pybind.cc 133.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
41
#include "paddle/fluid/framework/ir/cost_model.h"
42
#include "paddle/fluid/framework/ir/generate_pass.h"
43
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
44 45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
54
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/selected_rows.h"
57
#include "paddle/fluid/framework/tensor_util.h"
58
#include "paddle/fluid/framework/trainer.h"
59
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
60
#include "paddle/fluid/framework/version.h"
H
hong 已提交
61
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
62
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
63
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
64
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
66
#include "paddle/fluid/operators/py_func_op.h"
67
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/platform/cpu_info.h"
69
#include "paddle/fluid/platform/device_context.h"
70
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/platform/enforce.h"
72
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
73
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
74 75
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
76
#include "paddle/fluid/pybind/cuda_streams_py.h"
77
#include "paddle/fluid/pybind/io.h"
78
#include "paddle/utils/none.h"
79 80 81
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
82
#include "paddle/fluid/pybind/bind_cost_model.h"
H
hutuxian 已提交
83
#include "paddle/fluid/pybind/box_helper_py.h"
84
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
85
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
86
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
89
#include "paddle/fluid/pybind/generator_py.h"
90
#include "paddle/fluid/pybind/global_value_getter_setter.h"
91
#include "paddle/fluid/pybind/gloo_context_py.h"
92
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
93
#include "paddle/fluid/pybind/heter_wrapper_py.h"
94
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
95
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
96
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
97
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
98
#include "paddle/fluid/pybind/pybind_boost_headers.h"
99

100
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
102
#endif
103
#include "paddle/fluid/framework/data_type.h"
104 105
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
106
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/tensor_py.h"
108
#include "paddle/fluid/string/to_string.h"
109 110
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
111
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
112
#endif
113
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
114
#include "paddle/fluid/platform/cuda_profiler.h"
115
#endif
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
117 118
#endif

119 120
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
121
#include "paddle/fluid/platform/npu_profiler.h"
122 123
#endif

124
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
125
#include "paddle/fluid/platform/xpu/xpu_info.h"
126 127
#endif

128 129
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
130 131 132 133
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
134
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
135 136 137
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
138 139
#include "pybind11/stl.h"

140
DECLARE_bool(use_mkldnn);
141

Q
Qiao Longfei 已提交
142 143
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
144 145 146
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
147

148
namespace paddle {
149
namespace pybind {
150
bool IsCompiledWithCUDA() {
151 152 153 154 155 156 157 158 159
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
160 161 162 163 164 165
  return false;
#else
  return true;
#endif
}

166 167 168 169 170 171 172 173
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

174 175 176 177 178 179 180 181
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

182 183 184 185 186 187 188 189
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

190 191 192 193 194 195 196 197
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

198 199 200 201 202 203 204 205
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

206 207 208 209 210 211 212 213 214 215 216
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

217 218 219 220 221 222 223 224 225 226 227
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
246 247 248
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
249
      {"NPU", &platform::is_npu_place},
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

289
bool IsCompiledWithBrpc() {
290
#ifndef PADDLE_WITH_DISTRIBUTE
291 292
  return false;
#endif
293
  return true;
294 295
}

Y
update  
Yancey1989 已提交
296
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
297
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
298 299 300 301 302 303
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
304 305 306 307 308 309 310 311 312 313
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
336 337 338
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
352 353
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
354 355
    }
    vec_res.emplace_back(
356
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
357 358 359 360 361 362 363 364 365 366 367 368
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
369 370
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
371 372 373 374 375 376 377 378 379 380 381 382
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
383 384 385
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
386 387 388 389
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
390 391
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
392 393 394 395
  }
  return vec_res;
}

396 397 398 399 400 401 402 403
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
404 405
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
406 407 408 409 410 411 412 413 414 415 416 417 418
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
419 420 421
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
422 423 424 425 426
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
427 428 429 430 431
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
432 433
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
434 435 436
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
437 438 439 440 441 442 443 444 445
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
446 447
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
448 449 450 451 452
  }

  return;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

490 491 492 493 494 495
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

496 497
  BindCudaStream(&m);

Y
Yu Yang 已提交
498 499 500
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
501
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
502

503 504
  AssertStaticGraphAndDygraphGradMakerNoDiff();

505
  m.doc() = "C++ core of PaddlePaddle";
506

507 508 509 510
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

511
  BindException(&m);
Y
Yu Yang 已提交
512

513 514
  m.def("set_num_threads", &platform::SetNumThreads);

515 516
  m.def("disable_signal_handler", &DisableSignalHandler);

517
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
518 519 520
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
521 522 523 524
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

525 526 527 528 529 530 531 532 533 534 535 536 537
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
      .def("reset", &platform::CUDAGraph::Reset);
#endif

Z
Zeng Jinle 已提交
538 539 540 541
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
542 543 544
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
545 546 547 548 549 550

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
551 552
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
553
    framework::Tensor tensor;
6
633WHU 已提交
554

S
Siming Dai 已提交
555
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
556 557
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
559
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
560 561 562 563 564
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
565

566 567 568 569 570 571
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

572 573 574 575 576 577
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
578 579
  });

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
605 606 607 608 609 610
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
611
  m.def(
S
sneaxiy 已提交
612
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
613 614 615 616
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
617 618 619
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
636 637 638
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
639
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
640

641
  m.def("_set_fuse_parameter_group_size",
642
        &paddle::framework::ir::SetFuseParameterGroupsSize);
643
  m.def("_set_fuse_parameter_memory_size",
644
        &paddle::framework::ir::SetFuseParameterMemorySize);
645

S
sneaxiy 已提交
646 647 648
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

649 650
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

651 652 653
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

654
  BindImperative(&m);
655

656 657 658
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
659
      .def("_is_initialized",
660
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
661
      .def("_get_dims",
662
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
663
      .def("_set_dims",
664
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
665
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
666
           })
Y
yuyang18 已提交
667
      .def("_set_layout",
668
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
669 670
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
671
      .def("_alloc_float",
672
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
673
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
674
           })
675
      .def("_alloc_float",
676
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
677 678
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
679
      .def("_alloc_float",
680
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
681
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
682
           })
683 684 685 686
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
687
      .def("_alloc_double",
688
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
689 690
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
691
      .def("_alloc_int",
692
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
693
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
694
           })
695
      .def("_alloc_int",
696
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
697 698
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
699
      .def("_alloc_int",
700
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
701
             self.mutable_data<int>(place);
Q
qijun 已提交
702
           })
Y
yuyang18 已提交
703
      .def("_alloc_int",
704 705
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
706 707
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
708
      .def("_alloc_float",
709 710
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
711 712
             self.mutable_data<float>(place);
           })
713
      .def("_mutable_data",
714
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
715 716 717
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
718
      .def("_mutable_data",
719
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
720 721 722
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
723
      .def("_mutable_data",
724
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
725 726 727 728
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
729
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
730 731 732
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
733
      .def("_clear", &framework::Tensor::clear)
734 735 736 737 738
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
739 740 741 742 743 744 745 746 747 748 749
      .def("_copy_from",
           [](framework::Tensor &self, const framework::Tensor &other,
              const platform::Place &place, int64_t batch_size) {
             if (batch_size < 0) {
               framework::TensorCopy(other, place, &self);
             } else {
               auto sliced = other.Slice(0, batch_size);
               framework::TensorCopy(sliced, place, &self);
             }
           },
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
750
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
751
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
752 753
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
754
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
755
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
756 757
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
758
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
759 760
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
761 762 763 764
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
765
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
766
          LoDTensor is to be set.
767 768
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
782

783 784 785
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
802
      .def("_to_dlpack",
803
           [](framework::Tensor &self) {
6
633WHU 已提交
804
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
805
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
823 824 825 826
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
827 828
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
829
      .def("_layout",
830 831 832 833
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
834
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
835
      .def("__str__", [](const framework::Tensor &self) {
836 837 838 839
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
840

L
Leo Chen 已提交
841
  // TODO(cql): add reference: en_user_guide_lod_tensor
842
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
917 918 919 920 921 922 923

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
924 925

        )DOC")
926 927
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
928 929 930 931 932 933 934 935 936
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
937 938
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
939 940 941 942
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
943 944
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
945
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
946
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
947 948
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
949 950 951
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
952
      .def("set_lod",
953
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
954
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
955
             LoD new_lod;
956 957
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
958 959
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
960 961
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
962
             self.set_lod(new_lod);
S
sneaxiy 已提交
963 964 965 966 967
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
968 969 970 971
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
972 973 974 975 976 977 978 979 980 981

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
982
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
983
           )DOC")
984 985 986 987 988 989 990 991 992 993 994
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
995 996
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
997 998 999 1000 1001
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1002
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1003 1004
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1005
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1006

L
Leo Chen 已提交
1007
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1008
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1009
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1010 1011

           Args:
L
Leo Chen 已提交
1012 1013 1014 1015
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1026 1027
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1028
           )DOC")
1029 1030 1031 1032 1033 1034 1035 1036
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1037 1038 1039 1040 1041
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1042 1043
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1054
           )DOC")
G
gongweibao 已提交
1055
      // Set above comments of set_lod.
1056 1057 1058 1059 1060 1061 1062 1063
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1064 1065
           },
           R"DOC(
L
Leo Chen 已提交
1066 1067
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1068 1069

           Returns:
L
Leo Chen 已提交
1070
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1082 1083 1084 1085 1086 1087 1088 1089
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1090
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1091 1092

           Returns:
L
Leo Chen 已提交
1093
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1105 1106 1107 1108 1109 1110 1111
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1112
           )DOC")
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1131
#ifdef _WIN32
1132
      });
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1183

Q
qijun 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1195 1196
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1197 1198
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1199 1200
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1201
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1202 1203 1204 1205 1206 1207
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1208
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1209
      .def("rows", [](SelectedRows &self) {
1210 1211 1212 1213 1214
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1215
      });
Q
qijun 已提交
1216

1217
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1218 1219 1220

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1221
      .def(py::init<>())
1222
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1223
      .def("set_int",
1224 1225
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1226 1227 1228 1229 1230 1231 1232
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1233
      .def("get_tensor",
1234 1235
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1236 1237
           },
           py::return_value_policy::reference)
1238 1239 1240 1241
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1254 1255 1256
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1257 1258 1259 1260 1261
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1262 1263 1264
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1265 1266 1267
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1268
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1269 1270 1271 1272 1273
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1274
#endif
Y
Refine  
Yu Yang 已提交
1275 1276
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1277 1278 1279 1280
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1281 1282
             return self.GetMutable<framework::ReaderHolder>();
           },
1283
           py::return_value_policy::reference)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1295 1296 1297 1298
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1299

S
sneaxiy 已提交
1300
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1301

S
sneaxiy 已提交
1302
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1316
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1317 1318 1319 1320 1321 1322
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1323 1324
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1325
      .def("var",
1326
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1327
             return self.Var(name);
Y
Yu Yang 已提交
1328
           },
S
sneaxiy 已提交
1329 1330
           py::arg("name"),
           R"DOC(
1331
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1332

1333
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1334
           current scope, the variable would be created. Otherwise,
1335
           return the existing variable.
S
sneaxiy 已提交
1336 1337

           Args:
1338 1339
               name (str): the variable name.

S
sneaxiy 已提交
1340
           Returns:
1341
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1342 1343 1344 1345
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1346
           Find variable named :code:`name` in the current scope or
1347
           its parent scope. Return None if not found. 
1348

S
sneaxiy 已提交
1349 1350
           Args:
               name (str): the variable name.
1351

S
sneaxiy 已提交
1352
           Returns:
1353
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1354
           )DOC",
1355
           py::return_value_policy::reference)
1356
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1357 1358 1359 1360 1361 1362
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1363
           py::return_value_policy::reference)
S
sneaxiy 已提交
1364 1365 1366
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1367 1368
           )DOC")
      .def("_kids", &Scope::kids);
1369

S
sneaxiy 已提交
1370 1371 1372 1373 1374 1375
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1376 1377
        R"DOC(
        Create a new scope.
1378

S
sneaxiy 已提交
1379 1380 1381
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1382 1383
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1384 1385
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1386 1387
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1388 1389 1390 1391
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1392 1393
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1394 1395
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1396 1397 1398
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1399 1400
    return ret_values;
  });
1401 1402 1403 1404 1405 1406 1407 1408
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1409
              res = op_checker->GetDefaultAttrsMap();
1410 1411 1412 1413
            }
          }
          return res;
        });
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1430 1431 1432
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1433 1434 1435 1436 1437
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1438 1439 1440
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1455
  m.def("prune", [](const ProgramDesc &origin,
1456
                    const std::set<std::string> &feeded_var_names,
1457
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1458
    ProgramDesc prog_with_targets(origin);
1459

1460
    for (const auto &t : targets) {
1461
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1462
    }
1463
    proto::ProgramDesc pruned_desc;
1464 1465 1466 1467
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1468
  });
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1486 1487 1488 1489
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1490 1491 1492
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1493 1494
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1495

Q
qijun 已提交
1496
  // clang-format off
Y
Yu Yang 已提交
1497
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1498 1499
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1500
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1501 1502
                    return new paddle::platform::CPUDeviceContext();
                  })
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1527
      .def_static("create",
D
dzhwinter 已提交
1528
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1529
                      -> paddle::platform::DeviceContext* {
1530
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1531 1532 1533 1534
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1535
#else
Q
qijun 已提交
1536
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1537
#endif
C
chengduoZH 已提交
1538 1539 1540 1541
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1542
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1543 1544 1545 1546
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1547 1548 1549 1550
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1551
// clang-format on
1552
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1553 1554
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1555
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1556 1557 1558 1559 1560

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1561
    The memory of CUDAPlace with different dev_id is not accessible.
1562 1563 1564 1565 1566 1567 1568 1569
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1570 1571 1572 1573

    Examples:
        .. code-block:: python

1574 1575 1576
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1577

1578
        )DOC")
S
sneaxiy 已提交
1579 1580
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1581
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1606 1607
             new (&self) platform::CUDAPlace(dev_id);
#else
1608 1609 1610 1611 1612 1613 1614 1615 1616
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1617 1618
#endif
           })
1619
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1620 1621
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1622 1623 1624 1625
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1626
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1627
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1628 1629
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1630 1631 1632
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1633
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1634
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1681
#ifdef PADDLE_WITH_XPU
1682 1683 1684 1685 1686 1687 1688
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1689 1690 1691
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1692
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1693
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1694
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1695 1696 1697 1698
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1699
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1700 1701
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1702
#endif
1703

1704
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1705
    CPUPlace is a descriptor of a device.
1706
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1707 1708 1709 1710

    Examples:
        .. code-block:: python

1711 1712
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1713

1714
        )DOC")
1715
      .def(py::init<>())
S
sneaxiy 已提交
1716 1717
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1718
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1719
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1720 1721 1722 1723
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1724
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1725
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1726

1727
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1728 1729 1730 1731 1732 1733
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1734 1735 1736 1737

    Examples:
        .. code-block:: python

1738 1739
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1740

1741
        )DOC")
S
sneaxiy 已提交
1742
      .def("__init__",
S
sneaxiy 已提交
1743
           [](platform::CUDAPinnedPlace &self) {
1744
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1745 1746 1747
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1748
#endif
S
sneaxiy 已提交
1749
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1750
           })
S
sneaxiy 已提交
1751 1752 1753 1754
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1755 1756
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1757 1758
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1759 1760 1761 1762
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1763
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1764 1765
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1808
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1823 1824
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1825 1826
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1827 1828
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1829 1830 1831 1832
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1833
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1834
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1835
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1836 1837
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1838 1839
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1840 1841
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1842 1843
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1844 1845 1846 1847
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1848 1849
      .def("gpu_device_id",
           [](platform::Place &self) {
1850
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1851
           })
1852 1853 1854 1855
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1856 1857 1858 1859
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1860 1861
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1862 1863 1864 1865
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1866 1867 1868 1869
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1870
      .def("set_place",
D
dzhwinter 已提交
1871
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1872
             self = gpu_place;
C
chengduoZH 已提交
1873
           })
1874 1875 1876 1877 1878
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1879 1880 1881 1882
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1883 1884
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1885

Y
Yu Yang 已提交
1886
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1901
      .def("run",
1902
           [](OperatorBase &self, const Scope &scope,
1903 1904 1905 1906
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1907 1908
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1909 1910 1911 1912
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1913 1914
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1915 1916 1917 1918
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1919 1920
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1921 1922 1923 1924
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1925 1926 1927
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1928
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1929 1930
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1931 1932 1933 1934 1935 1936 1937
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1938 1939
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1940
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1941
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1942 1943 1944 1945
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1946

1947 1948 1949
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1950 1951 1952 1953 1954 1955 1956 1957 1958
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1959 1960
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1961
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1962
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1963
      .def("close", &Executor::Close)
1964 1965
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1966 1967
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1968 1969 1970 1971
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1972
             pybind11::gil_scoped_release release;
1973 1974 1975 1976 1977 1978 1979
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1980 1981 1982
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1983
              std::map<std::string, FetchType *> *fetch_targets,
1984 1985 1986 1987 1988 1989 1990 1991
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1992
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1993 1994 1995 1996 1997 1998 1999
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2010
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2011 2012
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2013
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2014 2015
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2016
      });
S
sneaxiy 已提交
2017

2018 2019 2020 2021
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
2022
           [](CostInfo &self) { return self.device_memory_bytes; });
2023

2024
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2025 2026 2027
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2028
           [](StandaloneExecutor &self,
H
hong 已提交
2029
              const std::unordered_map<std::string, py::array> &input_dict,
2030 2031 2032
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
2033 2034 2035 2036 2037

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2038 2039
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2040 2041
             }

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, framework::Tensor>
                  &input_dict,
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2062 2063 2064 2065
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2066
             }
W
wanghuancoder 已提交
2067
             return py::cast(std::move(ret));
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2089 2090
           });

D
dzhwinter 已提交
2091
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2092
  m.def("init_glog", framework::InitGLOG);
2093 2094
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2095
  m.def("init_devices", []() { framework::InitDevices(); });
2096

2097
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2098
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2099
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2100
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2101
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2102
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2103
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2104
  m.def("supports_bfloat16", SupportsBfloat16);
2105
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2106
  m.def("op_supported_infos", OpSupportedInfos);
2107
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2108
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2109 2110 2111
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2131 2132 2133 2134 2135 2136 2137
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2147
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2148 2149 2150 2151 2152
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2153

S
Steffy-zxf 已提交
2154 2155 2156 2157 2158 2159
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2160 2161 2162 2163 2164
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2165
            return py::cast(BOOST_GET(LoDTensor, var));
2166
          } else {
2167
            return py::cast(BOOST_GET(LoDTensorArray, var));
2168 2169
          }
        });
2170
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2171

X
Xin Pan 已提交
2172 2173
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2174 2175 2176 2177
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2178
  BindCostModel(&m);
2179
  BindConstValue(&m);
2180
  BindGlobalValueGetterSetter(&m);
2181
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2182

Y
Yu Yang 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2192
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2193
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2194 2195 2196

    Examples:
        .. code-block:: python
2197

Z
Zeng Jinle 已提交
2198 2199 2200 2201
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2202 2203
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2204 2205 2206 2207 2208 2209
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2210 2211 2212 2213
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2214 2215 2216
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2217 2218 2219 2220 2221 2222
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2223 2224
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2225 2226 2227 2228 2229 2230
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2253

2254 2255 2256 2257 2258 2259 2260 2261
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2262
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2263 2264
                 res[i] = py::cast(std::move(data));
               } else {
2265
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2281
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2282 2283 2284 2285 2286 2287 2288 2289
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2290
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2291 2292 2293 2294 2295 2296 2297 2298 2299
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2300 2301
        )DOC")
      .def("_move_to_list",
2302
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2303 2304 2305 2306
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2307
                 if (data_is_lod_tensor(self[i][j])) {
2308
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2309 2310
                   tmp[j] = py::cast(std::move(var));
                 } else {
2311
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2312 2313 2314 2315 2316 2317
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2327
  m.def("op_support_gpu", OpSupportGPU);
2328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2329
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2330 2331 2332 2333 2334 2335 2336 2337
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
      .def_readonly("name", &gpuDeviceProp::name)
      .def_readonly("major", &gpuDeviceProp::major)
      .def_readonly("minor", &gpuDeviceProp::minor)
      .def_readonly("is_multi_gpu_board", &gpuDeviceProp::isMultiGpuBoard)
      .def_readonly("is_integrated", &gpuDeviceProp::integrated)
      .def_readonly("multi_processor_count",
                    &gpuDeviceProp::multiProcessorCount)
      .def_readonly("total_memory", &gpuDeviceProp::totalGlobalMem)
      .def("__repr__", [](const gpuDeviceProp &gpu_device_prop) {
        std::ostringstream stream;
        stream << "_gpuDeviceProperties(name='" << gpu_device_prop.name
               << "', major=" << gpu_device_prop.major
               << ", minor=" << gpu_device_prop.minor << ", total_memory="
               << gpu_device_prop.totalGlobalMem / (1024 * 1024)
               << "MB, multi_processor_count="
               << gpu_device_prop.multiProcessorCount << ")";
        return stream.str();
      });
D
dangqingqing 已提交
2363

2364
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2365 2366 2367
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2368 2369 2370 2371
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2372
#endif
P
peizhilin 已提交
2373
#endif
Y
Yu Yang 已提交
2374

2375 2376
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2377 2378 2379 2380
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2381
      platform::NPUDeviceGuard guard(devices[i]);
2382 2383 2384 2385
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2406 2407 2408 2409 2410 2411
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2412 2413 2414 2415
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2416
      .value("kAll", platform::ProfilerState::kAll)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2428
  m.def("set_tracer_option", platform::SetTracerOption);
2429 2430
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2431
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2432
  m.def("reset_profiler", platform::ResetProfiler);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2448
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2449 2450 2451
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2452

2453 2454
  m.def("size_of_dtype", framework::SizeOfType);

2455
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2456 2457
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2458 2459
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2460
#endif  // PADDLE_WITH_CUDA
2461 2462
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2463

2464 2465 2466
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2467 2468
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2469
      .def("has", &ir::Pass::Has)
2470 2471 2472
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2473
           })
2474
      .def(
2475
          "set",
2476 2477 2478
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2479 2480
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2481 2482
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2497 2498
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2499
        self.Apply(graph.get());
F
flame 已提交
2500
      });
2501

X
fix  
Xin Pan 已提交
2502 2503
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2518
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2519
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2520 2521 2522 2523
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2524 2525 2526
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2527 2528 2529
    Examples:
        .. code-block:: python

2530 2531 2532 2533 2534 2535 2536 2537 2538
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2539

2540 2541
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2542

2543
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2544 2545
          sgd_optimizer.minimize(avg_loss)

2546
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2547 2548
          exec_strategy.num_threads = 4

2549 2550 2551
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2552 2553
        )DOC");

2554 2555 2556 2557
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2558

Y
yuyang18 已提交
2559
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2560 2561 2562 2563 2564
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2565
          },
2566 2567
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2568 2569 2570 2571 2572 2573 2574
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2588
      .def_property(
2589 2590
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2591
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2592 2593 2594
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2595 2596 2597 2598 2599
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2600 2601 2602
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2603 2604
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2605 2606 2607 2608 2609 2610 2611
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2612 2613 2614 2615
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2616
                because the temp variable's shape maybe the same between two iterations.
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2627

2628 2629 2630 2631 2632 2633 2634
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2635
              )DOC")
Q
Qiao Longfei 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2657
              )DOC")
2658 2659 2660 2661 2662 2663 2664 2665
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2666 2667 2668 2669 2670
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2671

Y
yuyang18 已提交
2672
  exec_strategy.def_property(
Y
yuyang18 已提交
2673 2674 2675 2676 2677 2678 2679
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2680 2681
      });

C
chengduo 已提交
2682 2683 2684 2685
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2686 2687 2688
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2689 2690 2691
    Examples:
        .. code-block:: python

2692
            import os
2693 2694 2695 2696
            import paddle
            import paddle.static as static

            paddle.enable_static()
2697

2698 2699
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2700

2701 2702 2703 2704
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2705

2706
            build_strategy = static.BuildStrategy()
2707 2708
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2709 2710
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2711
            program = program.with_data_parallel(loss_name=loss.name,
2712 2713
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2714
)DOC");
Y
yuyang18 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2727
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2728 2729 2730 2731
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2732 2733 2734 2735
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2736
            self.reduce_ = strategy;
C
chengduo 已提交
2737
          },
2738
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2739 2740
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2741
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2742 2743
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2744
                Default is 'AllReduce'.
F
flame 已提交
2745 2746 2747 2748

                Examples:
                    .. code-block:: python

2749 2750 2751 2752 2753 2754 2755
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2756
                  )DOC")
Y
yuyang18 已提交
2757 2758 2759 2760 2761
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2762 2763 2764 2765
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2766
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2767
          },
2768
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2769
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2770 2771
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2772
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2773 2774 2775 2776

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2777 2778
                        import numpy
                        import os
2779 2780 2781 2782
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2783 2784

                        use_cuda = True
2785 2786
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2787 2788

                        # NOTE: If you use CPU to run the program, you need
2789
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2790 2791 2792 2793 2794 2795
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2796
                            places = static.cpu_places()
C
chengduo 已提交
2797
                        else:
2798
                            places = static.cuda_places()
C
chengduo 已提交
2799

2800 2801 2802 2803
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2804

2805
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2806

2807
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2808
                        build_strategy.gradient_scale_strategy = \
2809 2810 2811
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2812
                                          loss_name=loss.name, build_strategy=build_strategy,
2813
                                          places=places)
C
chengduo 已提交
2814 2815 2816 2817 2818 2819

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2820 2821
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2822
                   )DOC")
Y
yuyang18 已提交
2823 2824 2825 2826
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2827 2828 2829 2830
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2831
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2832
          },
2833
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2834
                writing the SSA Graph to file in the form of graphviz.
2835
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2836 2837 2838 2839

                Examples:
                    .. code-block:: python

2840 2841 2842 2843
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2844

2845 2846
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2847
                    )DOC")
S
sneaxiy 已提交
2848 2849 2850 2851 2852 2853
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2854 2855 2856 2857
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2858 2859
            self.enable_sequential_execution_ = b;
          },
2860 2861
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2862 2863 2864 2865

                Examples:
                    .. code-block:: python

2866 2867 2868 2869 2870 2871
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2872 2873
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2874 2875 2876 2877 2878 2879
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2880 2881 2882 2883
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2884 2885
            self.remove_unnecessary_lock_ = b;
          },
2886 2887
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2888 2889 2890 2891

                Examples:
                    .. code-block:: python

2892 2893 2894 2895 2896 2897
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2898 2899
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2900 2901 2902 2903
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2904
#ifdef WIN32
2905
            PADDLE_THROW(platform::errors::Unavailable(
2906
                "Distribution mode is not supported on Windows platform."));
2907
#endif
2908 2909
            self.num_trainers_ = num_trainers;
          })
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2922 2923 2924 2925 2926 2927
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2928 2929 2930 2931 2932 2933
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2934
      .def_property("use_hierarchical_allreduce",
2935 2936 2937 2938 2939 2940
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2941
      .def_property("hierarchical_allreduce_inter_nranks",
2942 2943 2944 2945 2946 2947 2948
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2949 2950 2951 2952 2953 2954
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2955 2956 2957 2958
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2959 2960
            self.fuse_elewise_add_act_ops_ = b;
          },
2961
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2962
                to fuse elementwise_add_op and activation_op,
2963
                it may make the execution faster. Default is False.
F
flame 已提交
2964 2965 2966 2967

                Examples:
                    .. code-block:: python

2968 2969 2970 2971 2972 2973
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2974 2975
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2976 2977 2978 2979
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2980
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2981
                              platform::errors::PreconditionNotMet(
2982 2983
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2993 2994 2995 2996 2997 2998
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2999 3000
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3026 3027 3028 3029
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3030
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3031
                              platform::errors::PreconditionNotMet(
3032 3033
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3044 3045 3046 3047 3048 3049
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3050 3051
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3052 3053 3054 3055 3056 3057
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3058 3059 3060 3061
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3062 3063
            self.fuse_relu_depthwise_conv_ = b;
          },
3064
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3065 3066 3067
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3068
                Default is False.
F
flame 已提交
3069 3070 3071 3072

                Examples:
                    .. code-block:: python

3073 3074 3075 3076 3077 3078
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3079 3080
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3081 3082 3083
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3084
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3085 3086
                    },
                    [](BuildStrategy &self, bool b) {
3087 3088 3089 3090
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3091 3092
                      self.fuse_broadcast_ops_ = b;
                    },
3093
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3094 3095 3096 3097
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3098 3099 3100 3101 3102
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3103 3104 3105 3106 3107 3108
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3109 3110
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3111 3112
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3113
                      return self.fuse_all_optimizer_ops_ == true ||
3114
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3115 3116
                    },
                    [](BuildStrategy &self, bool b) {
3117 3118 3119 3120
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3121 3122
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3123 3124 3125 3126
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3127 3128 3129 3130
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3131 3132
            self.sync_batch_norm_ = b;
          },
3133
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3134 3135 3136
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3137 3138
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3139 3140 3141 3142

                Examples:
                    .. code-block:: python

3143 3144 3145 3146 3147 3148
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3149 3150
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3151 3152
      .def_property(
          "memory_optimize",
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3163
              self.memory_optimize_ = paddle::none;
3164 3165 3166
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3167
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3168 3169
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3170 3171
            }
          },
3172
          R"DOC((bool, optional): memory opitimize aims to save total memory
3173
                consumption, set to True to enable it.
3174

3175 3176 3177
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3192 3193 3194
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3195 3196 3197
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3198
              PADDLE_THROW(platform::errors::Unavailable(
3199
                  "Distribution mode is not supported on Windows platform."));
3200 3201 3202 3203 3204
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3205 3206 3207
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3208
      .def_property(
D
dzhwinter 已提交
3209 3210 3211
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3212 3213 3214 3215
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3216 3217
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3218 3219
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3220
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3221
          },
C
chengduo 已提交
3222
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3223 3224 3225 3226 3227 3228 3229
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3230 3231 3232 3233
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3234 3235 3236 3237 3238 3239 3240 3241 3242
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3243 3244 3245 3246 3247 3248
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3249 3250 3251 3252 3253 3254 3255
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3256 3257 3258 3259 3260 3261
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3262
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3263
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3264 3265 3266 3267 3268
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3269

3270 3271 3272 3273 3274 3275
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3276
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3277
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3278
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3279
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3280 3281 3282 3283
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3284 3285 3286 3287 3288
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3289 3290 3291
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3292 3293 3294 3295
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3296 3297
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3298 3299 3300 3301 3302 3303 3304 3305
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3306
               return py::cast(
3307
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3308 3309
             } else {
               return py::cast(std::move(
3310
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3311
             }
3312 3313
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3314

D
dongdaxiang 已提交
3315
  BindFleetWrapper(&m);
3316
  BindIO(&m);
T
Thunderbrook 已提交
3317

T
Thunderbrook 已提交
3318 3319
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3320
#endif
T
Thunderbrook 已提交
3321
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3322
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3323
#endif
3324
  BindGlooWrapper(&m);
H
hutuxian 已提交
3325
  BindBoxHelper(&m);
H
hutuxian 已提交
3326 3327 3328
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3329
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3330
  BindNCCLWrapper(&m);
3331 3332 3333
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3334
#endif
F
flame 已提交
3335 3336
  BindGraph(&m);
  BindNode(&m);
3337
  BindPass(&m);
F
flame 已提交
3338
  BindInferenceApi(&m);
3339
  BindCompatible(&m);
3340
  BindDataset(&m);
Y
yaoxuefeng 已提交
3341
  BindGenerator(&m);
3342 3343 3344
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3345
  BindAscendDevice(&m);
3346
#endif
Y
Yanghello 已提交
3347 3348 3349
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3350

T
tangwei12 已提交
3351
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3352 3353
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3354
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3355 3356
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3357 3358 3359 3360 3361
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3362 3363 3364 3365
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3366
  BindSparseShardingTools(&m);
3367
#endif
L
Luo Tao 已提交
3368
}
3369
}  // namespace pybind
3370
}  // namespace paddle