pybind.cc 165.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
49
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/op_info.h"
51
#include "paddle/fluid/framework/op_registry.h"
52
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/framework/parallel_executor.h"
54
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
56
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
57
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/framework/scope_pool.h"
59
#include "paddle/fluid/framework/selected_rows_utils.h"
60
#include "paddle/fluid/framework/tensor_util.h"
61
#include "paddle/fluid/framework/trainer.h"
62
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
63
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
64
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
65
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
67
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
68
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
69
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
70
#include "paddle/fluid/operators/py_func_op.h"
71
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
72
#include "paddle/fluid/platform/cpu_info.h"
73
#include "paddle/fluid/platform/device/device_wrapper.h"
74
#include "paddle/fluid/platform/device_context.h"
75
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/platform/enforce.h"
77
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
78
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
79 80
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
81 82 83
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
84
#include "paddle/fluid/pybind/cuda_streams_py.h"
85
#include "paddle/fluid/pybind/distributed_py.h"
86
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
87
#include "paddle/fluid/pybind/imperative.h"
88
#include "paddle/fluid/pybind/io.h"
89 90
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
91
#include "paddle/utils/none.h"
92 93 94
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
95
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
96
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
97
#include "paddle/fluid/pybind/box_helper_py.h"
98
#include "paddle/fluid/pybind/communication.h"
99
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
100
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
102
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
103
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
104
#include "paddle/fluid/pybind/generator_py.h"
105
#include "paddle/fluid/pybind/global_value_getter_setter.h"
106
#include "paddle/fluid/pybind/gloo_context_py.h"
107
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
108
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
109
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
110
#include "paddle/fluid/pybind/ir.h"
111
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
113
#include "paddle/fluid/pybind/pybind_boost_headers.h"
114

115
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
116
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
117
#endif
118
#include "paddle/fluid/framework/data_type.h"
119 120
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
121
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
122
#include "paddle/fluid/pybind/tensor_py.h"
123
#include "paddle/fluid/string/to_string.h"
124 125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
126
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
127
#endif
128
#ifndef PADDLE_WITH_HIP
129
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
130
#endif
131
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
132 133
#endif

134
#ifdef PADDLE_WITH_ASCEND_CL
135
#include "paddle/fluid/platform/collective_helper.h"
136 137
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
138 139
#endif

140
#ifdef PADDLE_WITH_XPU
141
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
142
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
143 144
#endif

145
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
146

J
jianghaicheng 已提交
147
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
148 149
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
150
#endif
151

152 153 154 155
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
156 157 158 159
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
160
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
161 162 163
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
164 165
#include "pybind11/stl.h"

166
DECLARE_bool(use_mkldnn);
167

Q
Qiao Longfei 已提交
168 169
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
170 171 172
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
173

174
namespace paddle {
175
namespace pybind {
176 177

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
178
PyTypeObject *g_framework_scope_pytype = nullptr;
179 180 181 182 183
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
184
PyTypeObject *g_mluplace_pytype = nullptr;
185
PyTypeObject *g_framework_tensor_pytype = nullptr;
186
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
187

188
bool IsCompiledWithCUDA() {
189 190 191 192 193 194 195
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

196 197 198 199 200 201 202 203
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

204 205
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
206 207 208 209 210 211
  return false;
#else
  return true;
#endif
}

212 213 214 215 216 217 218 219
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

220 221 222 223 224 225 226 227
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
236 237 238 239 240 241 242 243
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

252 253 254 255 256 257 258 259
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

268 269 270 271 272 273 274 275
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

276 277 278 279 280 281 282 283 284 285 286
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

287 288 289 290 291 292 293 294 295 296 297
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

315
bool IsCompiledWithBrpc() {
316
#ifndef PADDLE_WITH_DISTRIBUTE
317 318
  return false;
#endif
319
  return true;
320 321
}

Y
update  
Yancey1989 已提交
322
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
323
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
324 325 326 327 328 329
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
330 331 332 333 334 335 336
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
337
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
338 339
}

H
hong 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
362 363 364
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
378 379
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
380 381
    }
    vec_res.emplace_back(
382
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
383 384 385 386 387 388 389 390 391 392 393 394
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
395 396
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
397 398 399 400 401 402 403 404 405 406 407 408
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
409 410 411
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
412 413 414 415
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
416 417
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
418 419 420 421
  }
  return vec_res;
}

422 423 424 425 426 427 428 429
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
430 431
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
432 433 434 435 436 437 438 439 440 441 442 443 444
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
445 446 447
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
448 449 450 451 452
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
453 454 455 456 457
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
458 459
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
460 461 462
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
463 464 465 466
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
467
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
468 469
        tensor_temp->mutable_data(
            exe->GetPlace(),
470
            framework::TransToPhiDataType(var_desc.GetDataType()));
471 472 473
      }
    }
  } else {
474 475
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
476 477 478 479 480
  }

  return;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
505 506 507 508
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
509
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
510 511 512 513 514 515 516 517
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
518 519 520 521 522 523 524 525 526 527 528
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

529 530 531 532 533 534
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
535
  BindImperative(&m);
536
  BindEager(&m);
537 538
  BindCudaStream(&m);

Y
Yu Yang 已提交
539 540 541
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
542
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
543

544 545
  AssertStaticGraphAndDygraphGradMakerNoDiff();

546
  m.doc() = "C++ core of PaddlePaddle";
547

548 549 550 551
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

552
  BindException(&m);
Y
Yu Yang 已提交
553

554 555
  m.def("set_num_threads", &platform::SetNumThreads);

556 557
  m.def("disable_signal_handler", &DisableSignalHandler);

558 559 560 561 562 563 564 565
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

566
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
567
  m.def("cudnn_version", &platform::DnnVersion);
568 569 570 571 572 573
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
574
#endif
575

Z
Zeng Jinle 已提交
576 577 578 579
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

580 581 582 583 584 585 586 587 588 589
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
590 591
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
592 593
#endif

Z
Zeng Jinle 已提交
594 595 596 597
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
598 599 600
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
601 602 603 604 605 606

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
607 608
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
609
    framework::Tensor tensor;
6
633WHU 已提交
610

S
Siming Dai 已提交
611
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
612 613
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
614
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
615
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
616 617 618 619 620
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
621

622 623 624 625 626 627
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

628 629 630 631 632 633
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
634 635
  });

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
661 662
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
663 664
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
665 666
  });

S
sneaxiy 已提交
667
  m.def(
S
sneaxiy 已提交
668
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
669 670 671 672
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
673 674 675
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
693 694
            }
          }
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
714 715
                }
              }
716 717 718
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
719 720 721
            }
          }

722 723 724 725
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
726 727 728
           Return the registered kernels in paddle.

           Args:
729
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
730
           )DOC");
731

732 733 734 735 736 737 738
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });

S
sneaxiy 已提交
739 740 741
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
742
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
743

744
  m.def("_set_fuse_parameter_group_size",
745
        &paddle::framework::ir::SetFuseParameterGroupsSize);
746
  m.def("_set_fuse_parameter_memory_size",
747
        &paddle::framework::ir::SetFuseParameterMemorySize);
748

S
sneaxiy 已提交
749 750 751
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

752 753
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

754 755 756
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

757 758 759 760 761
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
762 763
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
764 765 766 767
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
768
      .def("_is_initialized",
769
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
770
      .def("_get_dims",
771
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
772
      .def("_set_dims",
773
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
774
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
775
           })
Y
yuyang18 已提交
776
      .def("_set_layout",
777
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
778 779
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
780
      .def("_alloc_float",
781
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
782
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
783
           })
784
      .def("_alloc_float",
785
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
786 787
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
788
      .def("_alloc_float",
789
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
790
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
791
           })
792 793 794 795
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
796 797 798 799
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
800
      .def("_alloc_double",
801
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
802 803
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
804
      .def("_alloc_int",
805
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
806
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
807
           })
808
      .def("_alloc_int",
809
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
810 811
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
812
      .def("_alloc_int",
813
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
814
             self.mutable_data<int>(place);
Q
qijun 已提交
815
           })
816 817 818 819
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
820
      .def("_alloc_int",
821 822
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
823 824
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
825
      .def("_alloc_float",
826 827
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
828 829
             self.mutable_data<float>(place);
           })
830
      .def("_mutable_data",
831
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
832
              paddle::framework::proto::VarType::Type type) {
833 834
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
835
           })
836
      .def("_mutable_data",
837
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
838
              paddle::framework::proto::VarType::Type type) {
839 840
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
841
           })
842
      .def("_mutable_data",
843
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
844
              paddle::framework::proto::VarType::Type type) {
845 846
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
847 848
           })
      .def("_mutable_data",
849
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
850
              paddle::framework::proto::VarType::Type type) {
851 852
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
853
           })
854 855 856
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
857 858
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
859
           })
860
      .def("_clear", &framework::Tensor::clear)
861 862 863
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
864 865
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
866
           })
Z
Zeng Jinle 已提交
867 868 869 870 871 872 873 874 875 876
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
877 878
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
879
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
880
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
881
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
882
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
883 884
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
885
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
886
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
887 888
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
889 890
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
891 892
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
893
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
894 895
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
896
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
897 898 899
        
        Args:
          lod (numpy.ndarray): The data to set.
900
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
901
          Tensor is to be set.
902 903
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
904 905 906 907 908 909 910 911 912 913

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

914
                t = fluid.Tensor()
L
Leo Chen 已提交
915 916
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
917

918 919 920
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
921
           Return the shape of Tensor.
L
Leo Chen 已提交
922 923

           Returns:
924
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
925 926 927 928 929 930 931 932


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

933
                  t = fluid.Tensor()
L
Leo Chen 已提交
934 935 936
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
937
      .def("_to_dlpack",
938
           [](framework::Tensor &self) {
6
633WHU 已提交
939
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
940
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
958 959 960 961
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
962
      .def("_place", [](framework::Tensor &self) { return self.place(); })
963 964 965 966
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
967
      .def("_layout",
968 969 970 971
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
972
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
992 993
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
994 995 996 997
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
998
      .def("__init__",
999 1000
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1001
           })
G
gongweibao 已提交
1002
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1003 1004
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1005 1006 1007
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1008
      .def("set_lod",
1009 1010
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1011
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1012
             LoD new_lod;
1013 1014
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1015 1016
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1017 1018
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1019
             self.set_lod(new_lod);
S
sneaxiy 已提交
1020 1021
           },
           py::arg("lod"), R"DOC(
1022
           Set LoD of the Tensor.
S
sneaxiy 已提交
1023 1024

           Args:
L
Leo Chen 已提交
1025 1026 1027 1028
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1029 1030 1031 1032 1033 1034 1035

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1036
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1037 1038
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1039
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1040
           )DOC")
1041
      .def("set_recursive_sequence_lengths",
1042 1043
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1044 1045 1046 1047 1048 1049 1050 1051
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1052 1053
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1054
                 platform::errors::InvalidArgument(
1055 1056
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1057 1058 1059
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1060
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1061 1062
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1063
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1064

L
Leo Chen 已提交
1065
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1066
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1067
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1068 1069

           Args:
L
Leo Chen 已提交
1070 1071 1072 1073
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1074 1075 1076 1077 1078 1079 1080

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1081
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1082 1083
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1084
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1085
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1086
           )DOC")
1087
      .def("lod",
1088
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1089 1090 1091 1092 1093 1094
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1095 1096
           },
           R"DOC(
1097
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1098 1099

           Returns:
1100
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1101
           
Z
Zeng Jinle 已提交
1102 1103 1104 1105 1106 1107
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1108
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1109 1110 1111
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1112
           )DOC")
G
gongweibao 已提交
1113
      // Set above comments of set_lod.
1114
      .def("recursive_sequence_lengths",
1115
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1116
             // output the length-based lod info
1117
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1118 1119 1120 1121
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1122 1123
           },
           R"DOC(
L
Leo Chen 已提交
1124
           Return the recursive sequence lengths corresponding to of the LodD 
1125
           of the Tensor.
S
sneaxiy 已提交
1126 1127

           Returns:
L
Leo Chen 已提交
1128
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1129 1130 1131 1132 1133 1134 1135

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1136
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1137 1138 1139
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1140 1141
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1142
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1143
             // Check that the lod info is valid and match the outermost
1144
             // dimension of the Tensor data
S
sneaxiy 已提交
1145 1146 1147
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1148
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1149 1150

           Returns:
L
Leo Chen 已提交
1151
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1152 1153 1154 1155 1156 1157 1158

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1159
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1160 1161 1162
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1163
           )DOC")
L
Leo Chen 已提交
1164
      .def("_as_type",
1165
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1166
              paddle::framework::proto::VarType::Type type) {
1167
             framework::Tensor dst;
L
Leo Chen 已提交
1168 1169 1170 1171 1172
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1186
#ifdef _WIN32
1187
           });
1188 1189 1190
#else
           })
      .def(py::pickle(
1191
          [](const framework::Tensor &t) {  // __getstate__
1192
            auto holder = t.Holder();
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1205 1206 1207
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1208 1209
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1210 1211 1212
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1213
              throw std::runtime_error("Invalid Tensor state!");
1214 1215

            // 1. Create a new C++ instance
1216
            framework::Tensor tensor;
1217 1218 1219 1220 1221

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1222 1223
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1224 1225

            // 3. Maintain global fd set
1226
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1227 1228
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1229 1230 1231
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1232
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1233
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1234 1235 1236 1237 1238
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1239

1240
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1241
      .def("__init__",
1242 1243
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1244
           })
Q
qijun 已提交
1245
      .def("__init__",
1246
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1247
              const int64_t &height) {
1248
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1249 1250
           })
      .def("get_tensor",
1251
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1252
           py::return_value_policy::reference)
1253
      .def("numel",
1254
           [](phi::SelectedRows &self) -> int64_t {
1255 1256
             return self.value().numel();
           })
1257 1258
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1259
      .def("set_rows",
1260
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1261
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1262 1263 1264 1265 1266 1267
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1268
      .def("sync_index",
1269 1270
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1271 1272 1273 1274 1275
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1276
      });
Q
qijun 已提交
1277

1278
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1279 1280 1281

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1282
      .def(py::init<>())
1283
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1284
      .def("set_int",
1285 1286
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1287 1288 1289 1290 1291 1292 1293
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1294
      .def("get_tensor",
1295 1296
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1297 1298
           },
           py::return_value_policy::reference)
1299 1300 1301 1302
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1315 1316 1317
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1318
      .def("get_selected_rows",
1319 1320
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1321 1322
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1323 1324 1325
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1326 1327 1328
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1329
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1330 1331 1332 1333 1334
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1335
#endif
Y
Refine  
Yu Yang 已提交
1336 1337
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1338 1339 1340 1341
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1342 1343
             return self.GetMutable<framework::ReaderHolder>();
           },
1344
           py::return_value_policy::reference)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1356 1357 1358 1359
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1360

S
sneaxiy 已提交
1361
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1362

0
0x45f 已提交
1363
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1377
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1378 1379 1380 1381 1382
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1383 1384 1385
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1386 1387
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1388
      .def("var",
1389
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1390
             return self.Var(name);
Y
Yu Yang 已提交
1391
           },
S
sneaxiy 已提交
1392 1393
           py::arg("name"),
           R"DOC(
1394
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1395

1396
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1397
           current scope, the variable would be created. Otherwise,
1398
           return the existing variable.
S
sneaxiy 已提交
1399 1400

           Args:
1401 1402
               name (str): the variable name.

S
sneaxiy 已提交
1403
           Returns:
1404
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1405 1406 1407 1408
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1409
           Find variable named :code:`name` in the current scope or
1410
           its parent scope. Return None if not found. 
1411

S
sneaxiy 已提交
1412 1413
           Args:
               name (str): the variable name.
1414

S
sneaxiy 已提交
1415
           Returns:
1416
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1417
           )DOC",
1418
           py::return_value_policy::reference)
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1431
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1432 1433 1434 1435 1436 1437
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1438
           py::return_value_policy::reference)
S
sneaxiy 已提交
1439 1440 1441
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1442 1443
           )DOC")
      .def("_kids", &Scope::kids);
1444

S
sneaxiy 已提交
1445 1446 1447 1448 1449 1450
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1451 1452
        R"DOC(
        Create a new scope.
1453

S
sneaxiy 已提交
1454 1455 1456
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1457 1458
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1459 1460
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1461 1462
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1463 1464 1465 1466
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1467 1468
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1469 1470
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1471 1472 1473
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1474 1475
    return ret_values;
  });
1476 1477 1478 1479 1480 1481 1482 1483
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1484
              res = op_checker->GetDefaultAttrsMap();
1485 1486 1487 1488
            }
          }
          return res;
        });
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1505 1506 1507
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1508 1509 1510 1511 1512
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1513 1514 1515
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1530
  m.def("prune", [](const ProgramDesc &origin,
1531
                    const std::set<std::string> &feeded_var_names,
1532
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1533
    ProgramDesc prog_with_targets(origin);
1534

1535
    for (const auto &t : targets) {
1536
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1537
    }
1538
    proto::ProgramDesc pruned_desc;
1539 1540 1541 1542
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1543
  });
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1561 1562 1563 1564
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1565 1566 1567
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1568 1569
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1570

Q
qijun 已提交
1571
  // clang-format off
Y
Yu Yang 已提交
1572
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1573 1574
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1575
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1590
                  })
1591 1592 1593 1594 1595 1596 1597 1598 1599
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1626 1627
#endif
                  })
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1640
      .def_static("create",
D
dzhwinter 已提交
1641
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1642
                      -> paddle::platform::DeviceContext* {
1643
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1644 1645 1646 1647
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1648
#else
W
Wilber 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1664
#endif
C
chengduoZH 已提交
1665 1666 1667 1668
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1669
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1670 1671 1672 1673
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1674 1675 1676 1677
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1678
// clang-format on
1679
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1680 1681
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1682 1683 1684
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1685
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1699
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1713
    devices = phi::DeviceManager::GetAllDeviceList();
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1727
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

1764 1765
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
1766
               int dev_count = static_cast<int>(
1767
                   phi::DeviceManager::GetDeviceCount(device_type));
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
1815
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1816 1817 1818 1819 1820

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1821
    The memory of CUDAPlace with different dev_id is not accessible.
1822 1823 1824 1825 1826 1827 1828 1829
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1830 1831 1832 1833

    Examples:
        .. code-block:: python

1834 1835 1836
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1837

1838 1839 1840
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1841 1842
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1843
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1844 1845 1846 1847 1848 1849 1850 1851
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1852 1853
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1854 1855 1856 1857 1858 1859 1860 1861
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1862 1863
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1864 1865 1866 1867
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1868 1869
             new (&self) platform::CUDAPlace(dev_id);
#else
1870 1871 1872 1873 1874 1875 1876 1877 1878
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1879 1880
#endif
           })
1881
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1882 1883
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1884 1885 1886 1887
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1888
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1889
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1890
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1891 1892
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1893 1894 1895
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1896
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1897
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1898

1899
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1900 1901 1902 1903 1904
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1905 1906 1907
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1946
#ifdef PADDLE_WITH_XPU
1947 1948 1949 1950 1951 1952 1953
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1954 1955 1956
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1957
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1958
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1959
#ifdef PADDLE_WITH_XPU
1960 1961 1962
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1963
      .export_values();
1964
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1965 1966
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
1967 1968 1969 1970 1971 1972
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
1973 1974 1975 1976
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
1977
#endif
1978
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1979 1980
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1981 1982
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1983
    return platform::get_xpu_version(place.device) >
1984
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1985 1986 1987
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1988
    return platform::get_xpu_version(place.device) >
1989
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1990
  });
1991
#endif
1992

1993
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1994
    CPUPlace is a descriptor of a device.
1995
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1996 1997 1998 1999

    Examples:
        .. code-block:: python

2000 2001
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2002

2003 2004 2005
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2006 2007
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2008
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2009
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2010 2011 2012 2013
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2014
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2015
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2016

2017 2018
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2019 2020 2021 2022 2023 2024
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2025 2026 2027 2028

    Examples:
        .. code-block:: python

2029 2030
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2031

2032 2033 2034 2035
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2036
      .def("__init__",
S
sneaxiy 已提交
2037
           [](platform::CUDAPinnedPlace &self) {
2038
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2039 2040 2041
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2042
#endif
S
sneaxiy 已提交
2043
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2044
           })
S
sneaxiy 已提交
2045 2046 2047 2048
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2049 2050
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2051 2052
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2053 2054 2055 2056
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2057
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2058 2059
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2060
  // NPUPlace
2061
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2062 2063 2064 2065 2066 2067 2068 2069
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2070 2071 2072
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2104
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2119 2120
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2121 2122
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2244 2245 2246
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2247 2248 2249 2250
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2251
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2252
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2253
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2254
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2255
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2256 2257
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2258 2259
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2260 2261
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2262 2263
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2264 2265
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2266 2267 2268 2269
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2270 2271
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2272 2273 2274
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2275 2276 2277 2278 2279
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2280 2281
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2282 2283
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2284 2285 2286 2287
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2288 2289 2290 2291
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2292
      .def("set_place",
D
dzhwinter 已提交
2293
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2294
             self = gpu_place;
C
chengduoZH 已提交
2295
           })
2296 2297 2298 2299 2300
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2301 2302 2303 2304
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2305 2306 2307 2308
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2309 2310 2311 2312
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2313 2314 2315 2316
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2317 2318
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2319

Y
Yu Yang 已提交
2320
  py::class_<OperatorBase>(m, "Operator")
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2335
      .def("run",
2336
           [](OperatorBase &self, const Scope &scope,
2337 2338 2339 2340
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2341 2342
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2343 2344 2345 2346
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2347 2348
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2349 2350 2351 2352
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2353 2354
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2355 2356 2357 2358
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2359 2360 2361
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2362
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2363 2364
             self.Run(scope, place);
           })
2365 2366 2367 2368 2369 2370
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2371 2372 2373 2374 2375 2376 2377
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2378 2379
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2380
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2381
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2382 2383 2384 2385
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2386

2387 2388 2389
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2390 2391 2392 2393 2394 2395 2396
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2397 2398
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2399

2400 2401
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2402
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2403
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2404
      .def("close", &Executor::Close)
2405 2406
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2407 2408
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2409 2410 2411 2412
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2413
             pybind11::gil_scoped_release release;
2414 2415 2416 2417 2418 2419 2420
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2421 2422 2423
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2424
              std::map<std::string, FetchType *> *fetch_targets,
2425 2426 2427 2428 2429 2430 2431 2432
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2433
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2434 2435 2436 2437 2438 2439 2440
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2451
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2452 2453
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2454
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2455 2456
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2457
      });
S
sneaxiy 已提交
2458

2459
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2460
      .def(py::init<>())
2461 2462 2463 2464 2465
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2466

2467
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2468 2469 2470
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2471
           [](StandaloneExecutor &self,
H
hong 已提交
2472
              const std::unordered_map<std::string, py::array> &input_dict,
2473
              std::vector<std::string> fetch_names) {
2474
             std::vector<framework::LoDTensor> feed_tensors;
2475
             std::vector<std::string> feed_names;
H
hong 已提交
2476 2477 2478 2479 2480

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2481 2482
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2483 2484
             }

2485 2486 2487 2488 2489 2490 2491 2492 2493
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2494
              const std::unordered_map<std::string, framework::LoDTensor>
2495 2496
                  &input_dict,
              std::vector<std::string> fetch_names) {
2497
             std::vector<framework::LoDTensor> feed_tensors;
2498 2499 2500 2501 2502 2503 2504
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2505 2506 2507 2508
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2509
             }
W
wanghuancoder 已提交
2510
             return py::cast(std::move(ret));
2511
           })
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2522 2523 2524
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2525
             std::vector<framework::LoDTensor> feed_tensors;
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2536
             framework::interpreter::CostInfo cost_info;
2537 2538 2539 2540 2541
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2542 2543
           });

D
dzhwinter 已提交
2544
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2545
  m.def("init_glog", framework::InitGLOG);
2546 2547
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2548
  m.def("init_devices", []() { framework::InitDevices(); });
2549

2550
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2551
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2552
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2553
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2554
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2555
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2556
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2557
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2558
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2559
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2560
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2561
  m.def("supports_bfloat16", SupportsBfloat16);
2562
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2563 2564
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2565
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2566
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2567
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2568 2569 2570
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2590 2591 2592 2593 2594 2595 2596
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2606
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2607 2608
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2609
    return platform::GetGPUComputeCapability(place.device) >= 53;
2610 2611
  });
#endif
2612

S
Steffy-zxf 已提交
2613 2614 2615 2616 2617 2618
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2619 2620 2621 2622 2623
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2624
            return py::cast(BOOST_GET(LoDTensor, var));
2625
          } else {
2626
            return py::cast(BOOST_GET(LoDTensorArray, var));
2627 2628
          }
        });
2629
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2630

X
Xin Pan 已提交
2631 2632
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2633 2634 2635 2636
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2637
  BindCostModel(&m);
2638
  BindConstValue(&m);
2639
  BindGlobalValueGetterSetter(&m);
2640
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2641
  BindFleetExecutor(&m);
2642
  BindTCPStore(&m);
Y
Yu Yang 已提交
2643

Y
Yu Yang 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2653
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2654
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2655 2656 2657

    Examples:
        .. code-block:: python
2658

Z
Zeng Jinle 已提交
2659 2660 2661
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2662 2663 2664 2665
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2666 2667
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2668 2669 2670 2671 2672 2673
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2674 2675 2676 2677
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2678 2679 2680
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2681 2682 2683 2684 2685 2686
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2687 2688
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2689 2690 2691 2692 2693 2694
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2717

2718 2719 2720 2721 2722 2723 2724 2725
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2726
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2727 2728
                 res[i] = py::cast(std::move(data));
               } else {
2729
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2745
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2746 2747 2748 2749 2750 2751 2752 2753
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2754
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2755 2756 2757 2758 2759 2760 2761 2762 2763
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2764 2765
        )DOC")
      .def("_move_to_list",
2766
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2767 2768 2769 2770
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2771
                 if (data_is_lod_tensor(self[i][j])) {
2772
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2773 2774
                   tmp[j] = py::cast(std::move(var));
                 } else {
2775
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2776 2777 2778 2779 2780 2781
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2791
  m.def("op_support_gpu", OpSupportGPU);
2792
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2793
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2794 2795 2796 2797 2798 2799 2800 2801
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2802 2803 2804 2805 2806 2807 2808
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2834
      });
D
dangqingqing 已提交
2835

2836
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2837 2838 2839
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2840 2841 2842 2843
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2844
#endif
P
peizhilin 已提交
2845
#endif
Y
Yu Yang 已提交
2846

2847 2848
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2849
  m.def("npu_finalize", []() {
2850 2851
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2852 2853 2854
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2855
      platform::NPUDeviceGuard guard(devices[i]);
2856 2857 2858 2859
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2880 2881 2882 2883
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2884 2885 2886 2887
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2888 2889 2890 2891 2892 2893
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2894 2895 2896 2897
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2898
      .value("kAll", platform::ProfilerState::kAll)
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2910
  m.def("set_tracer_option", platform::SetTracerOption);
2911 2912
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2913
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2914
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2915
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2916 2917
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2918 2919 2920
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2921
    callable.inc_ref();
2922 2923 2924 2925 2926 2927 2928 2929
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2930
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2931 2932 2933
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2934

2935
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
             return profiler->Stop();
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3018

3019
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3020 3021
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3022 3023
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3024
#endif  // PADDLE_WITH_CUDA
3025 3026
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3027

3028 3029 3030
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3031 3032
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3033
      .def("has", &ir::Pass::Has)
3034 3035 3036
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3037
           })
3038
      .def(
3039
          "set",
3040 3041 3042
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3043 3044
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3045 3046
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3047 3048 3049 3050 3051
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3066 3067
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3068
        self.Apply(graph.get());
F
flame 已提交
3069
      });
3070

X
fix  
Xin Pan 已提交
3071 3072
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3087
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3088
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3089 3090 3091 3092
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3093 3094 3095
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3096 3097 3098
    Examples:
        .. code-block:: python

3099 3100 3101 3102 3103 3104 3105 3106 3107
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3108

3109 3110
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3111

3112
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3113 3114
          sgd_optimizer.minimize(avg_loss)

3115
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3116 3117
          exec_strategy.num_threads = 4

3118 3119 3120
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3121 3122
        )DOC");

3123 3124 3125 3126
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3127

Y
yuyang18 已提交
3128
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3129 3130 3131 3132 3133
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3134
          },
3135 3136
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3137 3138 3139 3140 3141 3142 3143
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3157
      .def_property(
3158 3159
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3160
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3161 3162 3163
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3164 3165 3166 3167 3168
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3169 3170 3171
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3172 3173
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3174 3175 3176 3177 3178 3179 3180
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3181 3182 3183 3184
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3185
                because the temp variable's shape maybe the same between two iterations.
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3196

3197 3198 3199 3200 3201 3202 3203
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3204
              )DOC")
Q
Qiao Longfei 已提交
3205 3206 3207 3208 3209 3210 3211 3212 3213
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3226
              )DOC")
3227 3228 3229 3230 3231 3232 3233 3234
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3235 3236 3237 3238 3239
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3240

Y
yuyang18 已提交
3241
  exec_strategy.def_property(
Y
yuyang18 已提交
3242 3243 3244 3245 3246 3247 3248
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3249 3250
      });

C
chengduo 已提交
3251 3252 3253 3254
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3255 3256 3257
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3258 3259 3260
    Examples:
        .. code-block:: python

3261
            import os
3262 3263 3264 3265
            import paddle
            import paddle.static as static

            paddle.enable_static()
3266

3267 3268
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3269

3270 3271 3272 3273
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3274

3275
            build_strategy = static.BuildStrategy()
3276 3277
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3278 3279
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3280
            program = program.with_data_parallel(loss_name=loss.name,
3281 3282
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3283
)DOC");
Y
yuyang18 已提交
3284 3285 3286

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3287 3288
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3289 3290 3291 3292 3293 3294 3295 3296
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3297
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3298 3299 3300 3301
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3302 3303 3304 3305
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3306
            self.reduce_ = strategy;
C
chengduo 已提交
3307
          },
3308
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3309 3310
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3311
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3312 3313
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3314
                Default is 'AllReduce'.
F
flame 已提交
3315 3316 3317 3318

                Examples:
                    .. code-block:: python

3319 3320 3321 3322 3323 3324 3325
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3326
                  )DOC")
Y
yuyang18 已提交
3327 3328 3329 3330 3331
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3332 3333 3334 3335
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3336
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3337
          },
3338
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3339
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3340 3341
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3342
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3343 3344 3345 3346

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3347 3348
                        import numpy
                        import os
3349 3350 3351 3352
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3353 3354

                        use_cuda = True
3355 3356
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3357 3358

                        # NOTE: If you use CPU to run the program, you need
3359
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3360 3361 3362 3363 3364 3365
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3366
                            places = static.cpu_places()
C
chengduo 已提交
3367
                        else:
3368
                            places = static.cuda_places()
C
chengduo 已提交
3369

3370 3371 3372 3373
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3374

3375
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3376

3377
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3378
                        build_strategy.gradient_scale_strategy = \
3379 3380 3381
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3382
                                          loss_name=loss.name, build_strategy=build_strategy,
3383
                                          places=places)
C
chengduo 已提交
3384 3385 3386 3387 3388 3389

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3390 3391
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3392
                   )DOC")
Y
yuyang18 已提交
3393 3394 3395 3396
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3397 3398 3399 3400
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3401
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3402
          },
3403
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3404
                writing the SSA Graph to file in the form of graphviz.
3405
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3406 3407 3408 3409

                Examples:
                    .. code-block:: python

3410 3411 3412 3413
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3414

3415 3416
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3417
                    )DOC")
S
sneaxiy 已提交
3418 3419 3420 3421 3422 3423
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3424 3425 3426 3427
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3428 3429
            self.enable_sequential_execution_ = b;
          },
3430 3431
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3432 3433 3434 3435

                Examples:
                    .. code-block:: python

3436 3437 3438 3439 3440 3441
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3442 3443
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3444 3445 3446 3447 3448 3449
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3450 3451 3452 3453
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3454 3455
            self.remove_unnecessary_lock_ = b;
          },
3456 3457
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3458 3459 3460 3461

                Examples:
                    .. code-block:: python

3462 3463 3464 3465 3466 3467
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3468 3469
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3470 3471 3472 3473
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3474
#ifdef WIN32
3475
            PADDLE_THROW(platform::errors::Unavailable(
3476
                "Distribution mode is not supported on Windows platform."));
3477
#endif
3478 3479
            self.num_trainers_ = num_trainers;
          })
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3492 3493 3494 3495 3496 3497
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3498 3499 3500 3501 3502 3503
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3504
      .def_property("use_hierarchical_allreduce",
3505 3506 3507 3508 3509 3510
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3511
      .def_property("hierarchical_allreduce_inter_nranks",
3512 3513 3514 3515 3516 3517 3518
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3519 3520 3521 3522 3523 3524
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3525 3526 3527 3528
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3529 3530
            self.fuse_elewise_add_act_ops_ = b;
          },
3531
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3532
                to fuse elementwise_add_op and activation_op,
3533
                it may make the execution faster. Default is False.
F
flame 已提交
3534 3535 3536 3537

                Examples:
                    .. code-block:: python

3538 3539 3540 3541 3542 3543
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3544 3545
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3571 3572 3573 3574
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3575
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3576
                              platform::errors::PreconditionNotMet(
3577 3578
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3588 3589 3590 3591 3592 3593
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3594 3595
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3621 3622 3623 3624
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3625
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3626
                              platform::errors::PreconditionNotMet(
3627 3628
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3639 3640 3641 3642 3643 3644
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3645 3646
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3647 3648 3649 3650 3651 3652
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3653 3654 3655 3656
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3657 3658
            self.fuse_relu_depthwise_conv_ = b;
          },
3659
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3660 3661 3662
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3663
                Default is False.
F
flame 已提交
3664 3665 3666 3667

                Examples:
                    .. code-block:: python

3668 3669 3670 3671 3672 3673
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3674 3675
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3676 3677 3678
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3679
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3680 3681
                    },
                    [](BuildStrategy &self, bool b) {
3682 3683 3684 3685
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3686 3687
                      self.fuse_broadcast_ops_ = b;
                    },
3688
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3689 3690 3691 3692
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3693 3694 3695 3696 3697
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3698 3699 3700 3701 3702 3703
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3704 3705
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3706 3707
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3708
                      return self.fuse_all_optimizer_ops_ == true ||
3709
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3710 3711
                    },
                    [](BuildStrategy &self, bool b) {
3712 3713 3714 3715
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3716 3717
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3718 3719 3720 3721
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3722 3723 3724 3725
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3726 3727
            self.sync_batch_norm_ = b;
          },
3728
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3729 3730 3731
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3732 3733
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3734 3735 3736 3737

                Examples:
                    .. code-block:: python

3738 3739 3740 3741 3742 3743
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3744 3745
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3746 3747
      .def_property(
          "memory_optimize",
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3758
              self.memory_optimize_ = paddle::none;
3759 3760 3761
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3762
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3763 3764
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3765 3766
            }
          },
3767
          R"DOC((bool, optional): memory opitimize aims to save total memory
3768
                consumption, set to True to enable it.
3769

3770 3771 3772
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3787 3788 3789
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3790 3791 3792
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3793
              PADDLE_THROW(platform::errors::Unavailable(
3794
                  "Distribution mode is not supported on Windows platform."));
3795 3796 3797 3798 3799
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3800 3801 3802
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3803
      .def_property(
D
dzhwinter 已提交
3804 3805 3806
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3807 3808 3809 3810
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3811 3812
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3813 3814
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3815
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3816
          },
C
chengduo 已提交
3817
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3818 3819 3820 3821 3822 3823 3824
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3825 3826 3827 3828
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3829 3830 3831 3832 3833 3834 3835 3836 3837
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3838 3839 3840 3841 3842 3843
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3844 3845 3846 3847 3848 3849 3850
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3851 3852 3853 3854 3855 3856
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3857
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3858
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3859 3860 3861 3862 3863
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3864

3865 3866 3867 3868 3869 3870
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3871
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3872
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3873
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3874
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3875 3876 3877 3878
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3879 3880 3881 3882 3883
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3884 3885 3886
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3887 3888 3889 3890
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3891 3892
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3893 3894 3895 3896 3897 3898 3899 3900
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3901
               return py::cast(
3902
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3903 3904
             } else {
               return py::cast(std::move(
3905
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3906
             }
3907 3908
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3909

J
jianghaicheng 已提交
3910 3911
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
3923
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4045 4046
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4047 4048 4049
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4050 4051
#endif

D
dongdaxiang 已提交
4052
  BindFleetWrapper(&m);
4053
  BindIO(&m);
T
Thunderbrook 已提交
4054

T
Thunderbrook 已提交
4055
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4056
  BindHeterWrapper(&m);
4057
  BindMetrics(&m);
T
Thunderbrook 已提交
4058
#endif
T
Thunderbrook 已提交
4059
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4060
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4061
#endif
4062
  BindGlooWrapper(&m);
H
hutuxian 已提交
4063
  BindBoxHelper(&m);
H
hutuxian 已提交
4064 4065 4066
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4067
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4068
  BindNCCLWrapper(&m);
4069 4070 4071
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4072
#endif
F
flame 已提交
4073 4074
  BindGraph(&m);
  BindNode(&m);
4075
  BindPass(&m);
F
flame 已提交
4076
  BindInferenceApi(&m);
4077
  BindCompatible(&m);
4078
  BindDataset(&m);
Y
yaoxuefeng 已提交
4079
  BindGenerator(&m);
4080 4081 4082
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4083 4084 4085
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4086
  BindAscendDevice(&m);
4087
#endif
Y
Yanghello 已提交
4088 4089 4090
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4091

T
tangwei12 已提交
4092
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4093 4094
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4095
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4096 4097
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4098 4099 4100 4101 4102
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4103 4104 4105 4106
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4107
  BindSparseShardingTools(&m);
4108
#endif
L
Luo Tao 已提交
4109
}
4110
}  // namespace pybind
4111
}  // namespace paddle