pybind.cc 133.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
41
#include "paddle/fluid/framework/ir/cost_model.h"
42
#include "paddle/fluid/framework/ir/generate_pass.h"
43
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
44 45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
54
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/selected_rows.h"
57
#include "paddle/fluid/framework/tensor_util.h"
58
#include "paddle/fluid/framework/trainer.h"
59
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
60
#include "paddle/fluid/framework/version.h"
H
hong 已提交
61
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
62
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
63
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
64
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
66
#include "paddle/fluid/operators/py_func_op.h"
67
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/platform/cpu_info.h"
69
#include "paddle/fluid/platform/device_context.h"
70
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/platform/enforce.h"
72
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
73
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
74 75
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
76
#include "paddle/fluid/pybind/cuda_streams_py.h"
77
#include "paddle/fluid/pybind/io.h"
78
#include "paddle/utils/none.h"
79 80 81
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
82
#include "paddle/fluid/pybind/bind_cost_model.h"
H
hutuxian 已提交
83
#include "paddle/fluid/pybind/box_helper_py.h"
84
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
85
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
86
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
89
#include "paddle/fluid/pybind/generator_py.h"
90
#include "paddle/fluid/pybind/global_value_getter_setter.h"
91
#include "paddle/fluid/pybind/gloo_context_py.h"
92
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
93
#include "paddle/fluid/pybind/heter_wrapper_py.h"
94
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
95
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
96
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
97
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
98
#include "paddle/fluid/pybind/pybind_boost_headers.h"
99

100
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
102
#endif
103
#include "paddle/fluid/framework/data_type.h"
104 105
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
106
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/tensor_py.h"
108
#include "paddle/fluid/string/to_string.h"
109 110
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
111
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
112
#endif
113
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
114
#include "paddle/fluid/platform/cuda_profiler.h"
115
#endif
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
117 118
#endif

119 120
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
121
#include "paddle/fluid/platform/npu_profiler.h"
122 123
#endif

124
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
125
#include "paddle/fluid/platform/xpu/xpu_info.h"
126 127
#endif

128 129
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
130 131 132 133
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
134
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
135 136 137
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
138 139
#include "pybind11/stl.h"

140
DECLARE_bool(use_mkldnn);
141

Q
Qiao Longfei 已提交
142 143
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
144 145 146
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
147

148
namespace paddle {
149
namespace pybind {
150
bool IsCompiledWithCUDA() {
151 152 153 154 155 156 157 158 159
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
160 161 162 163 164 165
  return false;
#else
  return true;
#endif
}

166 167 168 169 170 171 172 173
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

174 175 176 177 178 179 180 181
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

182 183 184 185 186 187 188 189
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

190 191 192 193 194 195 196 197
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

198 199 200 201 202 203 204 205
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

206 207 208 209 210 211 212 213 214 215 216
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

217 218 219 220 221 222 223 224 225 226 227
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
246 247 248
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
249
      {"NPU", &platform::is_npu_place},
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

289
bool IsCompiledWithBrpc() {
290
#ifndef PADDLE_WITH_DISTRIBUTE
291 292
  return false;
#endif
293
  return true;
294 295
}

Y
update  
Yancey1989 已提交
296
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
297
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
298 299 300 301 302 303
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
304 305 306 307 308 309 310 311 312 313
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
336 337 338
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
352 353
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
354 355
    }
    vec_res.emplace_back(
356
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
357 358 359 360 361 362 363 364 365 366 367 368
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
369 370
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
371 372 373 374 375 376 377 378 379 380 381 382
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
383 384 385
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
386 387 388 389
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
390 391
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
392 393 394 395
  }
  return vec_res;
}

396 397 398 399 400 401 402 403
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
404 405
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
406 407 408 409 410 411 412 413 414 415 416 417 418
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
419 420 421
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
422 423 424 425 426
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
427 428 429 430 431
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
432 433
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
434 435 436
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
437 438 439 440 441 442 443 444 445
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
446 447
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
448 449 450 451 452
  }

  return;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

490 491 492 493 494 495
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

496 497
  BindCudaStream(&m);

Y
Yu Yang 已提交
498 499 500
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
501
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
502

503 504
  AssertStaticGraphAndDygraphGradMakerNoDiff();

505
  m.doc() = "C++ core of PaddlePaddle";
506

507 508 509 510
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

511
  BindException(&m);
Y
Yu Yang 已提交
512

513 514
  m.def("set_num_threads", &platform::SetNumThreads);

515 516
  m.def("disable_signal_handler", &DisableSignalHandler);

517
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
518 519 520
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
521 522 523 524
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

525 526 527 528 529 530 531 532 533 534 535 536 537
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
      .def("reset", &platform::CUDAGraph::Reset);
#endif

Z
Zeng Jinle 已提交
538 539 540 541
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
542 543 544
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
545 546 547 548 549 550

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
551 552
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
553
    framework::Tensor tensor;
6
633WHU 已提交
554

S
Siming Dai 已提交
555
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
556 557
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
558
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
559
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
560 561 562 563 564
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
565

566 567 568 569 570 571
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

572 573 574 575 576 577
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
578 579
  });

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
605 606 607 608 609 610
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
611
  m.def(
S
sneaxiy 已提交
612
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
613 614 615 616
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
617 618 619
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
636 637 638
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
639
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
640

641
  m.def("_set_fuse_parameter_group_size",
642
        &paddle::framework::ir::SetFuseParameterGroupsSize);
643
  m.def("_set_fuse_parameter_memory_size",
644
        &paddle::framework::ir::SetFuseParameterMemorySize);
645

S
sneaxiy 已提交
646 647 648
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

649 650
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

651 652 653
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

654
  BindImperative(&m);
655

656 657 658
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
659
      .def("_is_initialized",
660
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
661
      .def("_get_dims",
662
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
663
      .def("_set_dims",
664
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
665
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
666
           })
Y
yuyang18 已提交
667
      .def("_set_layout",
668
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
669 670
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
671
      .def("_alloc_float",
672
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
673
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
674
           })
675
      .def("_alloc_float",
676
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
677 678
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
679
      .def("_alloc_float",
680
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
681
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
682
           })
683 684 685 686
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
687
      .def("_alloc_double",
688
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
689 690
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
691
      .def("_alloc_int",
692
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
693
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
694
           })
695
      .def("_alloc_int",
696
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
697 698
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
699
      .def("_alloc_int",
700
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
701
             self.mutable_data<int>(place);
Q
qijun 已提交
702
           })
Y
yuyang18 已提交
703
      .def("_alloc_int",
704 705
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
706 707
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
708
      .def("_alloc_float",
709 710
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
711 712
             self.mutable_data<float>(place);
           })
713
      .def("_mutable_data",
714
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
715 716 717
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
718
      .def("_mutable_data",
719
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
720 721 722
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
723
      .def("_mutable_data",
724
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
725 726 727 728
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
729
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
730 731 732
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
733
      .def("_clear", &framework::Tensor::clear)
734 735 736 737 738
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
739 740 741 742 743 744 745 746 747 748 749
      .def("_copy_from",
           [](framework::Tensor &self, const framework::Tensor &other,
              const platform::Place &place, int64_t batch_size) {
             if (batch_size < 0) {
               framework::TensorCopy(other, place, &self);
             } else {
               auto sliced = other.Slice(0, batch_size);
               framework::TensorCopy(sliced, place, &self);
             }
           },
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
750
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
751
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
752 753
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
754
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
755
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
756 757
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
758
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
759 760
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
761 762 763 764
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
765
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
766
          LoDTensor is to be set.
767 768
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
782

783 784 785
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
802
      .def("_to_dlpack",
803
           [](framework::Tensor &self) {
6
633WHU 已提交
804
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
805
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
823 824 825 826
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
827 828
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
829
      .def("_layout",
830 831 832 833
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
834
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
835
      .def("__str__", [](const framework::Tensor &self) {
836 837 838 839
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
840

L
Leo Chen 已提交
841
  // TODO(cql): add reference: en_user_guide_lod_tensor
842
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
917 918 919 920 921 922 923

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
924 925

        )DOC")
926 927
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
928 929 930 931 932 933 934 935 936
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
937 938
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
939 940 941 942
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
943 944
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
945
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
946
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
947 948
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
949 950 951
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
952
      .def("set_lod",
953
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
954
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
955
             LoD new_lod;
956 957
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
958 959
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
960 961
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
962
             self.set_lod(new_lod);
S
sneaxiy 已提交
963 964 965 966 967
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
968 969 970 971
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
972 973 974 975 976 977 978 979 980 981

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
982
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
983
           )DOC")
984 985 986 987 988 989 990 991 992 993 994
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
995 996
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
997 998 999 1000 1001
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1002
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1003 1004
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1005
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1006

L
Leo Chen 已提交
1007
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1008
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1009
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1010 1011

           Args:
L
Leo Chen 已提交
1012 1013 1014 1015
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1026 1027
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1028
           )DOC")
1029 1030 1031 1032 1033 1034 1035 1036
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1037 1038 1039 1040 1041
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1042 1043
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1054
           )DOC")
G
gongweibao 已提交
1055
      // Set above comments of set_lod.
1056 1057 1058 1059 1060 1061 1062 1063
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1064 1065
           },
           R"DOC(
L
Leo Chen 已提交
1066 1067
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1068 1069

           Returns:
L
Leo Chen 已提交
1070
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1082 1083 1084 1085 1086 1087 1088 1089
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1090
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1091 1092

           Returns:
L
Leo Chen 已提交
1093
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1105 1106 1107 1108 1109 1110 1111
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1112
           )DOC")
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1131
#ifdef _WIN32
1132
      });
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1183

Q
qijun 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1195 1196
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1197 1198
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1199 1200
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1201
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1202 1203 1204 1205 1206 1207
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1208
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1209
      .def("rows", [](SelectedRows &self) {
1210 1211 1212 1213 1214
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1215
      });
Q
qijun 已提交
1216

1217
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1218 1219 1220

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1221
      .def(py::init<>())
1222
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1223
      .def("set_int",
1224 1225
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1226 1227 1228 1229 1230 1231 1232
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1233
      .def("get_tensor",
1234 1235
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1236 1237
           },
           py::return_value_policy::reference)
1238 1239 1240 1241
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1242 1243 1244
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1245 1246 1247 1248 1249
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1250 1251 1252
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1253 1254 1255
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1256
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1257 1258 1259 1260 1261
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1262
#endif
Y
Refine  
Yu Yang 已提交
1263 1264
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1265 1266 1267 1268
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1269 1270
             return self.GetMutable<framework::ReaderHolder>();
           },
1271
           py::return_value_policy::reference)
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1283 1284 1285 1286
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1287

S
sneaxiy 已提交
1288
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1289

S
sneaxiy 已提交
1290
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1304
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1305 1306 1307 1308 1309 1310
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1311 1312
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1313
      .def("var",
1314
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1315
             return self.Var(name);
Y
Yu Yang 已提交
1316
           },
S
sneaxiy 已提交
1317 1318
           py::arg("name"),
           R"DOC(
1319
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1320

1321
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1322
           current scope, the variable would be created. Otherwise,
1323
           return the existing variable.
S
sneaxiy 已提交
1324 1325

           Args:
1326 1327
               name (str): the variable name.

S
sneaxiy 已提交
1328
           Returns:
1329
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1330 1331 1332 1333
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1334
           Find variable named :code:`name` in the current scope or
1335
           its parent scope. Return None if not found. 
1336

S
sneaxiy 已提交
1337 1338
           Args:
               name (str): the variable name.
1339

S
sneaxiy 已提交
1340
           Returns:
1341
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1342
           )DOC",
1343
           py::return_value_policy::reference)
1344
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1345 1346 1347 1348 1349 1350
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1351
           py::return_value_policy::reference)
S
sneaxiy 已提交
1352 1353 1354
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1355 1356
           )DOC")
      .def("_kids", &Scope::kids);
1357

S
sneaxiy 已提交
1358 1359 1360 1361 1362 1363
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1364 1365
        R"DOC(
        Create a new scope.
1366

S
sneaxiy 已提交
1367 1368 1369
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1370 1371
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1372 1373
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1374 1375
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1376 1377 1378 1379
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1380 1381
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1382 1383
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1384 1385 1386
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1387 1388
    return ret_values;
  });
1389 1390 1391 1392 1393 1394 1395 1396
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1397
              res = op_checker->GetDefaultAttrsMap();
1398 1399 1400 1401
            }
          }
          return res;
        });
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1418 1419 1420
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1421 1422 1423 1424 1425
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1426 1427 1428
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1443
  m.def("prune", [](const ProgramDesc &origin,
1444
                    const std::set<std::string> &feeded_var_names,
1445
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1446
    ProgramDesc prog_with_targets(origin);
1447

1448
    for (const auto &t : targets) {
1449
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1450
    }
1451
    proto::ProgramDesc pruned_desc;
1452 1453 1454 1455
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1456
  });
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1474 1475 1476 1477
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1478 1479 1480
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1481 1482
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1483

Q
qijun 已提交
1484
  // clang-format off
Y
Yu Yang 已提交
1485
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1486 1487
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1488
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1489 1490
                    return new paddle::platform::CPUDeviceContext();
                  })
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1515
      .def_static("create",
D
dzhwinter 已提交
1516
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1517
                      -> paddle::platform::DeviceContext* {
1518
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1519 1520 1521 1522
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1523
#else
Q
qijun 已提交
1524
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1525
#endif
C
chengduoZH 已提交
1526 1527 1528 1529
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1530
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1531 1532 1533 1534
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1535 1536 1537 1538
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1539
// clang-format on
1540
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1541 1542
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1543
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1544 1545 1546 1547 1548

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1549
    The memory of CUDAPlace with different dev_id is not accessible.
1550 1551 1552 1553 1554 1555 1556 1557
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1558 1559 1560 1561

    Examples:
        .. code-block:: python

1562 1563 1564
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1565

1566
        )DOC")
S
sneaxiy 已提交
1567 1568
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1569
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1594 1595
             new (&self) platform::CUDAPlace(dev_id);
#else
1596 1597 1598 1599 1600 1601 1602 1603 1604
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1605 1606
#endif
           })
1607
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1608 1609
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1610 1611 1612 1613
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1614
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1615
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1616 1617
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1618 1619 1620
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1621
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1622
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1669
#ifdef PADDLE_WITH_XPU
1670 1671 1672 1673 1674 1675 1676
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1677 1678 1679
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1680
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1681
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1682
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1683 1684 1685 1686
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1687
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1688 1689
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1690
#endif
1691

1692
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1693
    CPUPlace is a descriptor of a device.
1694
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1695 1696 1697 1698

    Examples:
        .. code-block:: python

1699 1700
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1701

1702
        )DOC")
1703
      .def(py::init<>())
S
sneaxiy 已提交
1704 1705
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1706
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1707
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1708 1709 1710 1711
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1712
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1713
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1714

1715
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1716 1717 1718 1719 1720 1721
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1722 1723 1724 1725

    Examples:
        .. code-block:: python

1726 1727
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1728

1729
        )DOC")
S
sneaxiy 已提交
1730
      .def("__init__",
S
sneaxiy 已提交
1731
           [](platform::CUDAPinnedPlace &self) {
1732
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1733 1734 1735
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1736
#endif
S
sneaxiy 已提交
1737
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1738
           })
S
sneaxiy 已提交
1739 1740 1741 1742
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1743 1744
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1745 1746
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1747 1748 1749 1750
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1751
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1752 1753
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1796
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1811 1812
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1813 1814
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1815 1816
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1817 1818 1819 1820
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1821
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1822
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1823
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1824 1825
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1826 1827
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1828 1829
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1830 1831
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1832 1833 1834 1835
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1836 1837
      .def("gpu_device_id",
           [](platform::Place &self) {
1838
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1839
           })
1840 1841 1842 1843
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1844 1845 1846 1847
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1848 1849
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1850 1851 1852 1853
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1854 1855 1856 1857
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1858
      .def("set_place",
D
dzhwinter 已提交
1859
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1860
             self = gpu_place;
C
chengduoZH 已提交
1861
           })
1862 1863 1864 1865 1866
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1867 1868 1869 1870
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1871 1872
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1873

Y
Yu Yang 已提交
1874
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1889
      .def("run",
1890
           [](OperatorBase &self, const Scope &scope,
1891 1892 1893 1894
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1895 1896
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1897 1898 1899 1900
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1901 1902
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1903 1904 1905 1906
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1907 1908
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1909 1910 1911 1912
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1913 1914 1915
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1916
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1917 1918
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1919 1920 1921 1922 1923 1924 1925
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1926 1927
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1928
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1929
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1930 1931 1932 1933
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1934

1935 1936 1937
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1938 1939 1940 1941 1942 1943 1944 1945 1946
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1947 1948
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1949
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1950
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1951
      .def("close", &Executor::Close)
1952 1953
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1954 1955
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1956 1957 1958 1959
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1960
             pybind11::gil_scoped_release release;
1961 1962 1963 1964 1965 1966 1967
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1968 1969 1970
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1971
              std::map<std::string, FetchType *> *fetch_targets,
1972 1973 1974 1975 1976 1977 1978 1979
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1980
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1981 1982 1983 1984 1985 1986 1987
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1998
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1999 2000
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2001
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2002 2003
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2004
      });
S
sneaxiy 已提交
2005

2006 2007 2008 2009
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
2010
           [](CostInfo &self) { return self.device_memory_bytes; });
2011

2012
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2013 2014 2015
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2016
           [](StandaloneExecutor &self,
H
hong 已提交
2017
              const std::unordered_map<std::string, py::array> &input_dict,
2018 2019 2020
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
2021 2022 2023 2024 2025

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2026 2027
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2028 2029
             }

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, framework::Tensor>
                  &input_dict,
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2050 2051 2052 2053
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2054
             }
W
wanghuancoder 已提交
2055
             return py::cast(std::move(ret));
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2077 2078
           });

D
dzhwinter 已提交
2079
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2080
  m.def("init_glog", framework::InitGLOG);
2081 2082
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2083
  m.def("init_devices", []() { framework::InitDevices(); });
2084

2085
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2086
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2087
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2088
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2089
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2090
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2091
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2092
  m.def("supports_bfloat16", SupportsBfloat16);
2093
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2094
  m.def("op_supported_infos", OpSupportedInfos);
2095
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2096
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2097 2098 2099
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2119 2120 2121 2122 2123 2124 2125
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2135
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2136 2137 2138 2139 2140
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2141

2142
  m.def("set_feed_variable", framework::SetFeedVariable);
2143 2144 2145 2146 2147
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2148
            return py::cast(BOOST_GET(LoDTensor, var));
2149
          } else {
2150
            return py::cast(BOOST_GET(LoDTensorArray, var));
2151 2152
          }
        });
2153
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2154

X
Xin Pan 已提交
2155 2156
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2157 2158 2159 2160
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2161
  BindCostModel(&m);
2162
  BindConstValue(&m);
2163
  BindGlobalValueGetterSetter(&m);
2164
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2165

Y
Yu Yang 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2175
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2176
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2177 2178 2179

    Examples:
        .. code-block:: python
2180

Z
Zeng Jinle 已提交
2181 2182 2183 2184
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2185 2186
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2187 2188 2189 2190 2191 2192
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2193 2194 2195 2196
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2197 2198 2199
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2200 2201 2202 2203 2204 2205
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2206 2207
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2208 2209 2210 2211 2212 2213
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2236

2237 2238 2239 2240 2241 2242 2243 2244
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2245
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2246 2247
                 res[i] = py::cast(std::move(data));
               } else {
2248
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2264
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2265 2266 2267 2268 2269 2270 2271 2272
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2273
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2274 2275 2276 2277 2278 2279 2280 2281 2282
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2283 2284
        )DOC")
      .def("_move_to_list",
2285
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2286 2287 2288 2289
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2290
                 if (data_is_lod_tensor(self[i][j])) {
2291
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2292 2293
                   tmp[j] = py::cast(std::move(var));
                 } else {
2294
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2295 2296 2297 2298 2299 2300
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2310
  m.def("op_support_gpu", OpSupportGPU);
2311
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2312
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2313 2314 2315 2316 2317 2318 2319 2320
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
      .def_readonly("name", &gpuDeviceProp::name)
      .def_readonly("major", &gpuDeviceProp::major)
      .def_readonly("minor", &gpuDeviceProp::minor)
      .def_readonly("is_multi_gpu_board", &gpuDeviceProp::isMultiGpuBoard)
      .def_readonly("is_integrated", &gpuDeviceProp::integrated)
      .def_readonly("multi_processor_count",
                    &gpuDeviceProp::multiProcessorCount)
      .def_readonly("total_memory", &gpuDeviceProp::totalGlobalMem)
      .def("__repr__", [](const gpuDeviceProp &gpu_device_prop) {
        std::ostringstream stream;
        stream << "_gpuDeviceProperties(name='" << gpu_device_prop.name
               << "', major=" << gpu_device_prop.major
               << ", minor=" << gpu_device_prop.minor << ", total_memory="
               << gpu_device_prop.totalGlobalMem / (1024 * 1024)
               << "MB, multi_processor_count="
               << gpu_device_prop.multiProcessorCount << ")";
        return stream.str();
      });
D
dangqingqing 已提交
2346

2347
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2348 2349 2350
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2351 2352 2353 2354
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2355
#endif
P
peizhilin 已提交
2356
#endif
Y
Yu Yang 已提交
2357

2358 2359
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2360 2361 2362 2363
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2364
      platform::NPUDeviceGuard guard(devices[i]);
2365 2366 2367 2368
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2389 2390 2391 2392 2393 2394
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2395 2396 2397 2398
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2399
      .value("kAll", platform::ProfilerState::kAll)
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2411
  m.def("set_tracer_option", platform::SetTracerOption);
2412 2413
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2414
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2415
  m.def("reset_profiler", platform::ResetProfiler);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2431
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2432 2433 2434
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2435

2436 2437
  m.def("size_of_dtype", framework::SizeOfType);

2438
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2439 2440
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2441 2442
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2443
#endif  // PADDLE_WITH_CUDA
2444 2445
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2446

2447 2448 2449
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2450 2451
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2452
      .def("has", &ir::Pass::Has)
2453 2454 2455
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2456
           })
2457
      .def(
2458
          "set",
2459 2460 2461
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2462 2463
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2464 2465
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2480 2481
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2482
        self.Apply(graph.get());
F
flame 已提交
2483
      });
2484

X
fix  
Xin Pan 已提交
2485 2486
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2501
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2502
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2503 2504 2505 2506
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2507 2508 2509
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2510 2511 2512
    Examples:
        .. code-block:: python

2513 2514 2515 2516 2517 2518 2519 2520 2521
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2522

2523 2524
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2525

2526
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2527 2528
          sgd_optimizer.minimize(avg_loss)

2529
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2530 2531
          exec_strategy.num_threads = 4

2532 2533 2534
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2535 2536
        )DOC");

2537 2538 2539 2540
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2541

Y
yuyang18 已提交
2542
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2543 2544 2545 2546 2547
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2548
          },
2549 2550
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2551 2552 2553 2554 2555 2556 2557
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2571
      .def_property(
2572 2573
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2574
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2575 2576 2577
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2578 2579 2580 2581 2582
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2583 2584 2585
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2586 2587
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2588 2589 2590 2591 2592 2593 2594
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2595 2596 2597 2598
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2599
                because the temp variable's shape maybe the same between two iterations.
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2610

2611 2612 2613 2614 2615 2616 2617
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2618
              )DOC")
Q
Qiao Longfei 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2640
              )DOC")
2641 2642 2643 2644 2645 2646 2647 2648
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2649 2650 2651 2652 2653
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2654

Y
yuyang18 已提交
2655
  exec_strategy.def_property(
Y
yuyang18 已提交
2656 2657 2658 2659 2660 2661 2662
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2663 2664
      });

C
chengduo 已提交
2665 2666 2667 2668
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2669 2670 2671
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2672 2673 2674
    Examples:
        .. code-block:: python

2675
            import os
2676 2677 2678 2679
            import paddle
            import paddle.static as static

            paddle.enable_static()
2680

2681 2682
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2683

2684 2685 2686 2687
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2688

2689
            build_strategy = static.BuildStrategy()
2690 2691
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2692 2693
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2694
            program = program.with_data_parallel(loss_name=loss.name,
2695 2696
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2697
)DOC");
Y
yuyang18 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2710
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2711 2712 2713 2714
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2715 2716 2717 2718
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2719
            self.reduce_ = strategy;
C
chengduo 已提交
2720
          },
2721
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2722 2723
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2724
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2725 2726
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2727
                Default is 'AllReduce'.
F
flame 已提交
2728 2729 2730 2731

                Examples:
                    .. code-block:: python

2732 2733 2734 2735 2736 2737 2738
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2739
                  )DOC")
Y
yuyang18 已提交
2740 2741 2742 2743 2744
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2745 2746 2747 2748
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2749
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2750
          },
2751
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2752
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2753 2754
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2755
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2756 2757 2758 2759

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2760 2761
                        import numpy
                        import os
2762 2763 2764 2765
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2766 2767

                        use_cuda = True
2768 2769
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2770 2771

                        # NOTE: If you use CPU to run the program, you need
2772
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2773 2774 2775 2776 2777 2778
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2779
                            places = static.cpu_places()
C
chengduo 已提交
2780
                        else:
2781
                            places = static.cuda_places()
C
chengduo 已提交
2782

2783 2784 2785 2786
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2787

2788
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2789

2790
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2791
                        build_strategy.gradient_scale_strategy = \
2792 2793 2794
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2795
                                          loss_name=loss.name, build_strategy=build_strategy,
2796
                                          places=places)
C
chengduo 已提交
2797 2798 2799 2800 2801 2802

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2803 2804
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2805
                   )DOC")
Y
yuyang18 已提交
2806 2807 2808 2809
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2810 2811 2812 2813
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2814
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2815
          },
2816
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2817
                writing the SSA Graph to file in the form of graphviz.
2818
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2819 2820 2821 2822

                Examples:
                    .. code-block:: python

2823 2824 2825 2826
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2827

2828 2829
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2830
                    )DOC")
S
sneaxiy 已提交
2831 2832 2833 2834 2835 2836
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2837 2838 2839 2840
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2841 2842
            self.enable_sequential_execution_ = b;
          },
2843 2844
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2845 2846 2847 2848

                Examples:
                    .. code-block:: python

2849 2850 2851 2852 2853 2854
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2855 2856
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2857 2858 2859 2860 2861 2862
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2863 2864 2865 2866
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2867 2868
            self.remove_unnecessary_lock_ = b;
          },
2869 2870
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2871 2872 2873 2874

                Examples:
                    .. code-block:: python

2875 2876 2877 2878 2879 2880
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2881 2882
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2883 2884 2885 2886
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2887
#ifdef WIN32
2888
            PADDLE_THROW(platform::errors::Unavailable(
2889
                "Distribution mode is not supported on Windows platform."));
2890
#endif
2891 2892
            self.num_trainers_ = num_trainers;
          })
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2905 2906 2907 2908 2909 2910
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2911 2912 2913 2914 2915 2916
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2917
      .def_property("use_hierarchical_allreduce",
2918 2919 2920 2921 2922 2923
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2924
      .def_property("hierarchical_allreduce_inter_nranks",
2925 2926 2927 2928 2929 2930 2931
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2932 2933 2934 2935 2936 2937
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2938 2939 2940 2941
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2942 2943
            self.fuse_elewise_add_act_ops_ = b;
          },
2944
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2945
                to fuse elementwise_add_op and activation_op,
2946
                it may make the execution faster. Default is False.
F
flame 已提交
2947 2948 2949 2950

                Examples:
                    .. code-block:: python

2951 2952 2953 2954 2955 2956
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2957 2958
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2959 2960 2961 2962
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2963
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2964
                              platform::errors::PreconditionNotMet(
2965 2966
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2976 2977 2978 2979 2980 2981
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2982 2983
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3009 3010 3011 3012
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3013
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3014
                              platform::errors::PreconditionNotMet(
3015 3016
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3027 3028 3029 3030 3031 3032
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3033 3034
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3035 3036 3037 3038 3039 3040
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3041 3042 3043 3044
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3045 3046
            self.fuse_relu_depthwise_conv_ = b;
          },
3047
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3048 3049 3050
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3051
                Default is False.
F
flame 已提交
3052 3053 3054 3055

                Examples:
                    .. code-block:: python

3056 3057 3058 3059 3060 3061
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3062 3063
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3064 3065 3066
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3067
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3068 3069
                    },
                    [](BuildStrategy &self, bool b) {
3070 3071 3072 3073
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3074 3075
                      self.fuse_broadcast_ops_ = b;
                    },
3076
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3077 3078 3079 3080
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3081 3082 3083 3084 3085
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3086 3087 3088 3089 3090 3091
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3092 3093
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3094 3095
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3096
                      return self.fuse_all_optimizer_ops_ == true ||
3097
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3098 3099
                    },
                    [](BuildStrategy &self, bool b) {
3100 3101 3102 3103
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3104 3105
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3106 3107 3108 3109
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3110 3111 3112 3113
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3114 3115
            self.sync_batch_norm_ = b;
          },
3116
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3117 3118 3119
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3120 3121
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3122 3123 3124 3125

                Examples:
                    .. code-block:: python

3126 3127 3128 3129 3130 3131
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3132 3133
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3134 3135
      .def_property(
          "memory_optimize",
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3146
              self.memory_optimize_ = paddle::none;
3147 3148 3149
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3150
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3151 3152
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3153 3154
            }
          },
3155
          R"DOC((bool, optional): memory opitimize aims to save total memory
3156
                consumption, set to True to enable it.
3157

3158 3159 3160
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3175 3176 3177
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3178 3179 3180
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3181
              PADDLE_THROW(platform::errors::Unavailable(
3182
                  "Distribution mode is not supported on Windows platform."));
3183 3184 3185 3186 3187
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3188 3189 3190
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3191
      .def_property(
D
dzhwinter 已提交
3192 3193 3194
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3195 3196 3197 3198
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3199 3200
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3201 3202
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3203
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3204
          },
C
chengduo 已提交
3205
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3206 3207 3208 3209 3210 3211 3212
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3213 3214 3215 3216
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3217 3218 3219 3220 3221 3222 3223 3224 3225
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3226 3227 3228 3229 3230 3231
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3232 3233 3234 3235 3236 3237 3238
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3239 3240 3241 3242 3243 3244
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3245
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3246
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3247 3248 3249 3250 3251
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3252

3253 3254 3255 3256 3257 3258
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3259
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3260
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3261
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3262
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3263 3264 3265 3266
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3267 3268 3269 3270 3271
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3272 3273 3274
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3275 3276 3277 3278
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3279 3280
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3281 3282 3283 3284 3285 3286 3287 3288
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3289
               return py::cast(
3290
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3291 3292
             } else {
               return py::cast(std::move(
3293
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3294
             }
3295 3296
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3297

D
dongdaxiang 已提交
3298
  BindFleetWrapper(&m);
3299
  BindIO(&m);
T
Thunderbrook 已提交
3300

T
Thunderbrook 已提交
3301 3302
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3303
#endif
T
Thunderbrook 已提交
3304
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3305
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3306
#endif
3307
  BindGlooWrapper(&m);
H
hutuxian 已提交
3308
  BindBoxHelper(&m);
H
hutuxian 已提交
3309 3310 3311
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3312
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3313
  BindNCCLWrapper(&m);
3314 3315 3316
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3317
#endif
F
flame 已提交
3318 3319
  BindGraph(&m);
  BindNode(&m);
3320
  BindPass(&m);
F
flame 已提交
3321
  BindInferenceApi(&m);
3322
  BindCompatible(&m);
3323
  BindDataset(&m);
Y
yaoxuefeng 已提交
3324
  BindGenerator(&m);
3325 3326 3327
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3328
  BindAscendDevice(&m);
3329
#endif
Y
Yanghello 已提交
3330 3331 3332
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3333

T
tangwei12 已提交
3334
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3335 3336
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3337
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3338 3339
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3340 3341 3342 3343 3344
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3345 3346 3347 3348
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3349
  BindSparseShardingTools(&m);
3350
#endif
L
Luo Tao 已提交
3351
}
3352
}  // namespace pybind
3353
}  // namespace paddle