4056 4057
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
4058 4059 4060 4061
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4062 4063
            self.fuse_relu_depthwise_conv_ = b;
          },
4064
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4065 4066 4067
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4068
                Default is False.
F
flame 已提交
4069 4070 4071 4072

                Examples:
                    .. code-block:: python

4073 4074 4075 4076 4077 4078
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4079 4080
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
4081 4082 4083
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
4084
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
4085 4086
                    },
                    [](BuildStrategy &self, bool b) {
4087 4088 4089 4090
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4091 4092
                      self.fuse_broadcast_ops_ = b;
                    },
4093
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
4094 4095 4096 4097
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4098 4099 4100 4101 4102
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4103 4104 4105 4106 4107 4108
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4109 4110
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
4111 4112
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
4113
                      return self.fuse_all_optimizer_ops_ == true ||
4114
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
4115 4116
                    },
                    [](BuildStrategy &self, bool b) {
4117 4118 4119 4120
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4121 4122
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
4123 4124 4125 4126
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
4127 4128 4129 4130
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4131 4132
            self.sync_batch_norm_ = b;
          },
4133
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4134 4135 4136
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4137 4138
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4139 4140 4141 4142

                Examples:
                    .. code-block:: python

4143 4144 4145 4146 4147 4148
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4149 4150
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4151 4152
      .def_property(
          "memory_optimize",
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4163
              self.memory_optimize_ = paddle::none;
4164 4165 4166
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4167
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4168 4169
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4170 4171
            }
          },
4172
          R"DOC((bool, optional): memory opitimize aims to save total memory
4173
                consumption, set to True to enable it.
4174

4175 4176 4177
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4192 4193 4194
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4195 4196 4197
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4198
              PADDLE_THROW(platform::errors::Unavailable(
4199
                  "Distribution mode is not supported on Windows platform."));
4200 4201 4202 4203 4204
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
4205 4206 4207
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4208
      .def_property(
D
dzhwinter 已提交
4209 4210 4211
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4212 4213 4214 4215
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4216 4217
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4218 4219
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4220
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4221
          },
C
chengduo 已提交
4222
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
4223 4224 4225 4226 4227 4228 4229
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
4230 4231 4232 4233
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4234 4235 4236 4237 4238 4239 4240 4241 4242
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4243 4244 4245 4246 4247 4248
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
4249 4250 4251 4252 4253 4254 4255
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
4256 4257 4258 4259 4260 4261
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
4262
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
4263
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
4264 4265 4266 4267 4268
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4269

4270 4271 4272 4273 4274 4275
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4276
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
4277
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
4278
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
4279
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
4280 4281 4282 4283
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
4284 4285 4286 4287 4288
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
4289 4290 4291
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4292 4293 4294 4295
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4296 4297
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4298 4299 4300 4301 4302 4303 4304 4305
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
4306
               return py::cast(
4307
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
4308 4309
             } else {
               return py::cast(std::move(
4310
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
4311
             }
4312 4313
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4314

J
jianghaicheng 已提交
4315 4316
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4317 4318 4319 4320 4321 4322 4323 4324 4325
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
A
Allen Guo 已提交
4326
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4327 4328
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4329
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
A
Allen Guo 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4460 4461
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4462 4463 4464
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4465 4466
#endif

4467 4468 4469 4470 4471 4472 4473 4474
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

4475
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
4476 4477 4478 4479 4480 4481 4482 4483 4484
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
4485
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
4486 4487 4488 4489 4490 4491 4492
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

D
dongdaxiang 已提交
4493
  BindFleetWrapper(&m);
4494
  BindIO(&m);
T
Thunderbrook 已提交
4495

T
Thunderbrook 已提交
4496
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4497
  BindHeterWrapper(&m);
4498
  BindMetrics(&m);
T
Thunderbrook 已提交
4499
#endif
T
Thunderbrook 已提交
4500
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4501
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4502 4503 4504
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
4505
#endif
4506
  BindGlooWrapper(&m);
H
hutuxian 已提交
4507
  BindBoxHelper(&m);
H
hutuxian 已提交
4508 4509 4510
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4511
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4512
  BindNCCLWrapper(&m);
4513 4514 4515
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4516
#endif
F
flame 已提交
4517 4518
  BindGraph(&m);
  BindNode(&m);
4519
  BindPass(&m);
F
flame 已提交
4520
  BindInferenceApi(&m);
4521
  BindCompatible(&m);
4522
  BindDataset(&m);
Y
yaoxuefeng 已提交
4523
  BindGenerator(&m);
4524 4525 4526
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4527 4528 4529
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4530
  BindAscendDevice(&m);
4531
#endif
Y
Yanghello 已提交
4532 4533 4534
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4535

T
tangwei12 已提交
4536
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4537 4538
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4539
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4540 4541
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4542 4543 4544 4545 4546
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4547 4548 4549 4550
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4551
#endif
L
Luo Tao 已提交
4552
}
4553
}  // namespace pybind
4554
}  // namespace paddle