pybind.cc 126.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
42 43 44
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
45
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/op_info.h"
47
#include "paddle/fluid/framework/op_registry.h"
48
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
51
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
52
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/framework/selected_rows.h"
55
#include "paddle/fluid/framework/tensor_util.h"
56
#include "paddle/fluid/framework/trainer.h"
57
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
58
#include "paddle/fluid/framework/version.h"
H
hong 已提交
59
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
61
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
62
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
64
#include "paddle/fluid/operators/py_func_op.h"
65
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
66
#include "paddle/fluid/platform/cpu_info.h"
67
#include "paddle/fluid/platform/device_context.h"
68
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/platform/enforce.h"
70
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
71
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
72 73
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
74
#include "paddle/fluid/pybind/cuda_streams_py.h"
75
#include "paddle/fluid/pybind/io.h"
76
#include "paddle/utils/none.h"
77 78 79
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
80
#include "paddle/fluid/pybind/box_helper_py.h"
81
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
83
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
84
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
85
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
86
#include "paddle/fluid/pybind/generator_py.h"
87
#include "paddle/fluid/pybind/global_value_getter_setter.h"
88
#include "paddle/fluid/pybind/gloo_context_py.h"
89
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
90
#include "paddle/fluid/pybind/heter_wrapper_py.h"
91
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
92
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
93
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
94
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
95
#include "paddle/fluid/pybind/pybind_boost_headers.h"
96

97
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
98
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
99
#endif
100
#include "paddle/fluid/framework/data_type.h"
101 102
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
103
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/tensor_py.h"
105
#include "paddle/fluid/string/to_string.h"
106 107
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
108
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
109
#endif
110
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
111
#include "paddle/fluid/platform/cuda_profiler.h"
112
#endif
Y
Yi Wang 已提交
113
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
114 115
#endif

116 117
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
118
#include "paddle/fluid/platform/npu_profiler.h"
119 120
#endif

121
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
122
#include "paddle/fluid/platform/xpu/xpu_info.h"
123 124
#endif

Y
Yanghello 已提交
125 126 127 128
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
129
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
130 131 132
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
133 134
#include "pybind11/stl.h"

135
DECLARE_bool(use_mkldnn);
136

Q
Qiao Longfei 已提交
137 138
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
139 140 141
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
142

143
namespace paddle {
144
namespace pybind {
145
bool IsCompiledWithCUDA() {
146 147 148 149 150 151 152 153 154
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
155 156 157 158 159 160
  return false;
#else
  return true;
#endif
}

161 162 163 164 165 166 167 168
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

169 170 171 172 173 174 175 176
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

177 178 179 180 181 182 183 184
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

185 186 187 188 189 190 191 192
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

193 194 195 196 197 198 199 200
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

201 202 203 204 205 206 207 208 209 210 211
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

212 213 214 215 216 217 218 219 220 221 222
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
241 242 243
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
244
      {"NPU", &platform::is_npu_place},
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

284
bool IsCompiledWithBrpc() {
285
#ifndef PADDLE_WITH_DISTRIBUTE
286 287
  return false;
#endif
288
  return true;
289 290
}

Y
update  
Yancey1989 已提交
291
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
292
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
293 294 295 296 297 298
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
299 300 301 302 303 304 305 306 307 308
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
331 332 333
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
347 348
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
349 350
    }
    vec_res.emplace_back(
351
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
352 353 354 355 356 357 358 359 360 361 362 363
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
364 365
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
366 367 368 369 370 371 372 373 374 375 376 377
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
378 379 380
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
381 382 383 384
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
385 386
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
387 388 389 390
  }
  return vec_res;
}

391 392 393 394 395 396 397 398
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
399 400
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
401 402 403 404 405 406 407 408 409 410 411 412 413
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
414 415 416
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
417 418 419 420 421
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
422 423 424 425 426
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
427 428
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
429 430 431
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
432 433 434 435 436 437 438 439 440
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
441 442
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
443 444 445 446 447
  }

  return;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

485 486 487 488 489 490
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

491 492
  BindCudaStream(&m);

Y
Yu Yang 已提交
493 494 495
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
496
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
497

498 499
  AssertStaticGraphAndDygraphGradMakerNoDiff();

500
  m.doc() = "C++ core of PaddlePaddle";
501

502 503 504 505
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

506
  BindException(&m);
Y
Yu Yang 已提交
507

508 509
  m.def("set_num_threads", &platform::SetNumThreads);

510 511
  m.def("disable_signal_handler", &DisableSignalHandler);

512
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
513 514 515
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
516 517 518 519 520 521 522 523
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
524 525 526
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
527 528 529 530 531 532

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
533 534
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
535
    framework::Tensor tensor;
6
633WHU 已提交
536 537 538 539

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
540
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
541 542 543 544 545 546
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
547

548 549 550 551 552 553
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

554 555 556 557 558 559
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
560 561
  });

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
587 588 589 590 591 592
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
593
  m.def(
S
sneaxiy 已提交
594
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
595 596 597 598
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
599 600 601
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
618 619 620
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
621
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
622

623
  m.def("_set_fuse_parameter_group_size",
624
        &paddle::framework::ir::SetFuseParameterGroupsSize);
625
  m.def("_set_fuse_parameter_memory_size",
626
        &paddle::framework::ir::SetFuseParameterMemorySize);
627

S
sneaxiy 已提交
628 629 630
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

631 632
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

633 634 635
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

636
  BindImperative(&m);
637

638 639 640
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
641
      .def("_is_initialized",
642
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
643
      .def("_get_dims",
644
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
645
      .def("_set_dims",
646
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
647
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
648
           })
Y
yuyang18 已提交
649
      .def("_set_layout",
650
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
651 652
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
653
      .def("_alloc_float",
654
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
655
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
656
           })
657
      .def("_alloc_float",
658
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
659 660
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
661
      .def("_alloc_float",
662
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
663
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
664
           })
665 666 667 668
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
669
      .def("_alloc_double",
670
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
671 672
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
673
      .def("_alloc_int",
674
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
675
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
676
           })
677
      .def("_alloc_int",
678
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
679 680
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
681
      .def("_alloc_int",
682
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
683
             self.mutable_data<int>(place);
Q
qijun 已提交
684
           })
Y
yuyang18 已提交
685
      .def("_alloc_int",
686 687
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
688 689
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
690
      .def("_alloc_float",
691 692
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
693 694
             self.mutable_data<float>(place);
           })
695
      .def("_mutable_data",
696
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
697 698 699
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
700
      .def("_mutable_data",
701
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
702 703 704
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
705
      .def("_mutable_data",
706
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
707 708 709 710
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
711
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
712 713 714
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
715
      .def("_clear", &framework::Tensor::clear)
716 717 718 719 720
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
721
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
722
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
723 724
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
725
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
726
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
727 728
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
729
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
730 731
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
732 733 734 735
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
736
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
737
          LoDTensor is to be set.
738 739
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
753

754 755 756
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
773
      .def("_to_dlpack",
774
           [](framework::Tensor &self) {
6
633WHU 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
795 796 797 798
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
799 800
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
801
      .def("_layout",
802 803 804 805
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
806
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
807
      .def("__str__", [](const framework::Tensor &self) {
808 809 810 811
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
812

L
Leo Chen 已提交
813
  // TODO(cql): add reference: en_user_guide_lod_tensor
814
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
889 890 891 892 893 894 895

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
896 897

        )DOC")
898 899
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
900 901 902 903 904 905 906 907 908
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
909 910
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
911 912 913 914
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
915 916
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
917
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
918
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
919 920
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
921 922 923
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
924
      .def("set_lod",
925
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
926
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
927
             LoD new_lod;
928 929
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
930 931
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
932 933
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
934
             self.set_lod(new_lod);
S
sneaxiy 已提交
935 936 937 938 939
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
940 941 942 943
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
944 945 946 947 948 949 950 951 952 953

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
954
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
955
           )DOC")
956 957 958 959 960 961 962 963 964 965 966
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
967 968
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
969 970 971 972 973
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
974
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
975 976
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
977
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
978

L
Leo Chen 已提交
979
           For example, if recursive_sequence_lengths=[[2, 3]], which means
980
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
981
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
982 983

           Args:
L
Leo Chen 已提交
984 985 986 987
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
988 989 990 991 992 993 994 995 996 997

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
998 999
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1000
           )DOC")
1001 1002 1003 1004 1005 1006 1007 1008
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1009 1010 1011 1012 1013
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1014 1015
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1026
           )DOC")
G
gongweibao 已提交
1027
      // Set above comments of set_lod.
1028 1029 1030 1031 1032 1033 1034 1035
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1036 1037
           },
           R"DOC(
L
Leo Chen 已提交
1038 1039
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1040 1041

           Returns:
L
Leo Chen 已提交
1042
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1054 1055 1056 1057 1058 1059 1060 1061
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1062
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1063 1064

           Returns:
L
Leo Chen 已提交
1065
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1077 1078 1079 1080 1081 1082 1083
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1084
           )DOC")
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1103
#ifdef _WIN32
1104
      });
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1155

Q
qijun 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1167 1168
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1169 1170
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1171 1172
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1173
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1174 1175 1176 1177 1178 1179
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1180
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1181
      .def("rows", [](SelectedRows &self) {
1182 1183 1184 1185 1186
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1187
      });
Q
qijun 已提交
1188

1189
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1190 1191 1192

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1193
      .def(py::init<>())
1194
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1195
      .def("set_int",
1196 1197
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1198 1199 1200 1201 1202 1203 1204
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1205
      .def("get_tensor",
1206 1207
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1208 1209
           },
           py::return_value_policy::reference)
1210 1211 1212 1213
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1214 1215 1216
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1217 1218 1219 1220 1221
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1222 1223 1224
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1225 1226 1227
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1228
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1229 1230 1231 1232 1233
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1234
#endif
Y
Refine  
Yu Yang 已提交
1235 1236
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1237 1238 1239 1240
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1241 1242
             return self.GetMutable<framework::ReaderHolder>();
           },
1243 1244 1245 1246 1247
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1248

S
sneaxiy 已提交
1249
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1250

S
sneaxiy 已提交
1251
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1265
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1266 1267 1268 1269 1270 1271
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1272 1273
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1274
      .def("var",
1275
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1276
             return self.Var(name);
Y
Yu Yang 已提交
1277
           },
S
sneaxiy 已提交
1278 1279
           py::arg("name"),
           R"DOC(
1280
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1281

1282
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1283
           current scope, the variable would be created. Otherwise,
1284
           return the existing variable.
S
sneaxiy 已提交
1285 1286

           Args:
1287 1288
               name (str): the variable name.

S
sneaxiy 已提交
1289
           Returns:
1290
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1291 1292 1293 1294
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1295
           Find variable named :code:`name` in the current scope or
1296
           its parent scope. Return None if not found. 
1297

S
sneaxiy 已提交
1298 1299
           Args:
               name (str): the variable name.
1300

S
sneaxiy 已提交
1301
           Returns:
1302
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1303
           )DOC",
1304
           py::return_value_policy::reference)
1305
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1306 1307 1308 1309 1310 1311
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1312
           py::return_value_policy::reference)
S
sneaxiy 已提交
1313 1314 1315
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1316 1317
           )DOC")
      .def("_kids", &Scope::kids);
1318

S
sneaxiy 已提交
1319 1320 1321 1322 1323 1324
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1325 1326
        R"DOC(
        Create a new scope.
1327

S
sneaxiy 已提交
1328 1329 1330
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1331 1332
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1333 1334
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1335 1336
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1337 1338 1339 1340
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1341 1342
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1343 1344
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1345 1346 1347
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1348 1349
    return ret_values;
  });
1350 1351 1352 1353 1354 1355 1356 1357
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1358
              res = op_checker->GetDefaultAttrsMap();
1359 1360 1361 1362
            }
          }
          return res;
        });
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1379 1380 1381
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1382 1383 1384 1385 1386
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1387 1388 1389
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1404
  m.def("prune", [](const ProgramDesc &origin,
1405
                    const std::set<std::string> &feeded_var_names,
1406
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1407
    ProgramDesc prog_with_targets(origin);
1408

1409
    for (const auto &t : targets) {
1410
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1411
    }
1412
    proto::ProgramDesc pruned_desc;
1413 1414 1415 1416
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1417
  });
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1435 1436 1437 1438
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1439 1440 1441
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1442 1443
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1444

Q
qijun 已提交
1445
  // clang-format off
Y
Yu Yang 已提交
1446
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1447 1448
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1449
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1450 1451
                    return new paddle::platform::CPUDeviceContext();
                  })
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1476
      .def_static("create",
D
dzhwinter 已提交
1477
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1478
                      -> paddle::platform::DeviceContext* {
1479
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1480 1481 1482 1483
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1484
#else
Q
qijun 已提交
1485
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1486
#endif
C
chengduoZH 已提交
1487 1488 1489 1490
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1491
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1492 1493 1494 1495
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1496 1497 1498 1499
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1500
// clang-format on
1501
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1502 1503
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1504
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1505 1506 1507 1508 1509

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1510
    The memory of CUDAPlace with different dev_id is not accessible.
1511 1512 1513 1514 1515 1516 1517 1518
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1519 1520 1521 1522

    Examples:
        .. code-block:: python

1523 1524 1525
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1526

1527
        )DOC")
S
sneaxiy 已提交
1528 1529
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1530
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1555 1556
             new (&self) platform::CUDAPlace(dev_id);
#else
1557 1558 1559 1560 1561 1562 1563 1564 1565
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1566 1567
#endif
           })
1568
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1569 1570
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1571 1572 1573 1574
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1575
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1576
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1577 1578
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1579 1580 1581
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1582
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1583
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1630
#ifdef PADDLE_WITH_XPU
1631 1632 1633 1634 1635 1636 1637
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1638 1639 1640
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1641
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1642
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1643
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1644 1645 1646 1647
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1648
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1649 1650
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1651
#endif
1652

1653
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1654
    CPUPlace is a descriptor of a device.
1655
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1656 1657 1658 1659

    Examples:
        .. code-block:: python

1660 1661
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1662

1663
        )DOC")
1664
      .def(py::init<>())
S
sneaxiy 已提交
1665 1666
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1667
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1668
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1669 1670 1671 1672
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1673
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1674
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1675

1676
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1677 1678 1679 1680 1681 1682
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1683 1684 1685 1686

    Examples:
        .. code-block:: python

1687 1688
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1689

1690
        )DOC")
S
sneaxiy 已提交
1691
      .def("__init__",
S
sneaxiy 已提交
1692
           [](platform::CUDAPinnedPlace &self) {
1693
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1694 1695 1696
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1697
#endif
S
sneaxiy 已提交
1698
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1699
           })
S
sneaxiy 已提交
1700 1701 1702 1703
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1704 1705
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1706 1707
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1708 1709 1710 1711
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1712
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1713 1714
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1757
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1772 1773
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1774 1775
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1776 1777
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1778 1779 1780 1781
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1782
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1783
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1784
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1785 1786
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1787 1788
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1789 1790
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1791 1792
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1793 1794 1795 1796
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1797 1798
      .def("gpu_device_id",
           [](platform::Place &self) {
1799
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1800
           })
1801 1802 1803 1804
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1805 1806 1807 1808
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1809 1810
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1811 1812 1813 1814
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1815 1816 1817 1818
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1819
      .def("set_place",
D
dzhwinter 已提交
1820
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1821
             self = gpu_place;
C
chengduoZH 已提交
1822
           })
1823 1824 1825 1826 1827
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1828 1829 1830 1831
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1832 1833
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1834

Y
Yu Yang 已提交
1835
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1850
      .def("run",
1851
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1852
              const platform::CPUPlace &place) { self.Run(scope, place); })
1853 1854 1855
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1856 1857 1858
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1859 1860
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1861
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1862 1863 1864 1865 1866
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872 1873
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1874 1875
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1876
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1877
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1878 1879 1880 1881
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1882

1883 1884 1885
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1886 1887 1888 1889 1890 1891 1892 1893 1894
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1895 1896
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1897
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1898
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1899
      .def("close", &Executor::Close)
1900 1901
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1902 1903
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1904 1905 1906 1907
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1908
             pybind11::gil_scoped_release release;
1909 1910 1911 1912 1913 1914 1915
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1916 1917 1918
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1919
              std::map<std::string, FetchType *> *fetch_targets,
1920 1921 1922 1923 1924 1925 1926 1927
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1928
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1929 1930 1931 1932 1933 1934 1935
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1946
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1947 1948
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1949
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1950 1951
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1952
      });
S
sneaxiy 已提交
1953

1954
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
1955 1956 1957
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
1958
           [](StandaloneExecutor &self,
H
hong 已提交
1959
              const std::unordered_map<std::string, py::array> &input_dict,
1960 1961 1962
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
1963 1964 1965 1966 1967

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
1968 1969
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
1970 1971
             }

W
wanghuancoder 已提交
1972 1973 1974 1975
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
1976
             }
W
wanghuancoder 已提交
1977 1978

             return py::cast(std::move(ret));
H
hong 已提交
1979 1980
           });

D
dzhwinter 已提交
1981
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1982
  m.def("init_glog", framework::InitGLOG);
1983 1984
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1985
  m.def("init_devices", []() { framework::InitDevices(); });
1986

1987
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1988
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1989
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1990
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1991
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1992
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1993
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1994
  m.def("supports_bfloat16", SupportsBfloat16);
1995
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1996
  m.def("op_supported_infos", OpSupportedInfos);
1997
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1998
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1999 2000 2001
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2021 2022 2023 2024 2025 2026 2027
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2037
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2038 2039 2040 2041 2042
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2043

2044
  m.def("set_feed_variable", framework::SetFeedVariable);
2045 2046 2047 2048 2049
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2050
            return py::cast(BOOST_GET(LoDTensor, var));
2051
          } else {
2052
            return py::cast(BOOST_GET(LoDTensorArray, var));
2053 2054
          }
        });
2055
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2056

X
Xin Pan 已提交
2057 2058
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2059 2060 2061 2062 2063
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2064
  BindGlobalValueGetterSetter(&m);
2065
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2066

Y
Yu Yang 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2076
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2077
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2078 2079 2080

    Examples:
        .. code-block:: python
2081

Z
Zeng Jinle 已提交
2082 2083 2084 2085
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2086 2087
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2088 2089 2090 2091 2092 2093
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2094 2095 2096 2097
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2098 2099 2100
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2101 2102 2103 2104 2105 2106
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2107 2108
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2109 2110 2111 2112 2113 2114
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2137

2138 2139 2140 2141 2142 2143 2144 2145
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2146
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2147 2148
                 res[i] = py::cast(std::move(data));
               } else {
2149
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2165
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2166 2167 2168 2169 2170 2171 2172 2173
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2174
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2175 2176 2177 2178 2179 2180 2181 2182 2183
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2184 2185
        )DOC")
      .def("_move_to_list",
2186
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2187 2188 2189 2190
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2191
                 if (data_is_lod_tensor(self[i][j])) {
2192
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2193 2194
                   tmp[j] = py::cast(std::move(var));
                 } else {
2195
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2196 2197 2198 2199 2200 2201
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2211
  m.def("op_support_gpu", OpSupportGPU);
2212
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2213
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2214

2215
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2216 2217 2218
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2219 2220 2221 2222
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2223
#endif
P
peizhilin 已提交
2224
#endif
Y
Yu Yang 已提交
2225

2226 2227
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2228 2229 2230 2231
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2232
      platform::NPUDeviceGuard guard(devices[i]);
2233 2234 2235 2236
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2257 2258 2259 2260 2261 2262
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2263 2264 2265 2266
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2267
      .value("kAll", platform::ProfilerState::kAll)
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2279
  m.def("set_tracer_option", platform::SetTracerOption);
2280 2281
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2282
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2283
  m.def("reset_profiler", platform::ResetProfiler);
2284
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2285 2286 2287
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2288

2289 2290
  m.def("size_of_dtype", framework::SizeOfType);

2291
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2292 2293
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2294 2295
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2296
#endif  // PADDLE_WITH_CUDA
2297 2298
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2299

2300 2301 2302
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2303 2304
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2305
      .def("has", &ir::Pass::Has)
2306 2307 2308
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2309
           })
2310
      .def(
2311
          "set",
2312 2313 2314
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2315 2316
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2317 2318
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2333 2334
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2335
        self.Apply(graph.get());
F
flame 已提交
2336
      });
2337

X
fix  
Xin Pan 已提交
2338 2339
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2354
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2355

Y
yuyang18 已提交
2356
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2357 2358 2359 2360
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2361 2362 2363
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2364 2365 2366
    Examples:
        .. code-block:: python

2367 2368 2369 2370 2371 2372 2373 2374 2375
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2376

2377 2378
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2379

2380
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2381 2382
          sgd_optimizer.minimize(avg_loss)

2383
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2384 2385
          exec_strategy.num_threads = 4

2386 2387 2388
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2389 2390
        )DOC");

2391 2392 2393 2394
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2395

Y
yuyang18 已提交
2396
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2397 2398 2399 2400 2401
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2402
          },
2403 2404
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2405 2406 2407 2408 2409 2410 2411
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2425
      .def_property(
2426 2427
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2428
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2429 2430 2431
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2432 2433 2434 2435 2436
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2437 2438 2439
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2440 2441
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2442 2443 2444 2445 2446 2447 2448
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2449 2450 2451 2452
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2453
                because the temp variable's shape maybe the same between two iterations.
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2464

2465 2466 2467 2468 2469 2470 2471
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2472
              )DOC")
Q
Qiao Longfei 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2494
              )DOC")
2495 2496 2497 2498 2499 2500 2501 2502
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2503 2504 2505 2506 2507
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2508

Y
yuyang18 已提交
2509
  exec_strategy.def_property(
Y
yuyang18 已提交
2510 2511 2512 2513 2514 2515 2516
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2517 2518
      });

C
chengduo 已提交
2519 2520 2521 2522
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2523 2524 2525
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2526 2527 2528
    Examples:
        .. code-block:: python

2529
            import os
2530 2531 2532 2533
            import paddle
            import paddle.static as static

            paddle.enable_static()
2534

2535 2536
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2537

2538 2539 2540 2541
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2542

2543
            build_strategy = static.BuildStrategy()
2544 2545
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2546 2547
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2548
            program = program.with_data_parallel(loss_name=loss.name,
2549 2550
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2551
)DOC");
Y
yuyang18 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2564
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2565 2566 2567 2568
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2569 2570 2571 2572
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2573
            self.reduce_ = strategy;
C
chengduo 已提交
2574
          },
2575
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2576 2577
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2578
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2579 2580
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2581
                Default is 'AllReduce'.
F
flame 已提交
2582 2583 2584 2585

                Examples:
                    .. code-block:: python

2586 2587 2588 2589 2590 2591 2592
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2593
                  )DOC")
Y
yuyang18 已提交
2594 2595 2596 2597 2598
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2599 2600 2601 2602
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2603
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2604
          },
2605
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2606
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2607 2608
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2609
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2610 2611 2612 2613

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2614 2615
                        import numpy
                        import os
2616 2617 2618 2619
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2620 2621

                        use_cuda = True
2622 2623
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2624 2625

                        # NOTE: If you use CPU to run the program, you need
2626
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2627 2628 2629 2630 2631 2632
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2633
                            places = static.cpu_places()
C
chengduo 已提交
2634
                        else:
2635
                            places = static.cuda_places()
C
chengduo 已提交
2636

2637 2638 2639 2640
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2641

2642
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2643

2644
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2645
                        build_strategy.gradient_scale_strategy = \
2646 2647 2648
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2649
                                          loss_name=loss.name, build_strategy=build_strategy,
2650
                                          places=places)
C
chengduo 已提交
2651 2652 2653 2654 2655 2656

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2657 2658
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2659
                   )DOC")
Y
yuyang18 已提交
2660 2661 2662 2663
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2664 2665 2666 2667
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2668
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2669
          },
2670
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2671
                writing the SSA Graph to file in the form of graphviz.
2672
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2673 2674 2675 2676

                Examples:
                    .. code-block:: python

2677 2678 2679 2680
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2681

2682 2683
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2684
                    )DOC")
S
sneaxiy 已提交
2685 2686 2687 2688 2689 2690
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2691 2692 2693 2694
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2695 2696
            self.enable_sequential_execution_ = b;
          },
2697 2698
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2699 2700 2701 2702

                Examples:
                    .. code-block:: python

2703 2704 2705 2706 2707 2708
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2709 2710
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2711 2712 2713 2714 2715 2716
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2717 2718 2719 2720
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2721 2722
            self.remove_unnecessary_lock_ = b;
          },
2723 2724
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2725 2726 2727 2728

                Examples:
                    .. code-block:: python

2729 2730 2731 2732 2733 2734
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2735 2736
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2737 2738 2739 2740
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2741
#ifdef WIN32
2742
            PADDLE_THROW(platform::errors::Unavailable(
2743
                "Distribution mode is not supported on Windows platform."));
2744
#endif
2745 2746
            self.num_trainers_ = num_trainers;
          })
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2759 2760 2761 2762 2763 2764
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2765 2766 2767 2768 2769 2770
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2771
      .def_property("use_hierarchical_allreduce",
2772 2773 2774 2775 2776 2777
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2778
      .def_property("hierarchical_allreduce_inter_nranks",
2779 2780 2781 2782 2783 2784 2785
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2786 2787 2788 2789 2790 2791
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2792 2793 2794 2795
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2796 2797
            self.fuse_elewise_add_act_ops_ = b;
          },
2798
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2799
                to fuse elementwise_add_op and activation_op,
2800
                it may make the execution faster. Default is False.
F
flame 已提交
2801 2802 2803 2804

                Examples:
                    .. code-block:: python

2805 2806 2807 2808 2809 2810
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2811 2812
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2813 2814 2815 2816
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2817
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2818
                              platform::errors::PreconditionNotMet(
2819 2820
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2830 2831 2832 2833 2834 2835
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2836 2837
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2863 2864 2865 2866
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2867
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2868
                              platform::errors::PreconditionNotMet(
2869 2870
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2881 2882 2883 2884 2885 2886
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2887 2888
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2889 2890 2891 2892 2893 2894
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2895 2896 2897 2898
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2899 2900
            self.fuse_relu_depthwise_conv_ = b;
          },
2901
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2902 2903 2904
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2905
                Default is False.
F
flame 已提交
2906 2907 2908 2909

                Examples:
                    .. code-block:: python

2910 2911 2912 2913 2914 2915
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2916 2917
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2918 2919 2920
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
2921
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
2922 2923
                    },
                    [](BuildStrategy &self, bool b) {
2924 2925 2926 2927
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2928 2929
                      self.fuse_broadcast_ops_ = b;
                    },
2930
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2931 2932 2933 2934
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2935 2936 2937 2938 2939
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2940 2941 2942 2943 2944 2945
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2946 2947
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2948 2949
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2950
                      return self.fuse_all_optimizer_ops_ == true ||
2951
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
2952 2953
                    },
                    [](BuildStrategy &self, bool b) {
2954 2955 2956 2957
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2958 2959
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2960 2961 2962 2963
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2964 2965 2966 2967
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2968 2969
            self.sync_batch_norm_ = b;
          },
2970
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2971 2972 2973
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2974 2975
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2976 2977 2978 2979

                Examples:
                    .. code-block:: python

2980 2981 2982 2983 2984 2985
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2986 2987
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2988 2989
      .def_property(
          "memory_optimize",
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3000
              self.memory_optimize_ = paddle::none;
3001 3002 3003
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3004
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3005 3006
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3007 3008
            }
          },
3009
          R"DOC((bool, optional): memory opitimize aims to save total memory
3010
                consumption, set to True to enable it.
3011

3012 3013 3014
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3029 3030 3031
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3032 3033 3034
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3035
              PADDLE_THROW(platform::errors::Unavailable(
3036
                  "Distribution mode is not supported on Windows platform."));
3037 3038 3039 3040 3041
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3042 3043 3044
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3045
      .def_property(
D
dzhwinter 已提交
3046 3047 3048
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3049 3050 3051 3052
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3053 3054
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3055 3056
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3057
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3058
          },
C
chengduo 已提交
3059
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3060 3061 3062 3063 3064 3065 3066
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3067 3068 3069 3070
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3071 3072 3073 3074 3075 3076 3077 3078 3079
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3080 3081 3082 3083 3084 3085
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3086 3087 3088 3089 3090 3091
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3092
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3093
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3094 3095 3096 3097 3098
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3099

3100 3101 3102 3103 3104 3105
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3106
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3107
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3108
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3109
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3110 3111 3112 3113
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3114 3115 3116 3117 3118
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3119 3120 3121
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3122 3123 3124 3125
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3126 3127
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3128 3129 3130 3131 3132 3133 3134 3135
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3136
               return py::cast(
3137
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3138 3139
             } else {
               return py::cast(std::move(
3140
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3141
             }
3142 3143
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3144

D
dongdaxiang 已提交
3145
  BindFleetWrapper(&m);
3146
  BindIO(&m);
T
Thunderbrook 已提交
3147

T
Thunderbrook 已提交
3148 3149
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3150
#endif
T
Thunderbrook 已提交
3151
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3152
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3153
#endif
3154
  BindGlooWrapper(&m);
H
hutuxian 已提交
3155
  BindBoxHelper(&m);
H
hutuxian 已提交
3156 3157 3158
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3159
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3160
  BindNCCLWrapper(&m);
3161 3162 3163
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3164
#endif
F
flame 已提交
3165 3166
  BindGraph(&m);
  BindNode(&m);
3167
  BindPass(&m);
F
flame 已提交
3168
  BindInferenceApi(&m);
3169
  BindCompatible(&m);
3170
  BindDataset(&m);
Y
yaoxuefeng 已提交
3171
  BindGenerator(&m);
3172 3173 3174
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3175
  BindAscendDevice(&m);
3176
#endif
Y
Yanghello 已提交
3177 3178 3179
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3180

T
tangwei12 已提交
3181
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3182 3183
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3184
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3185 3186
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3187 3188 3189 3190 3191
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3192 3193 3194 3195
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3196
  BindSparseShardingTools(&m);
3197
#endif
L
Luo Tao 已提交
3198
}
3199
}  // namespace pybind
3200
}  // namespace paddle