pybind.cc 147.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
W
wanghuancoder 已提交
78
#ifndef PADDLE_ON_INFERENCE
79
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
80
#endif
81
#include "paddle/fluid/pybind/io.h"
82
#include "paddle/utils/none.h"
83 84 85
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
86
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
87
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
88
#include "paddle/fluid/pybind/box_helper_py.h"
89
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
90
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
91
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
92
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
94
#include "paddle/fluid/pybind/generator_py.h"
95
#include "paddle/fluid/pybind/global_value_getter_setter.h"
96
#include "paddle/fluid/pybind/gloo_context_py.h"
97
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
98
#include "paddle/fluid/pybind/heter_wrapper_py.h"
99
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
100
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
101
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
102
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
103
#include "paddle/fluid/pybind/pybind_boost_headers.h"
104

105
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
106
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
107
#endif
108
#include "paddle/fluid/framework/data_type.h"
109 110
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
111
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/tensor_py.h"
113
#include "paddle/fluid/string/to_string.h"
114 115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
116
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
117
#endif
118
#ifndef PADDLE_WITH_HIP
119
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
120
#endif
121
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
122 123
#endif

124
#ifdef PADDLE_WITH_ASCEND_CL
125
#include "paddle/fluid/platform/collective_helper.h"
126 127
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
128 129
#endif

130
#ifdef PADDLE_WITH_XPU
131
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
132
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
133 134
#endif

135
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
J
jianghaicheng 已提交
136 137 138 139
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#include "paddle/fluid/platform/ipu_info.h"
#endif
140

141 142 143 144
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
145 146 147 148
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
149
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
150 151 152
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
153 154
#include "pybind11/stl.h"

155
DECLARE_bool(use_mkldnn);
156

Q
Qiao Longfei 已提交
157 158
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
159 160 161
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
162

163
namespace paddle {
164
namespace pybind {
165 166 167 168 169 170 171

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
172
PyTypeObject *g_mluplace_pytype = nullptr;
173
PyTypeObject *g_framework_tensor_pytype = nullptr;
174
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
175

176
bool IsCompiledWithCUDA() {
177 178 179 180 181 182 183 184 185
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
186 187 188 189 190 191
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

200 201 202 203 204 205 206 207
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
216 217 218 219 220 221 222 223
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

224 225 226 227 228 229 230 231
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

232 233 234 235 236 237 238 239
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

240 241 242 243 244 245 246 247
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

248 249 250 251 252 253 254 255
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

256 257 258 259 260 261 262 263 264 265 266
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

267 268 269 270 271 272 273 274 275 276 277
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
313 314 315
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

355
bool IsCompiledWithBrpc() {
356
#ifndef PADDLE_WITH_DISTRIBUTE
357 358
  return false;
#endif
359
  return true;
360 361
}

Y
update  
Yancey1989 已提交
362
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
363
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
364 365 366 367 368 369
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
370 371 372 373 374 375 376
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
377
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
378 379
}

H
hong 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
402 403 404
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
418 419
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
420 421
    }
    vec_res.emplace_back(
422
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
423 424 425 426 427 428 429 430 431 432 433 434
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
435 436
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
437 438 439 440 441 442 443 444 445 446 447 448
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
449 450 451
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
452 453 454 455
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
456 457
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
458 459 460 461
  }
  return vec_res;
}

462 463 464 465 466 467 468 469
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
470 471
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
472 473 474 475 476 477 478 479 480 481 482 483 484
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
485 486 487
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
488 489 490 491 492
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
493 494 495 496 497
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
498 499
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
500 501 502
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
503 504 505 506 507 508 509 510 511
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
512 513
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
514 515 516 517 518
  }

  return;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
543 544 545 546
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
547
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
548 549 550 551 552 553 554 555
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
556 557 558 559 560 561 562 563 564 565 566
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

567 568 569 570 571 572
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
573
#ifndef PADDLE_ON_INFERENCE
574
  BindEager(&m);
W
wanghuancoder 已提交
575
#endif
576 577
  BindCudaStream(&m);

Y
Yu Yang 已提交
578 579 580
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
581
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
582

583 584
  AssertStaticGraphAndDygraphGradMakerNoDiff();

585
  m.doc() = "C++ core of PaddlePaddle";
586

587 588 589 590
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

591
  BindException(&m);
Y
Yu Yang 已提交
592

593 594
  m.def("set_num_threads", &platform::SetNumThreads);

595 596
  m.def("disable_signal_handler", &DisableSignalHandler);

597 598 599 600 601 602 603 604
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

605
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
606
  m.def("cudnn_version", &platform::DnnVersion);
607 608 609 610 611 612
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
613
#endif
614

Z
Zeng Jinle 已提交
615 616 617 618
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

619 620 621 622 623 624 625 626 627 628
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
629 630
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
631 632
#endif

Z
Zeng Jinle 已提交
633 634 635 636
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
637 638 639
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
640 641 642 643 644 645

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
646 647
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
648
    framework::Tensor tensor;
6
633WHU 已提交
649

S
Siming Dai 已提交
650
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
651 652
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
653
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
654
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
655 656 657 658 659
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
660

661 662 663 664 665 666
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

667 668 669 670 671 672
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
673 674
  });

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
700 701 702 703 704 705
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
706
  m.def(
S
sneaxiy 已提交
707
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
708 709 710 711
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
712 713 714
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
731 732 733
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
734
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
735

736
  m.def("_set_fuse_parameter_group_size",
737
        &paddle::framework::ir::SetFuseParameterGroupsSize);
738
  m.def("_set_fuse_parameter_memory_size",
739
        &paddle::framework::ir::SetFuseParameterMemorySize);
740

S
sneaxiy 已提交
741 742 743
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

744 745
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

746 747 748
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

749
  BindImperative(&m);
750

751 752 753 754 755
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
756 757
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
758
      .def("_is_initialized",
759
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
760
      .def("_get_dims",
761
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
762
      .def("_set_dims",
763
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
764
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
765
           })
Y
yuyang18 已提交
766
      .def("_set_layout",
767
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
768 769
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
770
      .def("_alloc_float",
771
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
772
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
773
           })
774
      .def("_alloc_float",
775
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
776 777
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
778
      .def("_alloc_float",
779
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
780
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
781
           })
782 783 784 785
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
786 787 788 789
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
790
      .def("_alloc_double",
791
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
792 793
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
794
      .def("_alloc_int",
795
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
796
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
797
           })
798
      .def("_alloc_int",
799
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
800 801
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
802
      .def("_alloc_int",
803
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
804
             self.mutable_data<int>(place);
Q
qijun 已提交
805
           })
806 807 808 809
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
810
      .def("_alloc_int",
811 812
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
813 814
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
815
      .def("_alloc_float",
816 817
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
818 819
             self.mutable_data<float>(place);
           })
820
      .def("_mutable_data",
821
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
822 823 824
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
825
      .def("_mutable_data",
826
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
827 828 829
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
830
      .def("_mutable_data",
831
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
832 833 834 835
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
836
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
837 838 839
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
840 841 842 843 844
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
845
      .def("_clear", &framework::Tensor::clear)
846 847 848 849 850
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
851 852 853 854 855 856 857 858 859 860
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
861 862
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
863
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
864
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
865
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
866
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
867 868
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
869
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
870
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
871 872
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
873 874
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
875 876
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
877
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
878 879
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
880
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
881 882 883
        
        Args:
          lod (numpy.ndarray): The data to set.
884
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
885
          Tensor is to be set.
886 887
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
888 889 890 891 892 893 894 895 896 897

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

898
                t = fluid.Tensor()
L
Leo Chen 已提交
899 900
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
901

902 903 904
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
905
           Return the shape of Tensor.
L
Leo Chen 已提交
906 907

           Returns:
908
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
909 910 911 912 913 914 915 916


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

917
                  t = fluid.Tensor()
L
Leo Chen 已提交
918 919 920
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
921
      .def("_to_dlpack",
922
           [](framework::Tensor &self) {
6
633WHU 已提交
923
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
924
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
942 943 944 945
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
946 947
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
948
      .def("_layout",
949 950 951 952
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
953
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is invalid, "
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
978
      .def("__init__",
979 980
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
981
           })
G
gongweibao 已提交
982
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
983 984
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
985 986 987
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
988
      .def("set_lod",
989 990
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
991
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
992
             LoD new_lod;
993 994
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
995 996
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
997 998
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
999
             self.set_lod(new_lod);
S
sneaxiy 已提交
1000 1001
           },
           py::arg("lod"), R"DOC(
1002
           Set LoD of the Tensor.
S
sneaxiy 已提交
1003 1004

           Args:
L
Leo Chen 已提交
1005 1006 1007 1008
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1009 1010 1011 1012 1013 1014 1015

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1016
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1017 1018
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1019
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1020
           )DOC")
1021
      .def("set_recursive_sequence_lengths",
1022 1023
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1024 1025 1026 1027 1028 1029 1030 1031
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1032 1033
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1034 1035 1036 1037 1038
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1039
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1040 1041
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1042
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1043

L
Leo Chen 已提交
1044
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1045
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1046
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1047 1048

           Args:
L
Leo Chen 已提交
1049 1050 1051 1052
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1053 1054 1055 1056 1057 1058 1059

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1060
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1061 1062
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1063
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1064
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1065
           )DOC")
1066
      .def("lod",
1067
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1068 1069 1070 1071 1072 1073
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1074 1075
           },
           R"DOC(
1076
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1077 1078

           Returns:
1079
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1080
           
Z
Zeng Jinle 已提交
1081 1082 1083 1084 1085 1086
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1087
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1088 1089 1090
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1091
           )DOC")
G
gongweibao 已提交
1092
      // Set above comments of set_lod.
1093
      .def("recursive_sequence_lengths",
1094
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1095 1096 1097 1098 1099 1100
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1101 1102
           },
           R"DOC(
L
Leo Chen 已提交
1103
           Return the recursive sequence lengths corresponding to of the LodD 
1104
           of the Tensor.
S
sneaxiy 已提交
1105 1106

           Returns:
L
Leo Chen 已提交
1107
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1108 1109 1110 1111 1112 1113 1114

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1115
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1116 1117 1118
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1119 1120
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1121
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1122
             // Check that the lod info is valid and match the outermost
1123
             // dimension of the Tensor data
S
sneaxiy 已提交
1124 1125 1126
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1127
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1128 1129

           Returns:
L
Leo Chen 已提交
1130
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1131 1132 1133 1134 1135 1136 1137

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1138
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1139 1140 1141
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1142
           )DOC")
L
Leo Chen 已提交
1143
      .def("_as_type",
1144
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1145
              paddle::framework::proto::VarType::Type type) {
1146
             framework::Tensor dst;
L
Leo Chen 已提交
1147 1148 1149 1150 1151
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1165
#ifdef _WIN32
1166
           });
1167 1168 1169
#else
           })
      .def(py::pickle(
1170
          [](const framework::Tensor &t) {  // __getstate__
1171
            auto holder = t.Holder();
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1184 1185 1186
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1187 1188
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1189 1190 1191
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1192
              throw std::runtime_error("Invalid Tensor state!");
1193 1194

            // 1. Create a new C++ instance
1195
            framework::Tensor tensor;
1196 1197 1198 1199 1200

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1201 1202
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1203 1204

            // 3. Maintain global fd set
1205
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1206 1207
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1208 1209 1210 1211
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1212 1213 1214 1215 1216 1217
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1218

Q
qijun 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1230 1231
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1232 1233
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1234 1235
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1236
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1237 1238 1239 1240 1241 1242
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1243
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1244
      .def("rows", [](SelectedRows &self) {
1245 1246 1247 1248 1249
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1250
      });
Q
qijun 已提交
1251

1252
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1253 1254 1255

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1256
      .def(py::init<>())
1257
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1258
      .def("set_int",
1259 1260
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1261 1262 1263 1264 1265 1266 1267
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1268
      .def("get_tensor",
1269 1270
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1271 1272
           },
           py::return_value_policy::reference)
1273 1274 1275 1276
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1289 1290 1291
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1292 1293 1294 1295 1296
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1297 1298 1299
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1300 1301 1302
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1303
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1304 1305 1306 1307 1308
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1309
#endif
Y
Refine  
Yu Yang 已提交
1310 1311
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1312 1313 1314 1315
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1316 1317
             return self.GetMutable<framework::ReaderHolder>();
           },
1318
           py::return_value_policy::reference)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1330 1331 1332 1333
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1334

S
sneaxiy 已提交
1335
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1336

S
sneaxiy 已提交
1337
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1351
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1352 1353 1354 1355 1356 1357
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1358 1359
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1360
      .def("var",
1361
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1362
             return self.Var(name);
Y
Yu Yang 已提交
1363
           },
S
sneaxiy 已提交
1364 1365
           py::arg("name"),
           R"DOC(
1366
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1367

1368
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1369
           current scope, the variable would be created. Otherwise,
1370
           return the existing variable.
S
sneaxiy 已提交
1371 1372

           Args:
1373 1374
               name (str): the variable name.

S
sneaxiy 已提交
1375
           Returns:
1376
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1377 1378 1379 1380
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1381
           Find variable named :code:`name` in the current scope or
1382
           its parent scope. Return None if not found. 
1383

S
sneaxiy 已提交
1384 1385
           Args:
               name (str): the variable name.
1386

S
sneaxiy 已提交
1387
           Returns:
1388
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1389
           )DOC",
1390
           py::return_value_policy::reference)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1403
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1404 1405 1406 1407 1408 1409
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1410
           py::return_value_policy::reference)
S
sneaxiy 已提交
1411 1412 1413
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1414 1415
           )DOC")
      .def("_kids", &Scope::kids);
1416

S
sneaxiy 已提交
1417 1418 1419 1420 1421 1422
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1423 1424
        R"DOC(
        Create a new scope.
1425

S
sneaxiy 已提交
1426 1427 1428
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1429 1430
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1431 1432
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1433 1434
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1435 1436 1437 1438
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1439 1440
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1441 1442
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1443 1444 1445
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1446 1447
    return ret_values;
  });
1448 1449 1450 1451 1452 1453 1454 1455
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1456
              res = op_checker->GetDefaultAttrsMap();
1457 1458 1459 1460
            }
          }
          return res;
        });
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1477 1478 1479
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1480 1481 1482 1483 1484
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1485 1486 1487
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1502
  m.def("prune", [](const ProgramDesc &origin,
1503
                    const std::set<std::string> &feeded_var_names,
1504
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1505
    ProgramDesc prog_with_targets(origin);
1506

1507
    for (const auto &t : targets) {
1508
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1509
    }
1510
    proto::ProgramDesc pruned_desc;
1511 1512 1513 1514
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1515
  });
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1533 1534 1535 1536
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1537 1538 1539
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1540 1541
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1542

Q
qijun 已提交
1543
  // clang-format off
Y
Yu Yang 已提交
1544
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1545 1546
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1547
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1548 1549
                    return new paddle::platform::CPUDeviceContext();
                  })
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1572 1573
#endif
                  })
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1586
      .def_static("create",
D
dzhwinter 已提交
1587
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1588
                      -> paddle::platform::DeviceContext* {
1589
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1590 1591 1592 1593
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1594
#else
Q
qijun 已提交
1595
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1596
#endif
C
chengduoZH 已提交
1597 1598 1599 1600
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1601
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1602 1603 1604 1605
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1606 1607 1608 1609
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1610
// clang-format on
1611
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1612 1613
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1614
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1615 1616 1617 1618 1619

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1620
    The memory of CUDAPlace with different dev_id is not accessible.
1621 1622 1623 1624 1625 1626 1627 1628
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1629 1630 1631 1632

    Examples:
        .. code-block:: python

1633 1634 1635
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1636

1637 1638 1639
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1640 1641
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1642
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1643 1644 1645 1646 1647 1648 1649 1650
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1651 1652
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1653 1654 1655 1656 1657 1658 1659 1660
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1661 1662
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1663 1664 1665 1666
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1667 1668
             new (&self) platform::CUDAPlace(dev_id);
#else
1669 1670 1671 1672 1673 1674 1675 1676 1677
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1678 1679
#endif
           })
1680
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1681 1682
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1683 1684 1685 1686
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1687
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1688
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1689
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1690 1691
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1692 1693 1694
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1695
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1696
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1697

1698
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1699 1700 1701 1702 1703
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1704 1705 1706
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1745
#ifdef PADDLE_WITH_XPU
1746 1747 1748 1749 1750 1751 1752
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1753 1754 1755
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1756
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1757
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1758
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1759 1760 1761 1762
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1763
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1764 1765
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
TTerror 已提交
1766 1767 1768 1769 1770 1771 1772
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, platform::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
  m.def("get_xpu_device_op_list", [](platform::XPUVersion version) {
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1773 1774 1775 1776 1777 1778 1779 1780
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1781
#endif
1782

1783
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1784
    CPUPlace is a descriptor of a device.
1785
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1786 1787 1788 1789

    Examples:
        .. code-block:: python

1790 1791
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1792

1793 1794 1795
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1796 1797
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1798
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1799
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1800 1801 1802 1803
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1804
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1805
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1806

1807 1808
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1809 1810 1811 1812 1813 1814
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1815 1816 1817 1818

    Examples:
        .. code-block:: python

1819 1820
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1821

1822 1823 1824 1825
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1826
      .def("__init__",
S
sneaxiy 已提交
1827
           [](platform::CUDAPinnedPlace &self) {
1828
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1829 1830 1831
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1832
#endif
S
sneaxiy 已提交
1833
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1834
           })
S
sneaxiy 已提交
1835 1836 1837 1838
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1839 1840
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1841 1842
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1843 1844 1845 1846
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1847
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1848 1849
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1850
  // NPUPlace
1851
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1852 1853 1854 1855 1856 1857 1858 1859
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1860 1861 1862
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1894
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1909 1910
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1911 1912
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2034 2035 2036
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2037 2038 2039 2040
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2041
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2042
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2043
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2044
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2045
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2046 2047
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2048 2049
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2050 2051
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2052 2053
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2054 2055
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2056 2057 2058 2059
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2060 2061
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2062 2063 2064 2065 2066
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2067 2068
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2069 2070 2071 2072
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2073 2074 2075 2076
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2077
      .def("set_place",
D
dzhwinter 已提交
2078
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2079
             self = gpu_place;
C
chengduoZH 已提交
2080
           })
2081 2082 2083 2084 2085
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2086 2087 2088 2089
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2090 2091 2092 2093
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2094 2095 2096 2097
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2098 2099
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2100

Y
Yu Yang 已提交
2101
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
2116
      .def("run",
2117
           [](OperatorBase &self, const Scope &scope,
2118 2119 2120 2121
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2122 2123
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2124 2125 2126 2127
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2128 2129
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2130 2131 2132 2133
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2134 2135
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2136 2137 2138 2139
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2140 2141 2142
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2143
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2144 2145
             self.Run(scope, place);
           })
2146 2147 2148 2149 2150 2151
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2152 2153 2154 2155 2156 2157 2158
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2159 2160
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2161
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2162
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2163 2164 2165 2166
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2167

2168 2169 2170
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2171 2172 2173 2174 2175 2176 2177
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2178 2179
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2180

2181 2182
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2183
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2184
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2185
      .def("close", &Executor::Close)
2186 2187
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2188 2189
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2190 2191 2192 2193
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2194
             pybind11::gil_scoped_release release;
2195 2196 2197 2198 2199 2200 2201
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2202 2203 2204
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2205
              std::map<std::string, FetchType *> *fetch_targets,
2206 2207 2208 2209 2210 2211 2212 2213
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2214
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2215 2216 2217 2218 2219 2220 2221
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2232
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2233 2234
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2235
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2236 2237
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2238
      });
S
sneaxiy 已提交
2239

2240
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2241
      .def(py::init<>())
2242 2243 2244 2245 2246
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2247

2248
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2249 2250 2251
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2252
           [](StandaloneExecutor &self,
H
hong 已提交
2253
              const std::unordered_map<std::string, py::array> &input_dict,
2254
              std::vector<std::string> fetch_names) {
2255
             std::vector<framework::LoDTensor> feed_tensors;
2256
             std::vector<std::string> feed_names;
H
hong 已提交
2257 2258 2259 2260 2261

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2262 2263
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2264 2265
             }

2266 2267 2268 2269 2270 2271 2272 2273 2274
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2275
              const std::unordered_map<std::string, framework::LoDTensor>
2276 2277
                  &input_dict,
              std::vector<std::string> fetch_names) {
2278
             std::vector<framework::LoDTensor> feed_tensors;
2279 2280 2281 2282 2283 2284 2285
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2286 2287 2288 2289
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2290
             }
W
wanghuancoder 已提交
2291
             return py::cast(std::move(ret));
2292
           })
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2303 2304 2305
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2306
             std::vector<framework::LoDTensor> feed_tensors;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2317
             framework::interpreter::CostInfo cost_info;
2318 2319 2320 2321 2322
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2323 2324
           });

D
dzhwinter 已提交
2325
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2326
  m.def("init_glog", framework::InitGLOG);
2327 2328
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2329
  m.def("init_devices", []() { framework::InitDevices(); });
2330

2331
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2332
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2333
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2334
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2335
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2336
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2337
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2338
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2339
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2340
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2341
  m.def("supports_bfloat16", SupportsBfloat16);
2342
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2343 2344
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2345
  m.def("op_supported_infos", OpSupportedInfos);
2346
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2347
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2348 2349 2350
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2370 2371 2372 2373 2374 2375 2376
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2386
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2387 2388
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2389
    return platform::GetGPUComputeCapability(place.device) >= 53;
2390 2391
  });
#endif
2392

S
Steffy-zxf 已提交
2393 2394 2395 2396 2397 2398
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2399 2400 2401 2402 2403
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2404
            return py::cast(BOOST_GET(LoDTensor, var));
2405
          } else {
2406
            return py::cast(BOOST_GET(LoDTensorArray, var));
2407 2408
          }
        });
2409
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2410

X
Xin Pan 已提交
2411 2412
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2413 2414 2415 2416
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2417
  BindCostModel(&m);
2418
  BindConstValue(&m);
2419
  BindGlobalValueGetterSetter(&m);
2420
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2421
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2422

Y
Yu Yang 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2432
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2433
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2434 2435 2436

    Examples:
        .. code-block:: python
2437

Z
Zeng Jinle 已提交
2438 2439 2440
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2441 2442 2443 2444
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2445 2446
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2447 2448 2449 2450 2451 2452
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2453 2454 2455 2456
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2457 2458 2459
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2460 2461 2462 2463 2464 2465
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2466 2467
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2468 2469 2470 2471 2472 2473
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2496

2497 2498 2499 2500 2501 2502 2503 2504
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2505
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2506 2507
                 res[i] = py::cast(std::move(data));
               } else {
2508
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2524
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2525 2526 2527 2528 2529 2530 2531 2532
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2533
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2534 2535 2536 2537 2538 2539 2540 2541 2542
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2543 2544
        )DOC")
      .def("_move_to_list",
2545
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2546 2547 2548 2549
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2550
                 if (data_is_lod_tensor(self[i][j])) {
2551
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2552 2553
                   tmp[j] = py::cast(std::move(var));
                 } else {
2554
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2555 2556 2557 2558 2559 2560
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2570
  m.def("op_support_gpu", OpSupportGPU);
2571
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2572
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2573 2574 2575 2576 2577 2578 2579 2580
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2581 2582 2583 2584 2585 2586 2587
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2613
      });
D
dangqingqing 已提交
2614

2615
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2616 2617 2618
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2619 2620 2621 2622
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2623
#endif
P
peizhilin 已提交
2624
#endif
Y
Yu Yang 已提交
2625

2626 2627
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2628
  m.def("npu_finalize", []() {
2629 2630
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2631 2632 2633
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2634
      platform::NPUDeviceGuard guard(devices[i]);
2635 2636 2637 2638
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2659 2660 2661 2662
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2663 2664 2665 2666
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2667 2668 2669 2670 2671 2672
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2673 2674 2675 2676
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2677
      .value("kAll", platform::ProfilerState::kAll)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2689
  m.def("set_tracer_option", platform::SetTracerOption);
2690 2691
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2692
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2693
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2694
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2695 2696 2697 2698 2699
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2700
    callable.inc_ref();
2701 2702 2703 2704 2705 2706 2707 2708
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2709
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2710 2711 2712
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2713

2714 2715
  m.def("size_of_dtype", framework::SizeOfType);

2716
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2717 2718
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2719 2720
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2721
#endif  // PADDLE_WITH_CUDA
2722 2723
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2724

2725 2726 2727
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2728 2729
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2730
      .def("has", &ir::Pass::Has)
2731 2732 2733
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2734
           })
2735
      .def(
2736
          "set",
2737 2738 2739
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2740 2741
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2742 2743
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2744 2745 2746 2747 2748
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2763 2764
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2765
        self.Apply(graph.get());
F
flame 已提交
2766
      });
2767

X
fix  
Xin Pan 已提交
2768 2769
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2784
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2785
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2786 2787 2788 2789
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2790 2791 2792
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2793 2794 2795
    Examples:
        .. code-block:: python

2796 2797 2798 2799 2800 2801 2802 2803 2804
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2805

2806 2807
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2808

2809
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2810 2811
          sgd_optimizer.minimize(avg_loss)

2812
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2813 2814
          exec_strategy.num_threads = 4

2815 2816 2817
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2818 2819
        )DOC");

2820 2821 2822 2823
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2824

Y
yuyang18 已提交
2825
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2826 2827 2828 2829 2830
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2831
          },
2832 2833
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2834 2835 2836 2837 2838 2839 2840
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2854
      .def_property(
2855 2856
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2857
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2858 2859 2860
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2861 2862 2863 2864 2865
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2866 2867 2868
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2869 2870
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2871 2872 2873 2874 2875 2876 2877
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2878 2879 2880 2881
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2882
                because the temp variable's shape maybe the same between two iterations.
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2893

2894 2895 2896 2897 2898 2899 2900
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2901
              )DOC")
Q
Qiao Longfei 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2923
              )DOC")
2924 2925 2926 2927 2928 2929 2930 2931
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2932 2933 2934 2935 2936
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2937

Y
yuyang18 已提交
2938
  exec_strategy.def_property(
Y
yuyang18 已提交
2939 2940 2941 2942 2943 2944 2945
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2946 2947
      });

C
chengduo 已提交
2948 2949 2950 2951
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2952 2953 2954
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2955 2956 2957
    Examples:
        .. code-block:: python

2958
            import os
2959 2960 2961 2962
            import paddle
            import paddle.static as static

            paddle.enable_static()
2963

2964 2965
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2966

2967 2968 2969 2970
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2971

2972
            build_strategy = static.BuildStrategy()
2973 2974
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2975 2976
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2977
            program = program.with_data_parallel(loss_name=loss.name,
2978 2979
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2980
)DOC");
Y
yuyang18 已提交
2981 2982 2983

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
2984 2985
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
2986 2987 2988 2989 2990 2991 2992 2993
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2994
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2995 2996 2997 2998
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2999 3000 3001 3002
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3003
            self.reduce_ = strategy;
C
chengduo 已提交
3004
          },
3005
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3006 3007
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3008
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3009 3010
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3011
                Default is 'AllReduce'.
F
flame 已提交
3012 3013 3014 3015

                Examples:
                    .. code-block:: python

3016 3017 3018 3019 3020 3021 3022
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3023
                  )DOC")
Y
yuyang18 已提交
3024 3025 3026 3027 3028
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3029 3030 3031 3032
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3033
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3034
          },
3035
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3036
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3037 3038
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3039
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3040 3041 3042 3043

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3044 3045
                        import numpy
                        import os
3046 3047 3048 3049
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3050 3051

                        use_cuda = True
3052 3053
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3054 3055

                        # NOTE: If you use CPU to run the program, you need
3056
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3057 3058 3059 3060 3061 3062
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3063
                            places = static.cpu_places()
C
chengduo 已提交
3064
                        else:
3065
                            places = static.cuda_places()
C
chengduo 已提交
3066

3067 3068 3069 3070
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3071

3072
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3073

3074
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3075
                        build_strategy.gradient_scale_strategy = \
3076 3077 3078
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3079
                                          loss_name=loss.name, build_strategy=build_strategy,
3080
                                          places=places)
C
chengduo 已提交
3081 3082 3083 3084 3085 3086

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3087 3088
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3089
                   )DOC")
Y
yuyang18 已提交
3090 3091 3092 3093
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3094 3095 3096 3097
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3098
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3099
          },
3100
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3101
                writing the SSA Graph to file in the form of graphviz.
3102
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3103 3104 3105 3106

                Examples:
                    .. code-block:: python

3107 3108 3109 3110
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3111

3112 3113
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3114
                    )DOC")
S
sneaxiy 已提交
3115 3116 3117 3118 3119 3120
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3121 3122 3123 3124
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3125 3126
            self.enable_sequential_execution_ = b;
          },
3127 3128
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3129 3130 3131 3132

                Examples:
                    .. code-block:: python

3133 3134 3135 3136 3137 3138
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3139 3140
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3141 3142 3143 3144 3145 3146
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3147 3148 3149 3150
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3151 3152
            self.remove_unnecessary_lock_ = b;
          },
3153 3154
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3155 3156 3157 3158

                Examples:
                    .. code-block:: python

3159 3160 3161 3162 3163 3164
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3165 3166
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3167 3168 3169 3170
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3171
#ifdef WIN32
3172
            PADDLE_THROW(platform::errors::Unavailable(
3173
                "Distribution mode is not supported on Windows platform."));
3174
#endif
3175 3176
            self.num_trainers_ = num_trainers;
          })
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3189 3190 3191 3192 3193 3194
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3195 3196 3197 3198 3199 3200
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3201
      .def_property("use_hierarchical_allreduce",
3202 3203 3204 3205 3206 3207
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3208
      .def_property("hierarchical_allreduce_inter_nranks",
3209 3210 3211 3212 3213 3214 3215
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3216 3217 3218 3219 3220 3221
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3222 3223 3224 3225
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3226 3227
            self.fuse_elewise_add_act_ops_ = b;
          },
3228
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3229
                to fuse elementwise_add_op and activation_op,
3230
                it may make the execution faster. Default is False.
F
flame 已提交
3231 3232 3233 3234

                Examples:
                    .. code-block:: python

3235 3236 3237 3238 3239 3240
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3241 3242
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3243 3244 3245 3246
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3247
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3248
                              platform::errors::PreconditionNotMet(
3249 3250
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3260 3261 3262 3263 3264 3265
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3266 3267
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3293 3294 3295 3296
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3297
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3298
                              platform::errors::PreconditionNotMet(
3299 3300
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3311 3312 3313 3314 3315 3316
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3317 3318
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3319 3320 3321 3322 3323 3324
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3325 3326 3327 3328
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3329 3330
            self.fuse_relu_depthwise_conv_ = b;
          },
3331
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3332 3333 3334
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3335
                Default is False.
F
flame 已提交
3336 3337 3338 3339

                Examples:
                    .. code-block:: python

3340 3341 3342 3343 3344 3345
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3346 3347
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3348 3349 3350
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3351
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3352 3353
                    },
                    [](BuildStrategy &self, bool b) {
3354 3355 3356 3357
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3358 3359
                      self.fuse_broadcast_ops_ = b;
                    },
3360
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3361 3362 3363 3364
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3365 3366 3367 3368 3369
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3370 3371 3372 3373 3374 3375
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3376 3377
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3378 3379
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3380
                      return self.fuse_all_optimizer_ops_ == true ||
3381
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3382 3383
                    },
                    [](BuildStrategy &self, bool b) {
3384 3385 3386 3387
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3388 3389
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3390 3391 3392 3393
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3394 3395 3396 3397
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3398 3399
            self.sync_batch_norm_ = b;
          },
3400
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3401 3402 3403
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3404 3405
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3406 3407 3408 3409

                Examples:
                    .. code-block:: python

3410 3411 3412 3413 3414 3415
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3416 3417
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3418 3419
      .def_property(
          "memory_optimize",
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3430
              self.memory_optimize_ = paddle::none;
3431 3432 3433
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3434
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3435 3436
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3437 3438
            }
          },
3439
          R"DOC((bool, optional): memory opitimize aims to save total memory
3440
                consumption, set to True to enable it.
3441

3442 3443 3444
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3459 3460 3461
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3462 3463 3464
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3465
              PADDLE_THROW(platform::errors::Unavailable(
3466
                  "Distribution mode is not supported on Windows platform."));
3467 3468 3469 3470 3471
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3472 3473 3474
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3475
      .def_property(
D
dzhwinter 已提交
3476 3477 3478
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3479 3480 3481 3482
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3483 3484
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3485 3486
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3487
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3488
          },
C
chengduo 已提交
3489
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3490 3491 3492 3493 3494 3495 3496
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3497 3498 3499 3500
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3501 3502 3503 3504 3505 3506 3507 3508 3509
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3510 3511 3512 3513 3514 3515
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3516 3517 3518 3519 3520 3521 3522
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3523 3524 3525 3526 3527 3528
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3529
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3530
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3531 3532 3533 3534 3535
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3536

3537 3538 3539 3540 3541 3542
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3543
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3544
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3545
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3546
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3547 3548 3549 3550
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3551 3552 3553 3554 3555
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3556 3557 3558
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3559 3560 3561 3562
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3563 3564
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3565 3566 3567 3568 3569 3570 3571 3572
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3573
               return py::cast(
3574
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3575 3576
             } else {
               return py::cast(std::move(
3577
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3578
             }
3579 3580
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3581

J
jianghaicheng 已提交
3582 3583 3584 3585 3586 3587 3588 3589
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3590 3591
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3592 3593 3594 3595 3596
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3597
          })
J
jianghaicheng 已提交
3598 3599 3600 3601 3602 3603 3604
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3605
          })
J
jianghaicheng 已提交
3606 3607 3608 3609 3610 3611
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3612
                    })
J
jianghaicheng 已提交
3613 3614 3615 3616 3617 3618
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3619
                    })
J
jianghaicheng 已提交
3620 3621 3622 3623 3624 3625 3626
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3627
          })
J
jianghaicheng 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3642
          })
J
jianghaicheng 已提交
3643 3644 3645 3646 3647 3648
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3649
                    })
J
jianghaicheng 已提交
3650 3651 3652 3653 3654 3655
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3656
                    })
J
jianghaicheng 已提交
3657 3658 3659 3660 3661 3662
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3663
                    });
J
jianghaicheng 已提交
3664 3665
#endif

D
dongdaxiang 已提交
3666
  BindFleetWrapper(&m);
3667
  BindIO(&m);
T
Thunderbrook 已提交
3668

T
Thunderbrook 已提交
3669 3670
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3671
#endif
T
Thunderbrook 已提交
3672
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3673
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3674
#endif
3675
  BindGlooWrapper(&m);
H
hutuxian 已提交
3676
  BindBoxHelper(&m);
H
hutuxian 已提交
3677 3678 3679
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3680
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3681
  BindNCCLWrapper(&m);
3682 3683 3684
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3685
#endif
F
flame 已提交
3686 3687
  BindGraph(&m);
  BindNode(&m);
3688
  BindPass(&m);
F
flame 已提交
3689
  BindInferenceApi(&m);
3690
  BindCompatible(&m);
3691
  BindDataset(&m);
Y
yaoxuefeng 已提交
3692
  BindGenerator(&m);
3693 3694 3695
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3696
  BindAscendDevice(&m);
3697
#endif
Y
Yanghello 已提交
3698 3699 3700
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3701

T
tangwei12 已提交
3702
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3703 3704
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3705
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3706 3707
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3708 3709 3710 3711 3712
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3713 3714 3715 3716
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3717
  BindSparseShardingTools(&m);
3718
#endif
L
Luo Tao 已提交
3719
}
3720
}  // namespace pybind
3721
}  // namespace paddle